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Volumetric evolution of elastic turbulence in
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Viscoelastic flow instability, which is compelled by elastic effects rather than inertia, can
be driven to a chaotic state termed elastic turbulence (ET) manifested as strong velocity
fluctuations with an algebraic decay in the frequency spectrum and increased mixing.
We report the first spatiotemporally complete description of ET by considering a broad
volume within a novel three-dimensional ordered porous medium, reconstructing flow
at a micrometre characteristic length scale (Reynolds numbers � 1) via time-resolved
microtomographic particle image velocimetry. Beyond a critical Weissenberg number of
2, we observe an elastic flow instability accompanied by an enhanced pressure drop with
spectral characteristics typical of ET. Polymer chains in the ET flow state are advected
along increasingly curved streamlines between pores such that they accumulate strain and
generate a local flow instability evaluated per an established instability criterion based on
local evaluation of elastic tensile stress and streamline curvature. The onset of ET leads
to increased pore-scale resistance and positive feedback on upstream streamline curvature.
ET is thus characterized by a continuous evolution between states of laminar and unstable
flow: pores with unstable flow flood their adjacent peers and thus encourage straightened
streamlines and flow stability across the array, while positive feedback from flow resistance
on streamline curvature results in the instability propagating upstream along the array. By
employing a geometrically ordered medium, we permit flow state communication between
pores, yielding generalized insights highlighting the significance of spatial correlation and
flow history, and thus provide new avenues for explaining the mechanisms of ET.
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1. Introduction

Viscoelastic fluids exhibit both viscous and elastic behaviour owing to a microstructural
component that responds elastically under strain, thus imparting an elastic response
in addition to the viscous response. This class of fluids is commonly encountered in
biological (e.g. blood and mucus) and industrial (e.g. polymer processing and surfactants)
flows. Taking a polymer solution as a representative viscoelastic fluid, as the polymer
chains advect over curved streamlines, they can accumulate stress while being elongated,
and dissipate that stress over a characteristic time scale λ while recoiling. A measure
of the contribution of the elastic effect is the Weissenberg number (Wi = λγ̇ , where γ̇

is the shear rate). Beyond a critical Wic, accumulated elastic stress has been observed
to drive purely elastic flow instabilities on curvilinear streamlines (McKinley, Pakdel
& Öztekin 1996; Pakdel & McKinley 1996) despite negligible inertial effects; while at
small Reynolds number Re � 1, Newtonian fluids would remain laminar and stable. The
Pakdel–McKinley criterion has been used to capture effectively the onset of the elastic
instability when the parameter M = √

2 Wi λU/R surpasses a critical Mc dependent on the
flow geometry and fluid rheology (McKinley et al. 1996; Pakdel & McKinley 1996). The
M parameter relates flow field perturbations and elastic stresses as a perturbation scale
λU/R from the average flow velocity U and streamline radius of curvature R, and takes
Wi as the strength of elastic tensile stresses. Thus a critical Mc must be surpassed for an
elastic instability to propagate in an arbitrary flow. The M parameter has been shown to
generalize the critical conditions for elastic stress buildup for a broad spectrum of flow
geometries spanning microscopic to macroscopic scales, with a typical transition point of
approximately Mc = 1–7 (McKinley et al. 1996; Morozov & van Saarloos 2007; Zilz et al.
2012; Haward, McKinley & Shen 2016; Qin et al. 2019; Kumar & Ardekani 2021).

At high Wi � 1 and low Re � 1, a chaotic elastic flow instability can arise bearing
qualitative similarities to inertial turbulence (IT), thus termed elastic turbulence (ET).
Both IT and ET exhibit substantial increases in flow resistance and mixing rate
compared to their corresponding laminar regimes, and are comprised of a broad range of
spatiotemporal modes with a spectral power-law decay exponent α (Groisman & Steinberg
2000, 2001; see review article Steinberg 2021). For ET, various studies have reported a
steep α ≈ 3.5, with sensitivity to the specific flow geometry (Steinberg 2021). ET is thus
temporally chaotic but spatially smooth, with dominance of a few low-order, vessel-scale
modes, similar to IT flow on scales below the dissipation scale, viz. the Batchelor
regime (Batchelor 1959; Burghelea, Segre & Steinberg 2005; Steinberg 2021). These
characteristics lend utility to ET, and numerous industrial and environmental processes
have been proposed that leverage the ET flow of polymer solutions through porous
media for a spectrum of applications such as enhanced oil recovery (EOR), filtration,
or groundwater remediation (Clarke et al. 2015; Howe, Clarke & Giernalczyk 2015).
ET is driven by elastic stress reacting on the flow field, which is inherently difficult to
quantify in situ. Furthermore, the spatiotemporal nature of ET means that a complete
evaluation would be supported by the quantification of three-dimensional (3-D) flow fields
spanning several vessel scales over long time scales. ET has been characterized in three
dimensions primarily via direct numerical simulations for flows such as Taylor–Couette
flow (Thomas, Sureshkumar & Khomami 2006; Thomas, Khomami & Sureshkumar 2009)
and von Kármán swirling flow (Khambhampati & Handler 2020; van Buel & Stark 2022).
Experiments have used holographic particle tracking to probe aspects of ET in three
dimensions, such as particle dispersion (Afik & Steinberg 2017), while ET flow fields have
been assessed about a 3-D cross-channel via particle tracking velocimetry and supported
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by pressure measurements (Qin et al. 2020). However, a volumetric quantification of
ET near zero Re evolving over a broad spatial scale (numerous vessel scales) remains
lacking.

