EXTENSIONS OF HILBERTIAN RINGS

MOSHE JARDEN

School of Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel e-mail: jarden@post.tau.ac.il

and AHARON RAZON

Elta Industry, Ashdod, Israel e-mail: razona@elta.co.il

(Received 30 May 2018; revised 3 October 2018; accepted 3 October 2018; first published online 5 November 2018)

Abstract. We generalize known results about Hilbertian fields to Hilbertian rings. For example, let *R* be a Hilbertian ring (e.g. *R* is the ring of integers of a number field) with quotient field *K* and let *A* be an abelian variety over *K*. Then, for every extension *M* of *K* in $K(A_{\text{tor}}(K_{\text{sep}}))$, the integral closure R_M of *R* in *M* is Hilbertian.

Mathematics Subject Classification. 12E30.

Introduction. Some of the most important results in the theory of Hilbertian fields are of the form: if K is a Hilbertian field and M/K is an extension satisfying certain properties, then *M* is Hilbertian as well. This article proves integral analogues of some of these theorems: if *R* is a Hilbertian domain with quotient field *K* and *M*/*K* is an algebraic extension of fields satisfying some condition that is known to preserve Hilbertianity (of fields), then the integral closure of *R* in *M* is also Hilbertian.

Given irreducible polynomials $f_1, \ldots, f_m \in \mathbb{Q}(T_1, \ldots, T_r)[X]$ and a non-zero polynomial $g \in \mathbb{Q}[T_1,\ldots,T_r]$, Hilbert's irreducibility theorem yields an *r*-tuple $\mathbf{a} \in \mathbb{Q}^r$ such that $f_i(\mathbf{a}, X)$ is defined and irreducible in $\mathbb{Q}[X]$ for $i = 1, \ldots, m$ and $g(\mathbf{a}) \neq 0$. The set $H_{\mathbb{Q}}(f_1, \ldots, f_m; g)$ of all **a** with that property is said to be a **Hilbert subset** of \mathbb{Q}^r . It contains $\mathbf{a} \in \mathbb{Q}^r$ such that $Gal(f_i(\mathbf{a}, X), \mathbb{Q}) \cong Gal(f_i(\mathbf{T}, X), \mathbb{Q}(\mathbf{T}))$ for $i = 1, \ldots, m$ [3, p. 294, Proposition 16.1.5]. The importance of the latter property lies in the fact that it is the main (albeit not the only) tool to realize finite groups over $\mathbb Q$.

The above definition applies to an arbitrary field *K*. A **separable Hilbert set** of *K* is then a Hilbert subset $H_K(f_1,\ldots,f_m;g)$ of K^r for some positive integer *r* with the additional property that each $f_i(\mathbf{T}, X)$ is in $K(\mathbf{T})[X]$ and is separable in *X*. If each of these sets is non-empty, then *K* is **Hilbertian**. It turns out that every global field is Hilbertian. Moreover, every finitely generated transcendental extension of an arbitrary field is Hilbertian [**3**, p. 242, Theorem 13.4.2]. Furthermore, every finite extension of a Hilbertian field is Hilbertian [**3**, p. 227, Proposition 12.3.5].

Generalizing prior results of Willem Kuyk [**6**] and Reiner Weissauer [**8**], Dan Haran proved a 'diamond theorem' in [4]: Given Galois extensions N_1 and N_2 of a Hilbertian field *K*, every extension *M* of *K* in N_1N_2 that is neither contained in N_1 nor in N_2 is Hilbertian.

The first author conjectured in [**5**] that if *K* is a Hilbertian field and *A* is an abelian variety over *K*, then, every extension *M* of *K* in $K(A_{\text{tor}})$ is Hilbertian. He proved the conjecture for number fields. The proof uses Haran's diamond theorem and a theorem

of Serre that in that time was known only for number fields. Arno Fehm and Sebastian Petersen referred to the conjecture as the **Kuykian Conjecture** and proved it when *K* is an infinite finitely generated extension of its prime field [**2**].

Haran's proof of the Diamond Theorem relies on a technical result [**4**, Theorem 3.2]. That result is exploited by Lior Bary-Soroker, Arno Fehm and Gabor Wiese in [**1**] to prove far reaching generalization of the results mentioned so far:

PROPOSITION A. ([**1**, Theorem 1.1]): *Let M be a separable algebraic extension of a Hilbertian field K. Suppose that there exist a tower of field extensions* $K = K_0 \subseteq K_1 \subseteq$ ···⊆ *Kn such that for each* 1 ≤ *i* ≤ *n the extension Ki*/*Ki*[−]¹ *is Galois with Galois group that is either abelian or a direct product of finite simple groups and M* \subseteq *K_n. (We call K*⁰ ⊆ *K*₁ ⊆ ··· ⊆ *K*_n *a* **finite abelian-simple tower.***) Then, M is Hilbertian.*

Using a deep result of Michael Larsen and Richard Pink [**7**], Bary-Soroker, Fehm and Wiese also prove that for every field *K* and every abelian variety *A* over *K*, the extension $K(A_{\text{tor}})/K$ admits a finite abelian-simple tower. Thus, the Kuykian Conjecture (renamed in [**1**] **Jarden Conjecture**) turns out to be a special case of Proposition A.

