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On indices of meromorphic 1-forms

W. Ebeling and S. M. Gusein-Zade

Abstract

We discuss meromorphic 1-forms on compact complex manifolds and on complete inter-
sections with isolated singularities. We give a Poincaré–Hopf type formula for them, i.e.
we express the Euler characteristic in terms of singularities of a meromorphic 1-form. For
that we introduce a suitable notion of an index of a germ of a meromorphic 1-form (with
an additional structure) on an isolated complete intersection singularity. For a meromor-
phic 1-form on a complete intersection V with isolated singularities the indices of the
singular points sum up to (plus–minus) the Euler characteristic of a smoothing of V .

Introduction

For an isolated zero of a germ of a holomorphic vector field on a (smooth) complex manifold the
notion of its index (or multiplicity) is defined. For a germ of a vector field X =

∑n
i=1 Xi(x) ∂/∂xi on

(Cn, 0) it is equal to the dimension of the local algebra OCn,0/(X1, . . . ,Xn). If one has a holomorphic
vector field with isolated zeros on a compact complex manifold Mn, then the sum of the indices
of all zeros is equal to the Euler characteristic χ(M) of the manifold, i.e. to the characteristic
number cn(TM)[M ] (TM is the tangent bundle of M). Since non-zero holomorphic vector fields
(as well as holomorphic 1-forms) on a compact complex manifold rarely exist, it is interesting to
consider meromorphic vector fields of which there are a lot (at least for projective manifolds). For
a meromorphic vector field defined by a holomorphic section of the vector bundle TM ⊗ L (L is a
holomorphic line bundle on M), the sum of the indices of its zeros is equal to the corresponding
characteristic number cn(TM ⊗ L)[M ] of the vector bundle TM ⊗ L (see e.g. [BB70]).

For a germ of a holomorphic 1-form α =
∑n

i=1 Ai(x) dxi on (Cn, 0) its index ind0α is defined in
the same way; it is equal to dimOCn,0/(A1, . . . , An). For a holomorphic 1-form with isolated zeros
on a compact manifold M , the sum of the indices of its zeros is equal to the characteristic number
cn(T ∗M)[M ] = (−1)nχ(M), where T ∗M is the cotangent bundle (a Poincaré–Hopf type formula).

Let (V n, 0) ⊂ (Cn+k, 0) be a germ of an isolated complete intersection singularity (ICIS) defined
by equations f1 = · · · = fk = 0, and let α be a holomorphic 1-form on (V, 0) (i.e., the restriction of
a germ of a holomorphic 1-form

∑n+k
i=1 Ai(x) dxi on (Cn+k, 0)) such that α has an isolated singular

point at the origin on V . In this situation the index indV,0α of the 1-form α was defined in [EG01,
EG02]. It was shown that it is equal to the dimension of the factor-algebra of the algebra OCn+k,0 of
germs of functions on (Cn+k, 0) factorized by the ideal generated by f1, . . . , fk and the (k+1)×(k+1)-

Received 14 March 2002, accepted in final form 24 July 2002.
2000 Mathematics Subject Classification 32Q55, 14B05, 32A20.
Keywords: meromorphic 1-forms, singular points, indices.

Partially supported by the DFG-programme ‘Global methods in complex geometry’, grants RFBR–01–01–00739,
NWO–RFBR–047.008.005, INTAS–00–259, NSh–1272.2003.1.
This journal is c© Foundation Compositio Mathematica 2004.

https://doi.org/10.1112/S0010437X03000691 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X03000691


W. Ebeling and S. M. Gusein-Zade

minors of the matrix 


∂f1

∂x1
· · · ∂f1

∂xn+k
...

. . .
...

∂fk

∂x1
· · · ∂fk

∂xn+k

A1 · · · An+k




.

Let V n be a complete intersection in CP
n+k with isolated singularities and let α be a holomorphic

1-form on V (which means that the germ of α at each point is holomorphic). Singular points of
α are singular points of the variety V itself and zeros of α on the smooth part of V . Suppose
that the singular points of the 1-form α are isolated. Then the sum of their indices is equal to the
characteristic number cn(T ∗Ṽ )[Ṽ ] = (−1)nχ(Ṽ ) of a smoothing Ṽ of the variety V .