Regarding porous media flow in general, whereas viscous flow through porous media
mixes poorly at the micro-scale due to the low Re, the elastic contribution provided
by polymer stretching enhances the mixing in each pore and the overall dispersion
of flow through the medium (Scholz et al. 2014). For shear-thinning solutions in this
context, viscoelastic effects lead to a seemingly paradoxical pressure increase from the
flow for increasing flow rates, despite the accompanying shear-thinning behaviour of the
bulk solution (Marshall & Metzner 1967; Durst, Haas & Kaczmar 1981). Clarke et al.
(2016) demonstrated that the viscoelastic effect in question was likely caused by elastic
turbulence, supporting earlier observations in situ by Mitchell et al. (2016), and further
validated the efficacy of ET for EOR. Recently, Browne & Datta (2021) were able to
deduce an energy balance to relate directly the energy dissipation of a random porous
medium to the pore-scale flow fluctuations of ET above Wic = 2. However, they noted that
the energy balance neglected extensional viscosity and strain history effects, and that these
effects likely became significant for Wi > 4 where the energy balance underpredicted the
losses observed from experiments.

In a prior work, Browne, Shih & Datta (2020a) investigated viscoelastic flow through
one-dimensional (1-D) model porous media for a system scale ranging from a single pore
up to a thirty-pore sequence. Their experiments highlighted the importance of spatial
correlation. Whereas flow above Wic through a single pore generates an upstream vortex
typical of a viscoelastic contraction flow instability (McKinley et al. 1991; Rothstein &
McKinley 1999; Carlson, Shen & Haward 2021), the presence of sequential pores results
in a reduced Wic and the occurrence of bistable states of laminar and unstable flow. Flow
through pores under a laminar state exhibits a corner vortex, while unstable flow is typified
by strongly fluctuating streamlines flooding the corners of the pore. They hypothesized that
the flow states were driven by competition between the extension and relaxation of polymer
chains as they advected through the array. This notion was supported by later numerical
work by Kumar et al. (2021). For closely placed pores in a 1-D array, Kumar et al.
showed that the laminar flow through pores with eddy-dominated flow was accompanied
by increased polymeric stress (extended polymer chains), whereas unstable flow through
thus eddy-free pores exhibited reduced stress (coiled polymer chains).

Of relevance to these findings is the time scale ratio for which they manifest. Within
the context of repeating pores, the pertinent time scales can be related as a pitch-based
Deborah number, generally defined as De = Uλ/L, where L/U provides a time scale for
material advection between pores separated by distance L. For De > 1, microstructures
are advected between pores faster than they can relax. Kumar et al. (2021) noted that the
flow instability for a ten-pore sequence started at Wi > 18 and De > 1: pore interaction
affects the onset of instability for sufficiently large arrays. A later work reported a similar
onset with De for an instability occurring between two cylinders (Kumar & Ardekani
2021), and experiments by Ekanem et al. (2022) found that increased De lowers Mc for
flow instability about separated pores. Indeed, the significance of De for flow instability in
repeating arrays was shown in experiments by De et al. (2017) for a two-dimensional (2-D)
ordered array of cylinders. They found coexisting lanes of fast and slow flow in the array
above De = 1.5, leading to flow crossing between channels driven by strong crossflow
action. They conclude that De is more apt than Wi to indicate large-scale instabilities
in repeating arrays. Walkama, Waisbord & Guasto (2020) and Haward, Hopkins & Shen
(2021) considered viscoelastic flow through ordered and increasingly disordered cylinder
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arrays, and both works show that ET is likely controlled by the concentration of stagnation
points in 2-D arrays. This is an analogous explanation for the De scaling by De et al.
(2017), where they in effect also modulated the concentration of stagnation points while
geometrically scaling cylinder spacing for different De.

Experiments for viscoelastic flow through porous media encounter common limitations:
the media are typically opaque, and flow is spatiotemporally sensitive to the specific
geometric configuration of the medium (Walkama et al. 2020; Haward et al. 2021; Browne
& Datta 2021; with reviews by Browne, Shih & Datta 2020b; Kumar, Guasto & Ardekani
2022). Refractive index matching (RIM) such that the medium and flow are transparent
permits direct optical access for image-based interrogation techniques. Such methods
include streak imagery and particle image velocimetry (PIV) for 2-D quantification, while
recent works probed 3-D flows via particle tracking velocimetry (PTV) (Holzner et al.
2015; Souzy et al. 2020) and tomographic PIV (TPIV) (Larsson, Lundström & Lycksam
2018; Forslund et al. 2021). Souzy et al. (2020) used scanning PTV to resolve Newtonian
creeping flow through randomly packed spheres (2 mm in diameter), achieving a fine
spatial resolution for a time-averaged grid to show that 3-D mixing results in Lagrangian
chaos for material advection. This result expanded upon prior numerical works (Turuban
et al. 2018, 2019) that showed similarly enhanced mixing for flow past a body-centred
cubic array of spheres compared to a simple cubic array.

For TPIV, synchronized cameras image a region of interest (ROI) from different lines
of sight (LOS) and reconstruct the position of seeded particles within a volume of interest
(VOI) for local cross-correlation in time to yield a velocity field. Applied for micro-scale,
a stereo microscope provides limited optical LOS such that μ-TPIV can be conducted:
recently, we have shown this approach to be useful for capturing transient viscoelastic
flow instability in three dimensions (Carlson et al. 2021). While we do not match the
spatial resolution of scanning PTV, μ-TPIV can time-resolve flow, which is crucial for
quantifying the unsteady volumetric velocity fluctuations of ET.