The present work originates in an arithmetic proof of the Hilbert irreducibility theorem which proves for a global field K that every Hilbert subset of K^r contains points in O_K^r , where O_K is the ring of integers of *K* [3, p. 241, Theorem 13.3.5]. Thus, O_K may be called a **Hilbertian ring**.

The first thing we do is to slightly modify the proof of [**4**, Theorem 3.2] to Hilbertian rings (Proposition 1.4). Then, we use the modified criterion to generalize Haran's diamond theorem:

THEOREM B. (Theorem 2.2): *Let R be a Hilbertian ring with quotient field K, let N*¹ *and* N_2 *be Galois extensions of K and M an extension of K in* N_1N_2 *such that* $M \nsubseteq N_1$ *and* $M \nsubseteq N_2$. Then, the integral closure R_M of R in M is Hilbertian.

Our second main result generalizes Proposition A:

THEOREM C. (Theorem 3.5): *Let R be a Hilbertian ring with quotient field K and let M be a separable algebraic extension of K of finite abelian-simple length (Definition 3.1). Then, the integral closure* R_M *of* R *in* M *is Hilbertian.*

Theorem 1.3 has two interesting corollaries. For the first one, we denote the compositum of all Galois extensions with symmetric Galois groups of a field *K* by *K*symm.

COROLLARY D. (Corollary 3.6): *Let R be a Hilbertian ring with quotient field K. Let M* be an extension of K in K_{symm} . Then, the ring R_M is Hilbertian.

The second one refers to the torsion subgroup *A*tor of an abelian variety *A*.

COROLLARY E. (Theorem 4.5): *Let R be a Hilbertian ring with quotient field K. Let A be an abelian variety over K and let M be an extension of K in* $K(A_{\text{tor}}(K_{\text{sep}}))$ *. Then, the ring RM is Hilbertian.*

The authors thank the referee for useful comments.

1. Hilbertian rings. Let R be an integral domain with quotient field K. Let $T =$ (T_1, \ldots, T_r) be an *r*-tuple of indeterminates and let *X* be an additional indeterminate.

Given irreducible polynomials $f_1, \ldots, f_m \in K(T)[X]$ that are separable in X and a non-zero polynomial $g \in K[T]$, the set $H_K(f_1, \ldots, f_m; g)$ of all $\mathbf{a} \in K^r$ such that $f_1(\mathbf{a}, X), \ldots, f_m(\mathbf{a}, X)$ are defined and irreducible in $K[X]$ and $g(\mathbf{a}) \neq 0$ is a **separable Hilbert subset** of K^r . In the special case, where $g = 1$, we write $H_K(f_1, \ldots, f_m)$ rather than $H_K(f_1, \ldots, f_m; 1)$.

We say that *R* is a **Hilbertian ring** if $H \cap R^r \neq \emptyset$ for every positive integer *r* and every separable Hilbert subset *H* of *K^r* . In this case, *K* is a Hilbertian field.

Recall that a profinite group *G* is **small** if for every positive integer *n* the group *G* has only finitely many subgroups of index *n*. In particular, if *G* is finitely generated, then *G* is small [**3**, page 328, Lemma 16.10.2].

Let *M*/*K* be a separable algebraic extension of fields and let *N* be the Galois hull of *M*/*K*. In particular, Gal(*N*/*K*) is small if *M*/*K* is finite.

We need the following improvement of [**3**, p. 332, Proposition 16.1.1]:

LEMMA 1.1. *Let N be a Galois extension of a field K with small Galois group* Gal(*N*/*K*)*. Let M be an extension of K in N. Then, every separable Hilbert subset H of M^r contains a separable Hilbert subset of K^r .*

In particular, if K is Hilbertian, then so is M. Moreover, if K is the quotient field of a Hilbertian domain R, then the integral closure RM of R in M is also Hilbertian.

Proof. By definition, $H = H_M(f_1, \ldots, f_k; g)$, where $f_i \in M(T_1, \ldots, T_r)[X]$ is irreducible and separable, $i = 1, ..., k$, and $g \in M[T_1, ..., T_r]$ with $g \neq 0$. Let $n =$ $\max(\deg_X(f_1), \ldots, \deg_X(f_k))$. We choose a finite extension *L* of *K* in *M* that contains all of the coefficients of f_1, \ldots, f_k, g , and set $d = [L : K]$. Then, we denote the compositum of all extensions of *K* in *M* of degree at most *dn* by *L'*. Then, $L \subseteq L'$, and by our assumption on *N*, we have $[L': K] < \infty$. Hence, by [3, p. 224, Corollary 12.2.3], $H_L(f_1, \ldots, f_k; g)$ contains a separable Hilbert subset H_K of K^r .

Let $\mathbf{a} \in H_K$ and consider an *i* between 1 and *k*. Then, $g(\mathbf{a}) \neq 0$ and $f_i(\mathbf{a}, X)$ is irreducible over L'. Let *b* be a zero of $f_i(\mathbf{a}, X)$ in K_{sep} . Then, $L(b)$ is linearly disjoint from *L'* over *L*. In addition, $[M \cap L(b) : K] \leq [L(b) : K] \leq dn$. Hence, $M \cap L(b) \subseteq$ *L*['] ∩ *L*(*b*) = *L*. It follows that *f_i*(**a**, *X*) is irreducible over *M*. Consequently, **a** ∈ *H*.