Let α be a meromorphic 1-form on a compact complex manifold Mn which means that α is
a holomorphic 1-form outside of a positive divisor D and in a neighbourhood of each point of M
the form α can be written as α̂/F where F = 0 is a local equation of the divisor D and α̂ is a
holomorphic 1-form. Let L be the line bundle associated to the divisor D, i.e. L has a holomorphic
section s with zeros on D. Then ω = sα is a holomorphic section of the vector bundle T ∗M⊗L.
In some constructions (say, as in [BB70]) one defines a meromorphic 1-form on M simply as a
holomorphic section of the tensor product T ∗M ⊗L for a holomorphic line bundle L. This definition
is somewhat different from the one formulated above. For example, in this case only the class of
the divisor of poles of a meromorphic 1-form is defined, not the divisor itself. Moreover, in this
setting, the value of a meromorphic 1-form on a vector field is not a function, but a section of the
line bundle L. In the sequel we use the notation ω for a section of the vector bundle T ∗M ⊗ L, for
short calling it a meromorphic 1-form as well. Suppose that the section ω has isolated zeros. Then
the sum of their indices is equal to the characteristic number cn(T ∗M ⊗ L)[M ] and thus depends
on L.

For a meromorphic 1-form on a smooth compact complex curve M the characteristic number
c1(T ∗M)[M ] = −χ(M) is equal to the number of zeros minus the number of poles counted with
multiplicities. Therefore, to express the Euler characteristic of a compact manifold in terms of
singularities of a meromorphic 1-form one has to take the divisor D of its poles into account as well.
If a meromorphic 1-form on a manifold Mn is defined simply as a section of T ∗M ⊗ L, the divisor
of poles is not defined and thus one also cannot define singular points of the form on its pole locus.

The aim of this paper is to give a Poincaré–Hopf type formula for meromorphic 1-forms, i.e. to
express the Euler characteristic of a compact manifold or of a smoothing of a complete intersection
in terms of singularities of a meromorphic 1-form. For that we introduce a suitable notion of an
index of a germ of a meromorphic 1-form (with an additional structure) on an ICIS, so that the
indices of the singular points sum up to (plus–minus) the Euler characteristic of a smoothing. There
are several descriptions of the index of a meromorphic 1-form, one of them being the alternating
sum of the dimensions of certain algebras.

1. Singular points of meromorphic 1-forms

A Poincaré–Hopf type formula can be considered as one describing a localization of an invariant
(say, of the Euler characteristic) of a manifold at singular points of, say, a vector field or a 1-form,
i.e. a representation of the invariant as the sum of integer invariants (‘indices’) corresponding to
singular points. Therefore one first has to define singular points. Let Mn be a complex manifold,
let L be a line bundle on M , and let ω be a holomorphic section of T ∗M ⊗ L. One has zeros of ω
on M , but the pole locus of ω is not well defined. In order to discuss singular points of ω on its
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pole locus (which is necessary as we saw in the example when M was a curve), we have to fix this
locus. This means that we have to choose a holomorphic section s = s1 of the line bundle L or to
choose its zero divisor D = D1. One can say that we have to consider α = ω/s, i.e. to proceed with
our initial definition of a meromorphic 1-form.

For the further setting we suppose that the divisor D of poles of the 1-form ω is non-singular (in
particular, reduced). It is not very essential for this section but makes the discussion simpler. Since
D is a submanifold of M , there is a well defined map T ∗M |D → T ∗D and thus (T ∗M ⊗ L)|D →
T ∗D⊗L|D (the restriction of meromorphic 1-forms to D). (Using the 1-form α, one can also define
only a section of the vector bundle T ∗D ⊗L|D, but not a meromorphic 1-form on D with precisely
defined pole locus.)

Let ω1 be the restriction of ω to D1. It is a holomorphic section of the vector bundle T ∗D⊗L|D.
Its zeros are well defined and should be considered as singular points of the meromorphic 1-form
ω on the pole locus. To discuss its singular points on its pole locus we again have to fix a divisor.
Suppose that there exists a (positive) divisor D2 on M which is the zero locus of another section
s2 of the same line bundle L and which intersects D1 transversally (in particular, this means that
D2 is non-singular at its intersection points with D1 and D1 ∩D2 is non-singular as well). One has
the restriction of ω to D1 ∩ D2 and its zeros there.