In the present work, we apply μ-TPIV to the study of ET in a micro-scale ordered
3-D porous medium. Besides the applied virtues for studying viscoelastic flow through
porous media, we can probe a variety of length scales by imaging simultaneously multiple
pores and throats across a constant focal plane, thereby accessing the flow history between
pores. Thus this configuration enables a more fundamental study of the spatiotemporal
evolution of ET, where due to the dominance of vessel-scale (i.e. pore-scale) modes, ET
flow will appear spatially smooth at a given pore for a temporal instant. The desired
geometry is therefore a geometrically ordered fully 3-D array of cubicly packed glass
spheres – a hitherto unstudied configuration, with fabrication made possible via selective
laser etching (Gottmann, Hermans & Ortmann 2012; Meineke et al. 2016; Burshtein et al.
2019). We utilize μ-TPIV via RIM to assess flow through this novel 3-D ordered porous
medium, together with pressure measurements, to provide a spatiotemporally complete
quantification of ET.

From these experiments we scale the transition from laminar, to elastically unstable, to
ET flow against the M parameter, showing via localized (ML) calculation over pore-scale
instantaneous streamlines that coexisting regions of unstable and laminar flow hold locally
consistent with the M instability criterion. In the ET state, which we validated via
comparison against common spectral characteristics, we relate the seemingly disparate
coexisting states of laminar and unstable flow as a continuous progression between the two
that comprises the core velocity fluctuations of ET. Finally, we relate inversely correlated
flow states via competing streamline curvature, and the spatial evolution between states,
as positive feedback between flow resistance and upstream streamline curvature.
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2. Experimental methods

2.1. Flow cell and refractive index matching
The test cell was designed to confine flow about a 70 × 5 × 5 array of 500 μm diameter
cubicly packed solid spheres (spaced wp = 500 μm) placed in a square-sectioned channel
of width wc = 2.5 mm, yielding nominal porosity φ = 0.4675. The array nature of the
geometry permits a simultaneous study of numerous pores at a given focal plane, and
due to the constant De throughout the array, we can assess the local flow history from
time-resolved measurements. To fabricate this system, we used selective laser-induced
etching (SLE) of an open-faced slab of fused silica (SiO2) (Gottmann et al. 2012; Meineke
et al. 2016; Burshtein et al. 2019) on a commercial LightFab SLE printer (LightFab GmbH,
Germany), followed by chemical etching in potassium hydroxide to remove unwanted
material. The open-faced flow cell was subsequently sealed with glass slides about the
z direction. As manufactured, the spheres are slightly over-etched and remain connected
by glass ‘necks’ (images in figure 1a). To incorporate the actual sphere contacts in a
stereolithography (STL) surface for μ-TPIV masking, we used X-ray microtomography
(μ-CT; Pimenta et al. 2020) to quantify precisely the surface of the geometry (shown in
figure 1b). Flow was driven through the device with a volumetric flow rate Q via two
syringe pumps (neMESYS, Cetoni GmbH, Germany) in a push–pull configuration, with a
wet/wet differential pressure transducer (OMEGA, USA) spanning the inlet and outlet (p1,
p2 in figure 1c) sampling at 100 Hz. The characteristic velocity of flow passing about the
array of spheres is Up = Q/Aφ, the average flow velocity in each pore between spheres for
a volumetric rate Q, total cell cross-sectional area A = w2

c , and porosity φ.
We image the very midpoint of the array considering a VOI shown in figure 1(b)

with the coordinate system triad. Views in three dimensions reference the coloured triad
for orientation. For optical access through multiple fluid–solid interfaces throughout
the depth of the array, we used RIM between the fluid and solid following a scheme
similar to that in Larsson et al. (2018). A continuous 5 mW green laser was passed
through the fluid-filled array onto a target 1 m away in a 25 ◦C environment, and the
diameter of the distorted beam for different concentrations of glycerol in deionized water
was measured. In our configuration, this approach could detect a refractive index (RI)
disparity of 10−4. We obtained a minimum distortion and thus achieved RIM at 89.5 wt%
glycerol. A viscoelastic solution was prepared consisting of 130 parts-per-million partially
hydrolyzed polyacrylamide (HPAA, MW = 18 MDa, Polysciences Inc., USA), in the
RI-matched solvent. For μ-TPIV measurement purposes, the fluid was seeded with
2 μm fluorescent particles (excitation/emission 530 nm/607 nm, PS-FluoRed-Particles,
Microparticles GmbH, Germany) to a particle concentration of approximately 0.03
particles per pixel at the desired magnification. Ultimately, the RI of the fluid was
measured with an Anton-Paar Abbemat MW refractometer operating at 589 nm, yielding
RI 1.4582 at 25 ◦C. This is in good agreement with the nominal RI 1.4584 for SiO2 at
589 nm (Malitson 1965). Although the refractometer operates at a narrow selection of
wavelengths, both materials exhibit normal chromatic dispersion, and the RIM errors
incurred from imaging at other wavelengths will partially cancel out (Larsson et al. 2018).

We characterized the shear-rate dependent viscosity and extensional flow characteristics
of the HPAA solution using an Anton-Paar MCR stress-controlled rheometer and a
Haake capillary breakup extensional rheometer (CaBER), respectively. The fluid is weakly
shear-thinning with zero shear viscosity η0 = 500 mPa s (figure 2a), and we take a
subset of the shear rheology sweep at moderate γ̇ to fit power-law extrapolations for
the first normal stress difference N1 and shear stress σ (figure 2b) to evaluate a local
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(a)

(b)

(c)

2.5 mm

VOI: 3 × 2.5 × 1 mm3

Flow

y∗ x∗

z∗

y∗ x∗

z∗

wc

500 µm

Camera 1

Stereo

microscope

Nd:YLF

laser

Inflow Outflow

p1 p2

Camera 2

Figure 1. (a) Images of the model porous medium as manufactured and filled with water for contrast.
(b) A section of the micro-CT of the porous array together with the alignment of the volume of interest (VOI,
blue), centred 35 pores into the array. The fluid–solid interface is coloured white. (c) The beam path of the
LaVision FlowMaster μ-TPIV system.