If *K* is the quotient field of a Hilbertian domain *R*, then H_K contains a point **a** that lies in R^n , so also in R^r_M . Therefore, R_M is Hilbertian.

The following result is a generalization of [**3**, p. 236, Proposition 13.2.2].

LEMMA 1.2. *Let R be an integral domain with quotient field K. Suppose that each separable Hilbert subset of K of the form* $H_K(f)$ *with irreducible* $f \in K[T, X]$ *, separable, monic, and of degree at least* 2 *in X, has an element in R. Then, R is Hilbertian.*

Proof. By [**3**, p. 222, Lemma 12.1.6], it suffices to consider a separable irreducible polynomial $f \in K[T_1, \ldots, T_r, X]$ in *X* and to prove that $H_K(f) \cap R^r \neq \emptyset$. The case $r = 1$ is covered by the assumption of the lemma. Suppose $r \ge 2$ and the statement holds for $r - 1$. The assumption of the lemma implies that *R* is infinite. Let $K_0 =$ *K*(*T*₁,..., *T_{r−2}*), *t* = *T_{r−1}*, and regard *f* as a polynomial in *K*₀(*t*)[*T_r*, *X*]. By [3, p. 236, Proposition 13.2.1], there exists a non-empty Zariski-open subset *U* of $\mathbb{A}_{K_0}^2$ such that ${a + bt \mid (a, b) \in U(K_0)} \subseteq H_{K_0(t)}(f)$. Since *R* is infinite, we can choose *a*, *b* such that $(a, b) \in U(R)$. Hence, $f(T_1, \ldots, T_{r-1}, a + bT_{r-1}, X)$ is irreducible and separable

in $K(T_1, \ldots, T_{r-1})[X]$. The induction hypothesis gives $a_1, \ldots, a_{r-1} \in R$ such that *f*($a_1, \ldots, a_{r-1}, a + ba_{r-1}, X$) is irreducible and separable in $K[X]$. Let $a_r = a + ba_{r-1}$. Then, $a_r \in R$ and $f(a_1, \ldots, a_r, X)$ is irreducible in $K[X]$.

Proposition 1.4 below is the basic result used in the proof of our two main Theorems 2.2 and 3.5. We start the proof of that proposition with a generalization of [**4**, Theorem 3.2]. The proof of that generalization uses the notion of 'twisted wreath product' that we now recall from [**3**, p. 253, Definition 13.7.2].

Let G be a group and G' a subgroup. Suppose that G' acts on a group A from the right. We consider the group

$$
\operatorname{Ind}_{G'}^G(A) = \{ f \colon G \to A \mid f(\sigma \sigma') = f(\sigma)^{\sigma'} \text{ for all } \sigma \in G \text{ and } \sigma' \in G' \}
$$

and let *G* acts on $\text{Ind}_{G}^{G}(A)$ by the rule $f^{\sigma}(\tau) = f(\sigma \tau)$. The **twisted wreath product** of *A* and *G* with respect to *G* is defined as the semi-direct product

$$
A \text{wr}_{G'} G = G \ltimes \text{Ind}_{G'}^G(A).
$$

We say that a tower of fields $K \subseteq E' \subseteq E \subseteq F \subseteq \hat{F}$ **realizes** a twisted wreath product A wr $_G$ G if \hat{F}/K is a Galois extension with Galois group isomorphic to A wr $_G$ G and the tower yields a commutative diagram of groups,

Gal(
$$
\hat{F}/F
$$
) \longrightarrow Gal(\hat{F}/E) \longrightarrow Gal(\hat{F}/E') \longrightarrow Gal(\hat{F}/K)
 \parallel \parallel <

where

(1) *J* = {*f* ∈ Ind $_G^G(A)$ | *f*(1) = 1} is a normal subgroup of Ind $_G^G(A)$ and each of the maps in the first and the second rows is the inclusion map. See [**3**, p. 255, Remark 13.7.6], where a more elaborate diagram is referred to.

The following result is a special case of [**3**, p. 235, Lemma 13.1.4].

LEMMA 1.3. Let K be an infinite field and let $f \in K[T, X]$ be an irreducible *polynomial which is monic and separable in X. Then, there are a finite Galois extension L* of *K* and an absolutely irreducible polynomial $g \in K[T, X]$ which as a polynomial in X *is monic, separable and Galois over L(T) such that* $K \cap H_L(g) \subseteq H_K(f)$ *.*

We denote the maximal separable algebraic extension of a field K by K_{sep} .

PROPOSITION 1.4. *Let R be a Hilbertian ring with quotient field K and let M be a separable algebraic extension of K. Suppose that for every* $\alpha \in M$ *and every* $\beta \in K_{\text{sep}}$ *, there exist*

- (a) *a finite Galois extension L of K that contains* α *and* β *; let* $G = \text{Gal}(L/K)$ *;*
- (b) *a field* K' *that contains* α *such that* $K \subseteq K' \subseteq M \cap L$ *; let* $G' = \text{Gal}(L/K')$ *; and*
- (c) *a Galois extension N of K that contains both M and L,*

*such that for every finite non-trivial group A*⁰ *and every action of G on A*⁰ *there is no realization K, K', L, F*₀, \hat{F}_0 *of A*₀wr_{*G*}^{*G*} with $\hat{F}_0 \subseteq N$.