Going on in this way we arrive at the situation when we have fixed n divisors D1, . . . ,Dn (zeros
of sections s1, . . . , sn of the line bundle L) so that, for each i = 1, . . . , n, D1∩· · ·∩Di is non-singular.
The set of singular points of the 1-form ω is the union of the zeros of ω itself and of the restrictions
of ω to D1∩· · ·∩Di for all i = 1, . . . , n. (For i = n the intersection D1∩· · ·∩Dn is zero-dimensional
and all its points should be considered as zeros.) One can say that we have to consider a collection
of meromorphic 1-forms ω/s1, . . . , ω/sn on M proportional to each other.

2. A Poincaré–Hopf type formula for meromorphic 1-forms

Let Mn be a compact complex manifold, let ω be a meromorphic 1-form on M , that is, a holomorphic
section of the bundle T ∗M ⊗ L where L is a holomorphic line bundle with non-zero holomor-
phic sections. Suppose that D1 = D,D2, . . . ,Dn are zero divisors of holomorphic sections of the line
bundle L such that, for each i = 1, . . . , n, D1 ∩ · · · ∩ Di is non-singular. Suppose that the form ω
itself and its restrictions to the submanifolds D1 ∩ · · · ∩ Di, i = 1, . . . , n, have only isolated zeros.
Let m0 (respectively mi, i = 1, . . . , n) be the number of zeros of the form ω (respectively, of the
restriction of ω to the intersection D1 ∩ · · · ∩ Di) counted with multiplicities. In particular mn is
the number of points in D1 ∩ · · · ∩ Dn.

Theorem 1. We have

cn(T ∗M)[M ] = (−1)nχ(Mn) = m0 − m1 + · · · + (−1)nmn.

Proof. The proof will use induction on the dimension n. We suppose that

cn−1(T ∗D)[D] = (−1)n−1χ(D) = m1 − m2 + · · · + (−1)n−1mn.

One has m0 = cn(T ∗M ⊗ L)[M ]. For the characteristic class cn(T ∗M ⊗ L) one has

cn(T ∗M ⊗ L) = cn(T ∗M) + c1(L)cn−1(T ∗M) + · · · + c1(L)n.

However, the normal bundle to D = D1 in M is isomorphic to the restriction L|D and therefore
c(T ∗M |D) = c(T ∗D)(1 − c1(L|D)). Let j : D ↪→ M be the inclusion. Then

c(T ∗D) = j∗(c(T ∗M)(1 − c1(L))−1),

cn−1(T ∗D) = j∗(cn−1(T ∗M) + c1(L)cn−2(T ∗M) + · · · + c1(L)n−1).
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Therefore

cn−1(T ∗D)[D]

= j∗(cn−1(T ∗M) + c1(L)cn−2(T ∗M) + · · · + c1(L)n−1)[D]

= (c1(L)(cn−1(T ∗M) + c1(L)cn−2(T ∗M) + · · · + c1(L)n−1))[M ]
= (cn(T ∗M ⊗ L) − cn(T ∗M))[M ]
= m0 − cn(T ∗M)[M ].

So
cn(T ∗M)[M ] = m0 − cn−1(T ∗D)[D] = m0 − m1 + · · · + (−1)nmn.

Remark 1. From the proof of Theorem 1 it follows that

m0 = (−1)n(χ(M) − χ(D)) = (−1)nχ(M \ D).

Suppose that all zeros of ω are outside of D (one can consider this situation as the generic one). Let
s be the holomorphic section of the line bundle L with zeros on D. Then α = ω/s is a holomorphic
1-form on M \ D with simple poles along D. So in this case the number m0 of zeros of the holo-
morphic 1-form α on M \ D coincides with (−1)nχ(M \ D). This is the relation which holds for
holomorphic 1-forms on compact manifolds (M \ D is not compact).

Remark 2. In [BB70] there were considered meromorphic vector fields on complex manifolds. To
have a version of Theorem 1 for vector fields it is necessary to define zeros of a vector field on its
pole divisor. However (in contrast to a 1-form), a restriction of a vector field to a submanifold is not
defined (as a vector field on the submanifold). One can use the projection of a vector field to the
submanifold for that. However, this operation is not complex analytic and thus after projecting one
has to consider zeros of non-meromorphic vector fields. These zeros should have signs and should
be counted with them.