WiL = N1(γ̇L)/2σ(γ̇L) discussed in § 3. Considering the extensional rheology, the fluid is
viscoelastic with relaxation time λ = 1.2 s (figure 2c), and is strongly strain-hardening
with ηE,app ≈ 340η0 at high strains (figure 2d). Here, the accumulated Hencky strain
is εH = 2 ln(d0/d(t)), with the measured filament diameter d, and the initial filament
diameter d0 = 6 mm. For flow within the porous medium, the zero shear viscosity η0
and length scale wp/2 are used to calculate Re = ρUpwp/2η0 and the characteristic
shear rate γ̇ = 2Up/wp for Wi = λγ̇ = 2λUp/wp. The Reynolds number Re � 10−3 is
considered negligible in the present work. As the array of spheres is cubicly packed, the
relevant length scale L for a pitch-based Deborah number is wp, thus in the present work,
De = Upλ/wp = Wi/2.

2.2. Microtomographic PIV (μ-TPIV)
Tomographic particle image velocimetry (TPIV) is a volumetric flow measurement
whereby for a particle-laden flow, numerous camera angles are used to reconstruct a
particle volume that is then locally cross-correlated in time to resolve the velocity vector u
on a 3-D grid (Elsinga et al. 2006a). It is possible to conduct TPIV at micro-scale (μ-TPIV)
via imaging from the dual LOS afforded by a stereo microscope (see Carlson et al. 2021).
Flow was captured by a LaVision FlowMaster μ-TPIV system in a 25 ◦C environment
as time-resolved recordings from dual high-speed cameras (Phantom VEO 410,

950 A36-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

83
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.836


Volumetric evolution of elastic turbulence in porous media

103

102

(a) (b) (c) (d )

10–1 101

γ· (s–1)
103 101 102

γ· (s–1)
103 0 5

t (s)

10

εH

4 6 8
N

1
, 
σ

 (
P

a)

η
 (

m
P

a 
s)

104

102

100

100

3λ

10–2

10–1N1
–1

10–3

103

101η
E,

Ap
p/

η
0 102

100

d(
t)/

d 0

σ

Figure 2. (a,b) Shear rheology of the HPAA solution, where (b) is at a moderate γ̇ subset of (a) to fit power-law
interpolations for N1 and σ . (c,d) Extensional rheology of the elastocapillary response for the relaxation time
λ and strain hardening response.

1280 × 800 pixels) at a velocity-dependent frame rate spanning 25–250 Hz such that
no particle moved more than 8 pixels between frames when illuminated by a coaxial
Nd:YLF laser (527 nm wavelength). Images were pre-processed with an ROI mask
spanning 7–5 spheres in x–y and filtered with local background subtraction and Gaussian
smoothing at 3 × 3 pixels. Three-dimensional calibration was achieved by capturing
images of a micro-grid in air at the planes zair = ±500 and 0 μm, and mapping the
coordinate zair elevation to an equivalent position z in the working fluid due to the RI
change. A preliminary coordinate system was achieved by interpolating a third-order
polynomial between the calibration planes. The final coordinate system was reached via
volumetric self-calibration (Wieneke 2008) of the pre-processed images, which distorts
the original grid using the actual particle images to create a refined calibration. By
iterating volume self-calibration, we reached a typical maximum disparity of 0.02 voxels.
Particle reconstruction was achieved using the Fast MART (multiplicative algebraic
reconstruction technique) algorithm implemented in the commercial PIV software DaVis
10.2.1 (LaVision GmbH). This algorithm creates an initial particle volume using
multiplicative line of sight (Worth & Nickels 2008; Atkinson & Soria 2009) followed by
iterations of Sequential MART (Atkinson & Soria 2009), then sequential motion tracking
enhancement (SMTE) for ‘ghost’ suppression (Novara, Batenburg & Scarano 2010; Lynch
& Scarano 2015), where spurious ghost particles arise from randomly overlapping LOS
and contaminate the cross-correlation (Elsinga, Van Oudheusden & Scarano 2006b). For
the present work, we determined that eight iterations of Fast MART resulted in a suitable
compromise between vector quality and computation time (6 CPU-minutes per tomogram
VOI, T), and observed that SMTE converged ghost intensity after a temporal march over
30 volumes. Before temporal cross-correlation, we applied the 3-D masking procedure
described below to eliminate the solid region in the reconstruction.

2.3. Tomogram masking
Masking protocols for TPIV range from simple ROI projection to more sophisticated
backward projection algorithms such as the visual hull approach (Adhikari & Longmire
2012), but such methods are inapplicable when the RI-matched solid is transparent and
the 3-D array has highly overlapping LOS in the back-projection. Therefore we developed
an alternative procedure by volume masking directly from the μ-CT geometry. First, we
generate a manifold of the μ-CT STL about the VOI via a solid Boolean operation in
the 3-D modelling software Blender (Blender Online Community 2018), referring to the
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Figure 3. Example alignment between the tomogram volume T and the edges of the STL manifold S in the
y∗–z∗ plane. Here, S and T are projected onto the plane, then summed along y∗ and z∗.

surface yielded as S. Second, we time-averaged a subset of the tomogram volumes T as T̄ ,
and further applied 11 × 11 × 11 voxel Gaussian smoothing to generate a reference volume
for mask generation. To centre and align T̄ with S, we leverage the uniform spacing of the
array: we project S and T̄ onto x∗–z∗ and y∗–z∗ planes, and sum about the x∗ and y∗–z∗

axes, respectively. We compare two central T̄ maxima against S minima for the x∗–y∗
axes, and directly align the maxima and minima in z∗. An example alignment is shown
in figure 3. By weighting multiple minima to locate S in T̄ in x∗–y∗, we obtain sub-voxel
mask placement resolution in x∗–y∗ and single voxel resolution in z∗.