Then, the integral closure R_M *of* R *in* M *is Hilbertian.*

Proof. We break the proof into four parts.

Part A: *Preliminaries.* We apply the criterion for Hilbertianity of Lemma 1.2 combined with Lemma 1.3. So let $f \in M[T, X]$ be an absolutely irreducible polynomial, monic and separable in X, and let M'/M be a finite Galois extension such that $f(T, X)$ is Galois over $M'(T)$. We have to prove that there exists $a \in R_M$ such that $f(a, X) \in M[X]$ is irreducible over M'. Let $A = \text{Gal}(f, M'(T)) = \text{Gal}(f, K_{\text{sep}}(T))$. Without loss, we may assume that $\deg_X(f) \geq 2$.

There is $\alpha \in M$ such that $f \in K(\alpha)[T, X]$ and there is $\beta \in K_{\text{sep}}$ such that $M' \subseteq$ *M*(β) and *f*(*T*, *X*) is Galois over *K*(β)(*T*) with Gal(*f*(*T*, *X*), *K*(β)(*T*)) = *A*. For these α , β , let *K'*, *L* and *N* be as in (a)–(c). Then, $f \in K'[T, X]$ and $f(T, X)$ is Galois over $L(T)$ with $Gal(f(T, X), L(T)) = A$.

Let *R'* be the integral closure of *R* in *K'*. Then, $R' \subseteq R_M$ and $M' \subseteq N$, so it suffices to find $a \in R'$ such that $f(a, X)$ is irreducible over *N*.

Part B: *Specialization of the wreath product.* We choose $c_1, \ldots, c_n \in \mathbb{R}^r$ that form a basis of K' over K .

Let $\mathbf{t} = (t_1, \ldots, t_n)$ be an *n*-tuple of algebraically independent elements over K'. By [3, p. 258, Lemma 13.8.1], $G' = \text{Gal}(L/K')$ acts on *A* and there are fields *P* and \hat{P} such that

(2a) $K(t)$, $K'(t)$, $L(t)$, P , \hat{P} realize $A \text{wr}_G G$ and \hat{P} is regular over L ;

(2b) $P = L(\mathbf{t}, x)$, where $\text{irr}(x, L(\mathbf{t})) = f(\sum_{i=1}^{n} c_i t_i, X)$.

Since *R* is Hilbertian [3, p. 231, Lemma 13.1.1], gives an *n*-tuple $\mathbf{b} = (b_1, \ldots, b_n) \in$ R^n such that the specialization $t \mapsto b$ yields an *L*-place of *P* onto a Galois extension \hat{F} of *K* with Galois group isomorphic to Gal($\hat{P}/K(t)$). That is, there are fields *F* and \hat{F} such that

(3a) K, K', L, F, \hat{F} realize $A \text{wr}_G G$. (3b) $F = L(y)$, where $\text{irr}(y, L) = f(\sum_{i=1}^{n} c_i b_i, X)$.

We set $a = \sum_{i=1}^{n} c_i b_i$ and observe that $a \in R'$, so $f(a, X) \in K'[X]$.

Part C: $L = N \cap F$ Indeed, by (1), F/L is a Galois extension, so $F_0 = N \cap F$ is a Galois extension of *L*. Let $A_0 = \text{Gal}(F_0/L)$. By [3, p. 257, Remark 13.7.6(c)], there is a Galois extension \hat{F}_0 of K such that G' acts on A_0 and

(4) K, K', L, F_0, \hat{F}_0 realize $A_0 \text{wr}_{G'} G$.

Moreover, \hat{F}_0 is the Galois closure of F_0 over *K*. Since $F_0 \subseteq N$ and N/K is Galois, we have $\hat{F}_0 \subseteq N$. By assumption, this is possible only if $A_0 = 1$, that is, if $L = N \cap F$.

Part D: *Conclusion.* By Part B, $f(a, y) = 0$ and $F = L(y)$. By Part C,

$$
[N(y) : N] = [NF : N] = [F : L] = [L(y) : L].
$$

Thus, $f(a, X) = \text{irr}(y, N)$. In particular, $f(a, X)$ is irreducible over *N*.

2. Haran's diamond theorem. Our first application of Proposition 1.4 generalizes Haran's diamond theorem [**4**, Theorem 4.1] from fields to integral domains.

The following result is [**4**, Lemma 1.4(a)].

LEMMA 2.1. Let π : $A \text{wr}_G G \to G$ be a twisted wreath product with $A \neq 1$. Let $H_1 \triangleleft A \text{wr}_G G$ and $h_2 \in A \text{wr}_G G$ and let $G_1 = \pi(H_1)$ *. Suppose that* $\pi(h_2) \notin G'$ and (G_1G') G' > 2*. Then, there exists* $h_1 \in \text{Ker}(\pi) \cap H_1$ *such that* $[h_1, h_2] \neq 1$ *.*

THEOREM 2.2 (Haran's diamond theorem for rings). *Let R be a Hilbertian ring with quotient field K. Let M*¹ *and M*² *be Galois extensions of K and let M be an extension of K in M*₁*M*₂*. Suppose that M* \nsubseteq *M*₁ *and M* \nsubseteq *M*₂*. Then, the integral closure R_M of R in M is Hilbertian.*

Proof. By Lemma 1.1, we may assume that $[M:K] = \infty$. Part A of the proof strengthens this assumption.