Example. Let

α =
x dy − y dx + dz

x2 + 4y2 + z2 + 1
be a meromorphic 1-form on the projective space CP

3 (x, y, z are affine coordinates). One can see
that the zeros of the corresponding ω on CP

3 and also the zeros of ω|D, D = D1 = {x2+4y2+z2+1 =
0}, are isolated and m0 = 0, m1 = 4. To define other singular points one has to choose D2 and
D3 (e.g., D2 = {x2 + y2 + 4z2 = 0}, D3 = {x2 + y2 + z2 = 0}). One has m2 = 8, m3 = 8,
0− 4 + 8− 8 = −4 = (−1)3χ(CP

3). Pay attention that as a meromorphic 1-form on CP
3 with poles

on the hypersurface Pd(x, y, z) = 0, deg Pd = d, it is natural to take
Ad−2 dx + Bd−2 dy + Cd−2 dz

Pd
,

where Ad−2, Bd−2, and Cd−2 are polynomials in x, y, z of degree d − 2 (α is not of this form).
However, one can show that such a form has non-isolated zeros on CP

3 (at infinity).

3. Meromorphic 1-forms on ICIS
Let V n be a compact subvariety of a complex manifold Mn+k such that in a neighbourhood of each
point V is a complete intersection in M with only isolated singularities (M is not supposed to be
compact). Let ω be a meromorphic 1-form on M , i.e. a holomorphic section of the bundle T ∗M ⊗L,
where L is a line bundle on M with non-zero holomorphic sections. By a smoothing Ṽ of V we
understand a smooth (C∞) manifold which is obtained from V by smoothing its singular points
(which are ICIS) in the usual way (as complex ICIS). (If V is a complete intersection in the projective
space CP

n+k, a smoothing of V can be obtained as an analytic submanifold of CP
n+k as well.)
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We want to formulate a Poincaré–Hopf type formula for the Euler characteristic of V and of its
smoothing Ṽ in terms of singular points of the 1-form ω on V . As above we suppose that there exist
n holomorphic sections s1, . . . , sn of the line bundle L with zero divisors D1, . . . ,Dn such that, for
each i = 1, . . . , n, the intersection V ∩ D1 ∩ · · · ∩ Di is of dimension n − i and has only isolated
singularities (and thus is reduced for i < n). We also suppose that the restriction of ω to the non-
singular part of V and its restriction to the non-singular part of V ∩D1∩· · ·∩Di (i = 1, . . . , n) have
only isolated zeros. As singular points of the 1-form ω on V we consider all zeros of its restrictions
to the non-singular parts of V and of the intersections V ∩ D1 ∩ · · · ∩ Di (i = 1, . . . , n) and all
singular points of V and of V ∩ D1 ∩ · · · ∩ Di as well.

Let P be a singular point of the 1-form ω on V . Suppose that the divisors D1, . . . ,D� (0 � � � n)
pass through the point P and (if � < n) D�+1 does not. In a neighbourhood of the point P in some
local coordinates on M centred at the point P we have the following situation. The variety (ICIS)
V (possibly non-singular) is defined by k equations f1 = · · · = fk = 0. Let divisors D1, . . . ,D�

be defined by equations fk+1 = 0, . . . , fk+� = 0. Let us recall that {f1 = · · · = fk = fk+1 = · · · =
fk+i = 0} is an ICIS for each i = 0, 1, . . . , �. After choosing a local trivialization of the line bundle L,
the 1-form ω can be written as

∑n+k
i=1 Ai(x) dxi where Ai(x) are holomorphic. One can say that we

consider a collection of meromorphic 1-forms ω/fk+1, . . . , ω/fk+� on V proportional to each other.
Let us denote the set of local data (V, ω, fk+1, . . . , fk+�) by Ω.

Let ind(0)Ω (respectively ind(i)Ω, i = 1, . . . , �) be the index of the holomorphic 1-form ω on V
(respectively on the ICIS V ∩ D1 ∩ · · · ∩ Di) defined in [EG01, EG02].

Definition. The alternating sum

indP Ω = ind(0)Ω − ind(1)Ω + · · · + (−1)�ind(�)Ω

is called the index of the 1-form ω at the point P with respect to the divisors D1, . . . ,Dn.

According to [EG01, EG02] one has the following three equivalent descriptions of the index
indP Ω.