Voxels in the de-warped mask planes of T̄ that were found to be inside S via a ray-tracing
algorithm are set as masked, and the planes are subsequently warped back into voxel space.
We apply the mask planes in DaVis 10.2.1 to T before multi-grid iterative cross-correlation
with a final window of 32 × 32 × 32 voxels with 8 voxel steps (75 %) to calculate
the velocity field u with components u, v and w. Finally, we spatiotemporally filtered
the vector fields with a second-order polynomial regression across neighbourhoods of
5 × 5 × 5 × 11 vectors (Scarano & Poelma 2009; Elsinga et al. 2010; Schneiders, Scarano
& Elsinga 2017). We can estimate a signal-to-noise ratio (SNR) of this approach by taking
the ratio of the average T̄ intensity in the fluid (particles and ghosts) and that of the mask
region (ghosts and near-boundary particles). In the present work, SNR = 3.0, indicating
that our masked reconstruction is of good quality (SNR = 2.2 without SMTE). Whereas
historically, time-resolved PIV has been burdensome technically, modern approaches for
TPIV are increasingly reliant on accessing time-resolved quantities such as in SMTE
(Beresh 2021).

For a posteriori assessment of our measurement quality, we validated conservation
of mass for a time-averaged vector field (Zhang, Tao & Katz 1997). We take flow
divergence ∇ · u assessed relative to an assumption of incompressible flow (relative error
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Figure 4. (a) Joint probability density functions (p.d.f.s) of the components of divergence for the solvent at
Re = 10−3. Points away from the zero divergence plane (∇ · u = 0) indicate measurement error, which can be
calculated as a relative divergence error parameter ζ . (b) The p.d.f. of ζ .

ζ = (∇ · u)2/tr(∇u · ∇u), using the trace tr). At the maximum Re, the error is ζ = 0.2
(see figure 4 for joint p.d.f.s of ∇ · u components and the p.d.f. of ζ ), in good agreement
with limited LOS TPIV experiments (Kempaiah et al. 2020) and our prior work (ζ = 0.25;
Carlson et al. 2021). In addition, a comparable ζ from our prior work indicates that the
fluid–structure RIs are properly matched: the fluid–structure reconstruction results in a
vector quality similar to that from a fluid only.

3. Results and discussion

Pressure and μ-TPIV measurements were taken over a range of flow rates corresponding
to 0.5 ≤ Wi ≤ 8.2 for the HPAA solution, and 10−5 ≤ Re ≤ 10−3 for the solvent,
considering a VOI midway into the porous array (35 pores). We use the pressure
data, which can be interpreted in real time, to gauge the overall flow state and limit
resource-intensive μ-TPIV reconstruction to selected Wi and Re. In discussing the flow,
we non-dimensionalize the vector field u by the average pore velocity UP, and length
scales by wp (e.g. |u|∗ = |u|/Up, v∗ = v/Up, x∗ = x/wp). From the rate-of-strain tensor
D = (∇u + ∇uT)/2, we calculate the magnitude |D| as γ̇L = √

2(D : D) and reduce it as
γ̇ ∗ = γ̇Lwp/(2Up). We introduce the common flow type parameter ξ (Astarita 1979) as
a map of the flow topology: ξ = (|D| − |ΩΩΩ|)/(|D| + |ΩΩΩ|), where ΩΩΩ = (∇u − ∇uT)/2 is
the spin tensor. Thus ξ = −1 for flow dominated by solid body rotation, ξ = 0 for shear
flow, and ξ = 1 for extensional flow.

We present the solvent flow field in figure 5 as a baseline case at the maximum Re
(Wi = 0). Here, we show x∗–y∗ slices of v∗ and γ̇ ∗ as well as numerically advected
massless particles (Paraview 5.10; Ahrens, Geveci & Law 2005) coloured by |u|∗ and γ̇ ∗
from the background grid. A single ring of particles is injected from x∗ = 0 at each time
step, thus their consistent grouping indicates steady-state flow. The particle fields show
fluctuating |u|∗ and γ̇ ∗ as they are advected between pore throats and bodies, tracking
shear flow through pore throats and extension-dominated flow about the pore bodies
consisting of alternating compressional and extensional flow in each pore. Spatially, the
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Figure 5. Instantaneous numerical particle field and x∗–y∗ slice at z∗ = 0 for the glycerol solvent flow at
Re = 10−3. The particle fields are coloured by (a) |u|∗ and (b) the flow type parameter ξ , while the slices map
the crossflow velocity v∗ and rate of strain γ̇ ∗, respectively.

fields of v∗ and γ̇ ∗ are consistent between sequential pores, thus we determine that the
VOI is sufficiently deep in the array to consider it fully developed laminar flow.

3.1. The transition from laminar to elastically turbulent flow
Flow passing through a porous medium at low Wi and low Re is expected to drive a
pressure drop that varies approximately linearly with flow rate for the Boger fluids used
in our experiments, as per Darcy’s law. Thus to delineate our flow regimes, we consider
the pressure drop data presented in figure 6. In figure 6(a), we show the time-averaged
polymeric contribution to the pressure drop Δp̄ − Δp̄n between the inlet and outlet of the
microchannel. Here, Δp is the pressure drop (i.e. p1 − p2) measured for the flow of the
polymer solution, and Δpn is the pressure drop measured for the Newtonian solvent. Both
were recorded over 180 s at each imposed volumetric flow rate Q. We see that for low Wi
(0.5 ≤ Wi ≤ 1.8), the pressure drop obeys the laminar model (r2 = 0.99), with a slight
deviation at Wi = 1.8, but the polymeric contribution breaks this expectation at higher
flow rates Wi ≥ 2.6, resulting in the often discussed increased flow resistance driven by
elastic effects (Marshall & Metzner 1967; Durst et al. 1981; Browne & Datta 2021). We use
the departure point of the pressure drop data from the linear trend to estimate the critical
Wi as Wic = 1.8, i.e. the highest Wi data point to fall near the trend.