Part A: *We may assume that* $[M : (M_1 \cap M)] = \infty$ Otherwise,

$$
[M:(M_1\cap M)]<\infty.
$$

Then, *K* has a finite Galois extension M'_2 with $M \subseteq (M_1 \cap M)M'_2$. Hence, $M \subseteq M_1M'_2$ and $[M : M \cap M'_2] = \infty$. Replace M_1 by M'_2 and M_2 by M_1 to restore our assumption.

Part B: *Construction of N and L.* Following Proposition 1.4, we consider $\alpha \in M$ and $\beta \in K_{\text{sen}}$. Let *L* be a finite Galois extension of *K* that contains $K(\alpha, \beta)$ and let $N = LM_1M_2$. Then, N/K is Galois and both Gal(N/M_1) and Gal(N/M_2) are normal in $Gal(N/K)$.

Let $G = \text{Gal}(L/K)$ and let $\varphi: \text{Gal}(N/K) \to G$ be the restriction map. Let $G_1 =$ φ (Gal(*N*/*M*₁)) and *G*₂ = φ (Gal(*N*/*M*₂)). Then,

$$
G_1, G_2 \triangleleft G. \tag{1}
$$

Now, we set $K' = M \cap L$ and $G' = \varphi(\text{Gal}(N/M))$. Then, $\alpha \in K'$ and $G' = \text{Gal}(L/K')$.

Since $M \nsubseteq M_i$, we may choose *L* sufficiently large such that $K' \nsubseteq M_i$ for $i = 1, 2$, hence

$$
G_1, G_2 \nleq G'. \tag{2}
$$

Similarly, since $[M : K] = \infty$, we may choose L sufficiently large such that

$$
(G:G')>2.\t(3)
$$

Finally, by Part A, we may choose *L* sufficiently large such that

$$
(G_1 G' : G') > 2.
$$
 (4)

Part C: *Realization*. We consider a non-trivial group *A* on which *G'* acts and set $H = A \text{wr}_G G$. By Proposition 1.4, it suffices to prove that a realization *K*, *K'*, *L*, *F*, \hat{F} of *H* with $\hat{F} \subseteq N$ does not exist.

Assume towards contradiction that such a realization exists. We identify *H* with Gal(\hat{F}/K) such that the restriction map res_{\hat{F}/L}: Gal(\hat{F}/K) \rightarrow Gal(L/K) coincides with the projection $\pi: H \to G$. Then, $\pi \circ \text{res}_{N/\hat{F}} = \text{res}_{N/L}$.

For $i = 1, 2$, let $H_i = \text{res}_{N/\hat{F}}(\text{Gal}(N/M_i))$. Then, $H_i \triangleleft H$ and $\pi(H_i) =$ $res_{N/L}(Gal(N/M_i)) = G_i$.

Claim: There are $h_1 \in H_1 \cap \text{Ker}(\pi)$ and $h_2 \in H_2$ such that $[h_1, h_2] \neq 1$ Indeed, by (2), there exists $g_2 \in G_2 \setminus G'$. Choose $h_2 \in H_2$ such that $\pi(h_2) = g_2$, so $\pi(h_2) \notin G'$. Hence, our claim follows from (4) and Lemma 2.1.

For $i = 1, 2$, we choose $\gamma_i \in \text{Gal}(N/M_i)$ with res_{N/k} $(\gamma_i) = h_i$. Then, by the claim,

$$
res_{N/L}(\gamma_1) = \pi(h_1) = 1 \text{ and } [\gamma_1, \gamma_2] \neq 1.
$$
 (5)

However, since Gal($M_1M_2/M_1 \cap M_2$) ≃ Gal(M_1M_2/M_1) × Gal(M_1M_2/M_2), the subgroups $Gal(M_1M_2/M_1)$ and $Gal(M_1M_2/M_2)$ commute. Hence,

$$
res_{N/M_1M_2}[\gamma_1, \gamma_2] = [res_{N/M_1M_2}(\gamma_1), res_{N/M_1M_2}(\gamma_2)] = 1.
$$
 (6)

Furthermore, by (5),

$$
res_{N/L}[\gamma_1, \gamma_2] = [res_{N/L}(\gamma_1), res_{N/L}(\gamma_2)] = [1, res_{N/L}(\gamma_2)] = 1.
$$
 (7)

Since $N = (M_1M_2)L$, it follows from (6) and (7) that $[\gamma_1, \gamma_2] = 1$, a contradiction to (5) \Box (5).

An immediate corollary of Theorem 2.2 generalizes a well-known result of Reiner Weissauer (see [**8**, Satz 9.7] or [**3**, p. 262, Theorem 13.9.1]).