1) Let Bδ be the ball of sufficiently small radius δ centred at the origin in C
n+k and let Sδ

be its boundary. Let ε = (ε1, . . . , εk, . . . , εk+�) ∈ (Ck+�, 0) be small enough and such that
ε(k+i) = (ε1, . . . , εk, . . . , εk+i) is not a critical value of the map Fk+i = (f1, . . . , fk, . . . , fk+i) :
(Cn+k, 0) → (Ck+i, 0) for each i = 0, 1, . . . , �. The restriction of the 1-form ω to the smooth
manifold Vi = F−1

k+i(ε
(k+i)) has isolated zeros in Bδ. Let mi be their number counted with

multiplicities. Then ind(i)Ω = mi, indP Ω = m0 − m1 + · · · + (−1)�m�.
2) Let Ki (i = 0, 1, . . . , �) be the link of the ICIS V ∩D1 ∩ · · · ∩Di, i.e. the intersection V ∩D1 ∩

· · · ∩ Di ∩ Sδ. Let di be the degree of the map

(ω, df1, . . . , dfk, . . . , dfk+i) : Ki → Wk+i+1(Cn+k)

(Wk+i+1(Cn+k) is the Stiefel manifold of (k+i+1)-frames in the dual C
n+k). Then ind(i)Ω = di,

indP Ω = d0 − d1 + · · · + (−1)�d�.
3) Let Ji (i = 0, 1, . . . , �) be the ideal of the ring OCn+k,0 of germs of holomorphic functions of n+k

variables at the origin generated by f1, . . . , fk, . . . , fk+i and the (k + i+ 1)× (k + i+ 1)-minors
of the matrix 



∂f1

∂x1
· · · ∂f1

∂xn+k
...

. . .
...

∂fk+i

∂x1
· · · ∂fk+i

∂xn+k

A1 · · · An+k




.
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Let νi = dimCOCn+k,0/Ji. Then ind(i)Ω = νi, indP ω = ν0 − ν1 + · · · + (−1)�ν�.

Remark 3. In [GSV91] and [SS96] there is defined the index of a holomorphic vector field on an
ICIS. One advantage of using 1-forms instead of vector fields is that a description of type 3) does
not exist for the index of a vector field.

Let us return to the global situation described at the beginning of the section.

Theorem 2. We have ∑
P

indP Ω = (−1)nχ(Ṽ ),

where Ṽ is a smoothing of the variety V .

Proof. If there exist an analytic smoothing Ṽ of V inside Mn+k and analytic smoothings of the
divisors D1, . . . ,Dn (i.e. sections s̃1, . . . , s̃n of the line bundle L close to s1, . . . , sn for which their
zero divisors D̃1, . . . , D̃n are such that, for each i = 1, . . . , n, the intersection Ṽ ∩ D̃1 ∩ · · · ∩ D̃i is
smooth), then the statement follows directly from Theorem 1 since the index of a singular point
counts the alternating sum of numbers of zeros on a smoothing vanishing at the point (see the
description 1) of the index above).

If such smoothings do not exist, then the statement is derived from the following arguments.
One can easily see that the statement of Theorem 1 and its proof hold in the situation when the
manifold M is almost complex (i.e. has a complex structure in the tangent bundle) and the manifolds
D1 ∩ · · · ∩ Di, i = 1, . . . , n (Di is the zero locus of a section si of the complex line bundle L), are
almost complex submanifolds of M (i.e. their tangent spaces are complex subspaces of the tangent
spaces to the manifold M). The only difference is that in this case the multiplicity of a zero of a
complex 1-form ω (a section of the complex bundle T ∗M ⊗L) or of its restriction to the intersection
D1 ∩ · · · ∩Di is in general not positive. However, if the manifold M , the intersections D1 ∩ · · · ∩Di

and the 1-form ω are in fact complex analytic in neighbourhoods of all the singular points of ω,
then all the multiplicities are in fact positive.

One can construct almost complex smoothings Ṽ and Ṽ ∩ D̃1 ∩ · · · ∩ D̃i of the varieties V and
V ∩D1∩· · ·∩Di (i = 1, . . . , n) and a complex 1-form ω̃ approximating ω in the following way. Let P
be a singular point of V or of an intersection V ∩D1 ∩ · · · ∩Di. Suppose that P ∈ V ∩D1 ∩ · · · ∩D�,
P �∈ V ∩D1∩· · ·∩D�+1 (here � may be equal to zero if P �∈ D1). Choose a small ball B of radius r0 in
a coordinate neighbourhood of the point P (P = 0) so that inside this ball V is given by equations
f1 = · · · = fk = 0, Di is given by an equation gi = 0 (i = 1, . . . , �), and there are no other singular
points of the 1-form ω inside the ball B. Let B′ be the ball of radius r0/2 and let θ(r) be a smooth
monotonous function such that 0 � θ(r) � 1, θ(r) = 1 in a neighbourhood of r0/2, and θ(r) = 0
in a neighbourhood of r0. Let ε0 ∈ C