To further describe the transition from laminar to unstable flow, we present power
spectra Epp of the fluctuating pressure p′ = Δp − Δ̄p against dimensionless frequency
f ∗ = fλ in figure 6(b). Despite the pressure drop deviation in figure 6(a) for 1.8 ≤ Wi ≤
2.6, when comparing the pressure power spectra of laminar flow at Wi = 0.5 to that of
an apparently unstable flow at Wi = 2.6, one observes that they are quite similar, with
slightly increased power in the lower f ∗ for the unstable state. Evidently, the near-critical
unstable flow state is weakly transient (we quantify the flow transience in the Appendix).
For increasing Wi, the transient state grows in power, and by Wi = 8.2, we observe
sustained increased power throughout the lower frequency range, with a steep power-law
decay exponent β ≈ 3 (which is typical of ET) up to f ∗ = 1, i.e. the fluctuation time
scale 1/f matches that of the polymer relaxation time λ. We hypothesize that the higher
frequency roll-off towards f ∗ = 2 down to the noise floor is due to polydispersity of the
HPAA, and generalize that 1/λ is a common upper bound for capturing the majority of
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Figure 6. (a) The polymeric contribution to the pressure drop across the flow cell. (b) Power spectra Epp for
selected Wi highlighting the gradual strengthening of ET for increasing Wi. The dashed line in (a) indicates a
linear regression fit below Wic.

the energy of ET (Browne & Datta 2021). While the power spectra show that a smooth
macro-scale transition towards stronger ET occurs with increasing Wi, we next consider
the local micro-scale evolution.

3.2. Instability: a local curvature balance
In § 1 we introduced a common scaling parameter M = √

2 Wi λU/R (McKinley et al.
1996; Pakdel & McKinley 1996) as a generalized predictor for the onset of elastic
instability by coupling streamline curvature with normal stresses. The reported literature
for M typically uses characteristic values for Wi, U and R. Instead, we substitute in
local parameters such that M can describe the flow on instantaneous streamlines. We
first assume that the vector field is quasi-static as sampled (1/250 Hz � 1/f ), then seed
streamlines randomly in the x∗–y∗ plane about z∗ = 0, and use a Runge–Kutta 4–5
integrator to progress streamlines forwards and backwards in time until they exit the
3-D volume. The streamlines provide a local radius of curvature RL in three dimensions
directly, but we linearly interpolate for U and γ̇ at each streamline from the background
grid of u and D to provide |u| and the local Weissenberg number WiL = N1(γ̇L)/2σ(γ̇L).
Thus in the present work, we discuss the local form of the Pakdel–McKinley criterion,
ML = √

2 WiL λ |u|/RL.
In figures 7(a–d), we present the outcome of this approach for ML at selected Wi near

Wic, in figure 7( f ) the p.d.f. of ML, and in figure 7(g) Mmax and Mavg. For increasing
Wi approaching Wic = 1.8, streamline curvature and ML increase, particularly at the
throat but also at the midpoint of each pore. Furthermore, the streamlines are pushed
outwards incrementally towards the necks between rows for increasing Wi. This behaviour
is generally symmetric between crossflow pores for Wi = 0.9, 1.3. However at Wi = 1.8,
we see that this symmetry is broken. For any given column of pores in y∗, streamlines will
tend to flood the neck region asymmetrically from one of the pores, leading to straightened
streamlines and reduced ML at the opposing pore.

For Wi = 2.6 (figure 7d), asymmetric flooding behaviour is shown more distinctly.
Regions with this effect have been highlighted with arrows, and a sketch is shown in
figure 7(e). Thus we infer that pores with elastically unstable flow will stabilize their peers
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Figure 7. (a–d) Streamlines of local ML evaluation for selected Wi near Wic, with arrows highlighting
asymmetry (sketch in (e)). ( f ) The p.d.f. of the streamline fields. (g) The maximum and average ML at each
Wi. Streamline curvature does increase with Wi above Wic, but in doing so, symmetry is broken as streamlines
flood towards neighbouring pores, thereby enforcing stability.

as the instability manifests as a flooding incursion into neighbouring pores. Notably, this
effect also correlates along the streamwise direction, such that rows of pores in x∗ show
a similar flow response. Above Wic, we can see that local curvature and ML continue to
increase with Wi, but at a reduced rate (figure 7g), owing to the overall distribution of ML
tailing towards higher values but maintaining a similar mean (figure 7g). From Mmax in
figure 7(g), we can estimate our critical Mc for this geometry by taking Mmax at Wic = 1.8,
yielding Mc = 2.5, with the caveat that although ML is self-consistent for different Wi, it
will underestimate the theoretical M due to discrete sampling limitations. Nonetheless, Mc
here is in good agreement with reported values of Mc based on M ranging from 1 to 7.
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Figure 8. Power spectral densities of the fluctuation pressure Epp( f ) and the fluctuating crossflow velocity
Evp( f ) at moderate and high Wi. The power law decays for Epp( f ) ∼ f −β and Evp( f ) ∼ f −α follow a scaling
β = 2(α − 2) (Steinberg 2019).

In the transient unstable state, spatial heterogeneity resolves the increased stresses
via localized regions of increased flow instability. Although the pressure power spectra
indicate that these pockets of instability must be transient, tomogram storage for masking
remains computationally burdensome, thus instead we time-resolve the fluctuations of ET
at high Wi where stronger low-frequency modes make it feasible to capture multiple state
changes in the VOI within a 10 s recording. A sample description of the low-frequency
velocity fluctuations is available for Wi = 1.8 in the Appendix. Moreover, Wic ≈ 2 aligns
with De = λUp/wp = 1 by definition, thus transient effects can grow in the array in this
regime as polymer chains are advected between pores faster than they can relax.