COROLLARY 2.3. *Let R be a Hilbertian ring with quotient field K and let M be a separable algebraic extension of K. Suppose that M is a finite extension of a field M and there exists a Galois extension N of K that contains M but does not contain M . Then, the ring of integers* R_M *of* R *in* M' *is Hilbertian.*

Proof. The case where M' is a finite extension of K is covered by Lemma 1.1, so assume that $[M': K] = \infty$. Hence, *K* has a finite Galois extension *L* such that *M*^{$′$} ⊆ *NL*. In particular, *M*^{$′$} ⊈ *L*. By assumption, *M*^{$′$} ⊈ *N*. Hence, by Theorem 2.2, R_M is Hilbertian, as claimed.

3. Abelian-simple towers. We strengthen a theorem of Lior Bary-Sorker, Arno Fehm and Gabor Wiese saying that a Galois extension *N* of a Hilbertian field *K* obtained by finitely many subextensions, each of which is either abelian or a compositum of simple non-abelian extensions is Hilbertian.

DEFINITION 3.1. Let *G* be a profinite group. Following [**1**], we define the **generalized derived subgroup** $D(G)$ of G as the intersection of all open normal subgroups *N* of *G* with *G*/*N* either abelian or simple. The **generalized derived series** of *G*,

$$
G = G^{(0)} \geq G^{(1)} \geq G^{(2)} \geq \cdots,
$$

is defined inductively by $G^{(0)} = G$ and $G^{(i+1)} = D(G^{(i)})$ for $i \ge 0$.

We define the **abelian-simple length** of a profinite group G , denoted by $l(G)$, to be the smallest integer *l* for which $G^{(l)} = 1$. If $G^{(i)} \neq 1$ for all *i*, we set $l(G) = \infty$. We say that *G* is **of finite abelian-simple length** if $l(G) < \infty$.

The following result is a special case of [**1**, Proposition 2.8].

LEMMA 3.2. *Let* $(K_i/K)_{i\in I}$ *be a family of Galois extensions, let* $N = \prod_{i\in I} K_i$ *, and let m be a positive integer. If for each* $i \in I$ *the abelian-simple length of* $Gal(K_i/K)$ *is less than or equal to m, then so is the abelian-simple length of* $Gal(N/K)$.

We quote two results from [**1**].

LEMMA 3.3 ([1, Lemma 2.7(i)]). *If* $\alpha: G \to H$ is an epimorphism of profinite *groups, then* $\alpha(G^{(i)})$, $i = 0, 1, 2, \ldots$, is the generalized derived series of H. In particular, $l(H) \leq l(G)$.

LEMMA 3.4 ([**1**, Proposition 2.11]). *Let m be a positive integer, let A be a nontrivial finite group, and let* $G' \leq G$ *be finite groups together with an action of* G' *on A. Assume that* $(G^{(m)}G': G') > 2^m$. Then,

$$
(A \mathrm{wr}_{G'} G)^{(m+1)} \cap \mathrm{Ind}_{G'}^G(A) \neq 1.
$$

We say that a separable algebraic extension *M*/*K* is **of finite abelian-simple length** if $l(Gal(\hat{M}/K)) < \infty$, where \hat{M} denotes the Galois closure of M/K . The following result strengthens [**1**, Theorem 3.2].

THEOREM 3.5. *Let R be a Hilbertian ring with quotient field K and let M be a separable algebraic extension of K of finite abelian-simple length. Then, the integral closure RM of R in M is Hilbertian.*

Proof. Our proof closely follows the proof of [**1**, Theorem 3.2] which proves that *M* is Hilbertian.

Let *L* be the Galois closure of M/K . Let $\Gamma = \text{Gal}(L/K)$ and let $\Gamma^{(i)}$, $i = 0, 1, 2, \ldots$, be the generalized derived series of Γ . By assumption, there exists a minimal $m > 0$ such that

$$
\Gamma^{(m+1)} = 1. \tag{1}
$$

Let $\Gamma' = \text{Gal}(L/M)$ and for each *i* denote by $L^{(i)}$ the fixed field of $\Gamma^{(i)}$ in *L*.

Let $P = M \cap L^{(m)}$. If $(\Gamma' \Gamma^{(m)} : \Gamma') < \infty$, then by the Galois correspondence, M is a finite extension of *P*. Note that if \hat{P} is the Galois closure of P/K , then $\hat{P} \subseteq L^{(m)}$ and thus Gal(\hat{P}/K) is a quotient of $\Gamma/\Gamma^{(m)}$. Thus, Gal(\hat{P}/K)^(*m*) is a quotient of

$$
(\Gamma/\Gamma^{(m)})^{(m)} = \Gamma^{(m)}/\Gamma^{(m)} = 1
$$

and therefore trivial (Lemma 3.3). Hence, induction on *m* implies that the integral closure R_p of R in P is Hilbertian. Since M is a finite extension of P , it follows from Lemma 1.1 that R_M is Hilbertian.

Therefore, we may assume that $(\Gamma'(\Gamma^{(m)} : \Gamma') = \infty$, that is, $[M : P] = \infty$. To prove that R_M is Hilbertian, we apply Proposition 1.4.

Let $\alpha \in M$ and $\beta \in K_{\text{sep}}$. Since M/P is infinite, there exists a finite Galois extension *E*/*K* such that α , $\beta \in E$ and

$$
[E': E \cap P] > 2^m,\tag{2}
$$

where $E' = E \cap M$.