3.3. Inter-pore heterogeneity
We consider the evolving flow state at Wi = 8.2 as a representative case for ET. We support
this assertion with selected power spectral densities extracted from a point in the velocity
field (x∗ = z∗ = 0, y∗ = −0.75) to expand upon the prior spectral analysis of the pressure
field. In figure 8 we present the global Epp spectra discussed previously, together with
local fluctuating crossflow velocity spectra Evp, at Wi = 3.7 and Wi = 8.2. Here, Evp

and Epp show the algebraic decays typical of ET: for Epp( f ) ∼ f −β and Evp( f ) ∼ f −α ,
β ≈ 3 and α ≈ 3.5, consistent with a recent review (Steinberg 2021). Furthermore, the
analysis of Steinberg (2019) deduced a scaling relation β = 2(α − 2) that supports our
experimental data. The Taylor frozen flow hypothesis (Taylor 1938) has been applied
reasonably well for parts of ET flow. Specifically, experiments and simulations have noted
similarly steep decay exponents for the temporal and spatial power spectra (Burghelea et al.
2005; Burghelea, Segre & Steinberg 2007; van Buel & Stark 2022). Thus our scaling in
the frequency domain will also track the wavenumber contribution in the spatial domain,
yielding the common observation that ET is governed by the nonlinear interaction of only
a few large-scale modes (Burghelea et al. 2005; Steinberg 2019).
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Figure 9. Instantaneous streamlines for the HPAA flow under a state of ET at Wi = 8.2, coloured by (a) the
dimensionless velocity magnitude |u|∗, and (b) the Pakdel–McKinley criterion ML. We have numbered columns
of pores along x∗.

For a local description of ET flow, in figures 9(a,b) we show streamlines coloured by
|u|∗ and ML, respectively, to inspect local flow properties between the central rows of
pores (labelled as ra and rb, respectively). Generally, flow through row ra remains stable
from pore columns 0–2, with a flow rate |u|∗ above the volume average, straightened
streamlines, and low ML. Flow through row rb, however, has an opposite reaction for the
same quantities: reduced |u|∗, strongly curving streamlines, and increased local ML across
pore columns 1–3, but a reduction in pore 4. Remarkably, we can also see flow through ra
transition to a state similar to flow through rb by pore 4, in this case driven by out-of-plane
streamline curvature towards +z∗. Preceding the unstable flow in pore 4, we observe a
reduction in |u|∗ in pore 3 as either the elastic instability or other rheological parameters
drive increased pore resistance. Finally, we also see the same correlation behaviours noted
in the prior section: streamwise correlation and crossflow inverse correlation of pores with
unstable flow. The inversely correlated state is particularly compelling, with no y∗-adjacent
pair of pores responding with mirrored unstable flow. This further supports our hypothesis
that pore flooding can promote stability in adjacent pores. In pores farther from the
unstable region, however, we do observe adjacent stable flow states, such as at x∗ = y∗ = 0
in figure 9. Therefore, the adjacent peer stabilization effect may be alternatively classed as
a crossflow exclusion of instability. Streamwise correlation generally holds true, apart from
the transition states noted in pores 3 and 4 as ra goes unstable and rb reduces curvature,
respectively. A likely explanation for the streamwise consistency is flow history, which we
will investigate by continuing this analysis throughout time in § 3.4.

To describe the laminar and unstable flow states, we take a snapshot also at Wi = 8.2,
but at an instant when ra and rb are in consistent states along x∗. Figure 10 presents both
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Figure 10. (a,b) Instantaneous streamlines for the HPAA flow under a state of ET at Wi = 8.2, together with
(c–f ) x∗–y∗ slices showing |u|∗, ξ , v∗ and γ̇ , respectively.

the local ML streamlines previously described together with planes of |u|∗, v∗, ξ and γ̇ .
Here, ra and rb have almost fully reversed their states from the figure 9 snapshot, with ra
uniformly unstable between pores along x∗ and in rb repeating pores with laminar flow.
Hence we can relate the instability to local rheological effects. As discussed previously,
pores with unstable flow lead consistently to increased flow resistance (locally decelerated)
compared to the laminar channel, but importantly, we see here that the laminar channel
rb is also shear-dominated with strong rate-of-strain. The shear-thinning behaviour of
the fluid is likely in effect, leading to a locally accelerated flow reaching |u|∗ = 3.6.
Along the unstable zone, we observe competing influences: while the fluid is strongly
extensionally strain hardening, and these pores manifest with extensionally dominant flow,
the rate-of-strain is locally reduced. Thus while strain hardening may be an influence in the
evolution of the local instability, we cannot confirm this hypothesis in the present work.

3.4. Feedback between streamline curvature and flow resistance
To describe the temporal evolution of the unstable flow state, we first refer back to the
fluctuating pressure power spectra from figure 6(b). As we mentioned previously, f ∗ ≈ 1
appears to be a natural upper limit for the frequency of the spatiotemporal modes of ET
as fluctuations approach 1/λ but decay rapidly at higher frequencies (figure 8). Therefore,
we compare snapshots with a temporal stride of approximately λ, but with some variation
permitted to capture disturbances evolving away from λ.

Selected streamline fields are presented in figure 11 to describe generally instability
propagation forward in time. We start the sequence in figure 11(a), where an individual
pore in the VOI is unstable (3, the last pore). All of the pores upstream of this point
are stable in this row. Forward in time at t∗ = 0.7 (figure 11b), we see that pores 2 and
3 are now unstable; the unstable region has evidently propagated upstream. This trend
continues for t∗ = 1.8 and 2.8 (figures 11c,d), with the full row now unstable at t∗ = 2.8.
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Figure 11. Snapshot streamline fields of ML over selected t∗ at Wi = 8.2. Note that the black line in (a)
indicates y∗ = −0.75, which is used in figure 12.

Upstream propagation continues at t∗ = 3.9 (figure 11e), with relaminarization occurring
in pore 3. Clearly, flow history is important in this context, for both the onset of instability
as well as the termination thereof. We support this notion by considering the streamline
curvature of pores upstream of the local maximum ML. The transition from a laminar
state to a strongly unstable flow is spatially smooth, with streamline curvature and
elastic stresses building for pores progressing along increasing x∗ towards a pore with
a locally maximum state of instability (protruding streamlines). Positive feedback between
streamline curvature and flow resistance is a likely explanation: in a given pore, local
streamlines respond with increased curvature due to raised resistance in neighbouring
pores downstream. In a given pore with unstable flow, streamlines protrude from the pore
centre (figure 7e), and this excursion becomes more pronounced over time while being
accompanied by locally increased flow resistance. Thereafter, flow in an adjacent pore
upstream responds to the raised resistance with streamline protrusion, hence the instability
propagates upstream in the array.

To further explain the instability propagation, we present space–time diagrams in
figure 12 extracted along y∗ = ±0.75 from separate recordings at the same Wi = 8.2.
For reference, we also show the advection length scale Upλ/wp overlaid on the figure.
Here, we see that for a given point x∗, flow maintains a consistent laminar or unstable
state over long t∗. Whereas for a time t∗, the fluctuating state persists over x∗ with a scale
on a par with the advection length scale. Polymer chains in the flow would thus be in a
state where strain is accumulated throughout a cohesive pocket of instability. Crossflow
fluctuation may propagate rapidly upstream, as it does near t∗0 = 2 for x∗ = 2–3, or the
laminar state could linger as it does along t∗0 = 2–4 for x∗ = 1. Similar behaviour is noted
in the termination of instability shown in figure 12(b), where, for example, fluctuations
decay along low x∗ = 0–2 over a long time scale surpassing the recording limit. These
time scales are not surprising when we compare the space–time diagrams to the fluctuating
pressure power spectra from figure 6, where the lowest frequencies continued to gain power
for decreasing f ∗ towards the lower limit 0.06fλ (period 17λ). Thus although an upstream
propagation speed of instability can be estimated roughly as ≈−0.3Up, the progression
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Figure 12. Space–time diagrams along y∗ = ±0.75 of the crossflow velocity magnitude ratio |v|/|u| from
separate recordings at Wi = 8.2. We also include the advection length scale Upλ/wp as the pink bar.

from laminar to unstable flow is spatially smooth but not temporally, in support of the
spectral characteristics of ET.

From our simplified ordered porous medium, we have elucidated viscoelastic flow
effects relevant to porous media flow in particular, and to the evolution of vessel-scale
modes for ET in general. Namely, we have highlighted the importance of spatial
correlation via flow history effects as well as via communication between pore flow states.
An area for further research, however, would be probing longer time scales; such are not
feasible for a volumetric time-resolved study given current processing times, but a 2-D
study of ET in our ordered porous medium would be a promising direction for future
work, to better quantify the propagation nature of unstable flow near Wic. Furthermore,
while ET has been quantified in 3-D randomly packed media (Browne & Datta 2021),
packing structure and disorder are known to be significant for the onset of instability
for viscoelastic flow (Walkama et al. 2020; Haward et al. 2021) and for chaotic mixing
for creeping porous media flow (Turuban et al. 2018, 2019), and these are thus topics of
ongoing research.

4. Conclusions

From time-resolved measurements of dilute polymer flow through a refractive-
index-matched novel arrayed porous medium, we have produced the first spatiotemporally
complete description of elastic turbulence (ET). By reconstructing flow over multiple
pores simultaneously, we can capture the local evolution of viscoelastic instability as flow
evolves over a time span surpassing that of the polymer relaxation time λ. Above a critical
Wic = 1.8, a purely elastic instability occurs, leading to increased resistance, strongly
curving streamlines and localized pore flooding, the last of which is an effect that actually
stabilizes flow in neighbouring pores in crossflow by causing a reduction in streamline
curvature there. The strongly fluctuating flow is accompanied by increased drag and in the
spectral domain, steep power-law decays for velocity and pressure matching proposed ET
scaling for α and β. In this state, we describe unsteady yet coexisting regions of laminar
flow and unstable flow. We relate the spatially heterogeneous laminar zones to the local
shear-thinning behaviour of the solution, but see low rate-of-strain with extensional flow
in the resisting pores. We hypothesize that the pockets of instability are transient in nature
and driven by locally raised downstream resistance acting as positive feedback on upstream
streamline curvature. Whereas ET is typically characterized at the vessel scale, these new
findings considering a flow volume developing over several vessel scales elucidate the
significance of spatiotemporal correlation on the local evolution of ET.
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Figure 13. (a,b) Streamlines coloured by ML at Wi = 1.8; after the onset of instability, the flow is weakly
transient with (c) minor velocity fluctuations.
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Appendix

We describe a weakly transient flow state near the critical Wic. From the trend of the
power spectra, we expect this state to gain power across progressively higher frequency
modes as Wi is increased. To validate that Wi = 1.8 is indeed transient, we present sample
streamlines coloured by ML for two arbitrary snapshots, along with the change in crossflow
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velocity Δv/Up from a slice of the background grid, in figure 13. Clearly, the flow is
weakly transient, so we quantify the temporal evolution of ET at higher Wi as a generalized
description of the unstable state.
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