Let $G = \text{Gal}(E/K)$, $G' = \text{Gal}(E/E')$, and let $G^{(i)}$, $i = 0, 1, 2, \ldots$, be the generalized derived series of *G* (Definition 3.1). Note that $\alpha \in E'$. In addition, we set $N = EL$ and consider a non-trivial group A on which G' acts. By Proposition 1.4, it suffices to prove that there are no fields F, \hat{F} such that

(3) $\hat{F} \subseteq N$ and $K \subseteq E' \subseteq E \subseteq F \subseteq \hat{F}$ is a realization of $A \text{wr}_G G$.

Assume towards contradiction that there exist fields F and \hat{F} that satisfy (3) and identify Gal(\hat{F}/K) with $A \text{wr}_G G$ and Gal(\hat{F}/E) with $\text{Ind}_{G'}^G(A)$.

Let $\bar{E} = L \cap E$, $\bar{G} = \text{Gal}(\bar{E}/K)$, and consider the following diagram:

Let $\varphi: \Gamma \to \bar{G}$ and $\psi: G \to \bar{G}$ be the restriction maps. By Lemma 3.3,

$$
\overline{G}^{(m)} = \varphi(\Gamma^{(m)}) = \text{Gal}(\overline{E}/L^{(m)} \cap \overline{E}),
$$

$$
\overline{G}^{(m)} = \psi(G^{(m)}) = \text{Gal}(\overline{E}/E^{(m)} \cap \overline{E}),
$$

where $E^{(m)}$ is the fixed field of $G^{(m)}$ in E .

Thus,

$$
E^{(m)} \cap \bar{E} = L^{(m)} \cap \bar{E}.\tag{4}
$$

Since $E \cap M = E \cap L \cap M = \overline{E} \cap M$, we have

$$
E \cap M \cap E^{(m)} = \overline{E} \cap M \cap E^{(m)} = M \cap E^{(m)} \cap \overline{E}
$$

$$
\stackrel{(4)}{=} M \cap L^{(m)} \cap \overline{E} = \overline{E} \cap M \cap L^{(m)} = E \cap M \cap L^{(m)}.
$$

Hence,

$$
(G^{(m)}G': G') = [E': E' \cap E^{(m)}] = [E': E \cap P]^{(2)} \, 2^m \, .
$$

Lemma 3.4 yields

$$
(A \mathrm{wr}_{G'} G)^{(m+1)} \cap \mathrm{Ind}_{G'}^G(A) \neq 1,
$$

so there exists a non-trivial element

$$
\tau \in (A \text{wr}_{G'} G)^{(m+1)} \cap \text{Ind}_{G'}^G(A).
$$

Since $Gal(\hat{F}/K) = A \text{wr}_G G$, the map $res_{N/\hat{F}}$: $Gal(N/K) \rightarrow Gal(\hat{F}/K)$ maps $Gal(N/K)^{(m+1)}$ onto $(Awr_GG)^{(m+1)}$ (Lemma 3.3). Hence, we may lift τ to an element $\tilde{\tau} \in \text{Gal}(N/K)^{(m+1)}$. Again, by Lemma 3.3, $\tilde{\tau}|_L \in \text{Gal}(L/K)^{(m+1)} = \Gamma^{(m+1)} \stackrel{(1)}{=} 1$. Since $\tau \in \text{Ind}_{G'}^G(A) = \text{Gal}(\hat{F}/E)$, it follows that $\tilde{\tau}|_E = 1$. Then, since $LE = N$, we have $\tilde{\tau} = 1$, so $\tau = 1$. We conclude from this contradiction that R_M is Hilbertian.

Let *R* be an integral domain with quotient field *K* and let *N* be an extension of *K*. Recall that [2] calls *N* an H -extension of *K* if every field *M* between *K* and *N* is Hilbertian. We say that *N* is an $H\mathcal{R}$ -extension of *R* if for every field *M* between *K* and *N* the integral closure R_M of *R* in *M* is Hilbertian.

COROLLARY 3.6. *Let R be a Hilbertian ring with quotient field K. Then, K*symm/*R is an* HR*-extension.*

Proof. One observes that the abelian-simple length of each S_n is at most 3. Hence, by Lemma 3.2, the abelian-simple length of K_{symm}/K is at most 3. Therefore, by Theorem 3.5, K_{symm}/R is an $H\mathcal{R}$ -extension.

4. Abelian varieties. Let *R* be a Hilbertian ring with quotient field *K* and let *A* be an abelian variety over *K*. Let $A_{\text{tor}}(K_{\text{sep}})$ be the group of all points in $A(K_{\text{sep}})$ of finite order. We use both main results of this work to prove that $K(A_{tor}(K_{sen}))/R$ is an HR-extension.

We start by a ring version of [**2**, Lemma 2.2].

LEMMA 4.1. Let R be a Hilbertian ring with quotient field K and let K_1, \ldots, K_n be HR-extensions of R that are Galois over K. Then, $\prod_{i=1}^{n} K_i$ is an HR-extension of R.

Proof. Induction on *n* reduces the lemma to the case $n = 2$. Let *M* be an extension of *K* in K_1K_2 . If *M* is contained either in K_1 or in K_2 , then R_M is Hilbertian, by assumption. Otherwise, R_M is Hilbertian, by Theorem 2.2. \Box

The following result is a special case of [**1**, Corollary 4.6].

LEMMA 4.2. *For every positive integer n, there exists m with the following property: For every l, every closed subgroup* Λ *of* $GL_n(\mathbb{Z}_l)$ *has a closed pro-l normal subgroup* N *such that the abelian-simple length of* Λ/N *is at most m.*

We also need Lemma 2.3 of [**2**].

 $\bigcap_{\textit{finite}} \bigcap_{I \in I \smallsetminus J} L_i = L.$ LEMMA 4.3. Let $(L_i)_{i \in I}$ be a linearly disjoint family of extensions of a field L. Then,

LEMMA 4.4. Let R be a Hilbertian ring with quotient field K. Let $(K_i)_{i\in I}$ be a family *of Galois* HR*-extensions of R. Suppose that there exists an* HR*-extension L of R such that* $(K_iL)_{i\in I}$ *is a linearly disjoint family of field extensions of L. Then, the field* $\prod_{i\in I} K_i$ *is an* HR*-extension of R.*

Proof. If $M \subseteq \prod_{i \in I \setminus J} K_i$ for every finite subset *J* of *I*, then $M \subseteq L$, by Lemma 4.3. Hence, R_M is a Hilbertian ring in this case.

Otherwise, *I* has a finite subset *J* such that $M \nsubseteq \prod_{i \in I \setminus J} K_i$. If $M \subseteq \prod_{i \in J} K_i$, then *R_M* is Hilbertian, by Lemma 4.1. Otherwise, $M \nsubseteq \prod_{i \in J} K_i$. Hence, R_M is Hilbertian, by Theorem 2.2. \Box The following result is the ring version of a special case of [**1**, Corollary 4.3].

COROLLARY 4.5. *Let R be a Hilbertian ring with quotient field K. Let A be an abelian variety over K. Then,* $K(A_{\text{tor}}(K_{\text{sep}}))$ *is an* HR -extension of R.

Proof. We set $g = \dim(A)$ and let *l* range over the set of prime numbers. For each *l*, let $A_{l} \propto (K_{\text{sep}})$ be the group of all points of $A(K_{\text{sep}})$ whose order is a power of *l*. It is well known that Gal($K(A_{\ell^{\infty}}(K_{\text{sep}}))/K$) is a closed subgroup of $GL_{2\rho}(\mathbb{Z}_l)$. Therefore, by Lemma 4.2, Gal($K(A_{l^{\infty}}(K_{\text{sep}}))/K$) has a closed normal pro-*l* subgroup Λ_{l} such that the abelian-simple length of

$$
Gal(K(A_{l^{\infty}}(K_{\text{sep}}))/K)/\Lambda_l
$$

is bounded by a positive integer *m* that depends on *g* but not on *l*. Let E_l be the fixed field of Λ_l in $K(A_{l^{\infty}}(K_{\text{sep}}))$. Then, E_l is a Galois extension of *K* and Gal($K(A_{l^{\infty}}(K_{\text{sep}}))/E_l$) ≅ Λ_l is a pro-*l*-group and the abelian-simple length of Gal(E_l/K) is bounded by a positive integer *m* that depends on *g* but is independent of *l*.

Let $E = \prod_{l \in L} E_l$. By the preceding paragraph and Lemma 3.2, the abelian-simple length of $Gal(E/K)$ is less than or equal to *m*.

Moreover, for each *l*, the group $Gal(E(A_{l^{\infty}}(K_{\text{sep}})))$ is isomorphic to a normal closed subgroup of $Gal(K(A_{I^{\infty}}(K_{\text{sep}}))/E_I)$, hence is itself pro-*l*. Therefore, the fields $E(A_{l^{\infty}}(K_{\text{sep}}))$, with *l* ranging over all prime numbers, are linearly disjoint over *E*.

Since $K(A_{\text{tor}}(K_{\text{sep}})) = \prod_{l} K(A_{l^{\infty}}(K_{\text{sep}}))$, it follows from the last two paragraphs and from Lemma 4.4 that $K(A_{\text{tor}}(K_{\text{sep}}))$ is an $H\mathcal{R}$ -extension of *R*.

REFERENCES

1. L. Bary-Soroker, A. Fehm and G. Wiese, Hilbertian fields and Galois representations, *J. fur die reine und Angew. Math. ¨* **712** (2016), 123–139.

2. A. Fehm and S. Petersen, Division fields of commutative algebraic groups, *Isr. J. Math.* **195** (2013), 123–134.

3. M. Fried and M. Jarden, *Field arithmetic* (3rd edn.), Ergebnisse der Mathematik (3), vol. 11 (Springer, Heidelberg, 2008).

4. D. Haran, Hilbertian fields under separable algebraic extensions, *Invent. Math.* **137** (1) (1999), 113–126.

5. M. Jarden, Diamonds in torsion of Abelian varieties, *J. Inst. Math. Jussieu* **9** (2010), 477–480.

6. W. Kuyk, Extensions de corps hilbertiens, *J. Algebra* **14** (1970), 112–124.

7. M. Larsen and R. Pink, Finite subgroups of algebraic groups, *J. Am. Math. Soc.* **24** (2011), 1105–1158.

8. R. Weissauer, Der Hilbertsche Irreduzibilitätssatz, J. für die reine und Angew. Math. 334 (1982), 203–220.