k, ε1, . . . , ε� ∈ C be small enough and such that the collection
{f = ε0}, {f = ε0} ∩ {g1 = ε1} ∩ · · · ∩ {gi = εi} (i = 1, . . . , �) is a complex analytic smoothing
of the varieties V , V ∩ D1 ∩ · · · ∩ Di (i = 1, . . . , �). Let Ṽ and D̃i, i = 1, . . . , �, be submanifolds
of M which coincide with V and Di respectively outside of the ball B and which are given by
the equations f(z) = θ(r(z))ε0 and gi(z) = θ(r(z))εi respectively, where r(z) is the length of z in
the coordinates in B.

The tangent space Tz0 Ṽ to the manifold Ṽ at a point z0 ∈ Ṽ ∩ B \ B′ is close to the tangent
space Tz0Vz0 to the complex submanifold Vz0 = {f(z) = θ(r(z0))ε0} at the same point. If z0 ∈
Ṽ ∩ D̃1 ∩ · · · ∩ D̃i, then also the tangent space Tz0(Ṽ ∩ D̃1 ∩ · · · ∩ D̃i) is close to the tangent space
Tz0(Vz0 ∩ D1,z0 ∩ · · · ∩ Di,z0) where Dj,z0 is the complex analytic submanifold {gj(z) = θ(r(z0))εj}.
The spaces Tz0Vz0 and Tz0(Vz0∩D1,z0∩· · ·∩Di,z0) are complex vector subspaces of the tangent space
Tz0M . To define a complex structure on the tangent space Tz0(Ṽ ) one can construct a (real linear)
map Hz0 from the tangent space Tz0M to itself close to the identity (and thus non-degenerate)

814

https://doi.org/10.1112/S0010437X03000691 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000691


On indices of meromorphic 1-forms

which sends Tz0Ṽ to Tz0Vz0 and (if z0 ∈ Ṽ ∩ D̃1 ∩ · · · ∩ D̃i) the tangent space Tz0(Ṽ ∩ D̃1 ∩ · · · ∩ D̃i)
to Tz0(Vz0 ∩ D1,z0 ∩ · · · ∩ Di,z0). Such a map (smoothly dependent on z0) can easily be constructed
using a hermitian scalar product on TM .

The map Hz0 induces a complex structure on the tangent space Tz0(Ṽ ) so that Tz0(Ṽ ∩ D̃1 ∩
· · · ∩ D̃i) is a complex subspace of it and also a complex 1-form ω̃ on Tz0(Ṽ ). Since Hz0 is close
to the identity, ω̃ has no singular points on Ṽ ∩ B \ B′. Therefore the ‘almost complex version’ of
Theorem 1 applied to Ṽ , D̃1, . . . , D̃n, ω̃ yields the result.

In order to get the Euler characteristic of the variety V itself one has to correct the formula
of Theorem 2 taking the Milnor numbers of the singular points of V into account. For P ∈ V , let
µP denote the Milnor number of the ICIS V at the point P (see e.g. [Loo84]). Note that, if V is
non-singular at P , then µP = 0.

Theorem 3. We have

(−1)nχ(V ) =
∑
P

(indP Ω − µP ).

Remark 4. The Milnor number µP can also be written as an alternating sum of indices of holomor-
phic 1-forms on several ICIS. One can say that the term µP corresponds to the difference between
two possible definitions of the index as in [SS98, Proposition 1.4].

4. Multiple pole divisor

In some cases it is natural to consider the situation when the pole locus of the meromorphic 1-form
ω is a multiple of an irreducible divisor. Examples are the following:

1) A polynomial 1-form on C
n is a meromorphic 1-form on CP

n the pole locus of which is a
multiple of the infinite hyperplane CP

n−1∞ .

2) Let f be a meromorphic function with the pole locus kD where D is an irreducible divisor
(i.e. in a neighbourhood of each point f can be written as f̃/F k where f̃ is holomorphic and
F = 0 is a local equation of D). Then its differential df is a meromorphic 1-form with the pole
locus (k + 1)D (i.e. in a neighbourhood of each point df can be written as ω̃/F k+1 where ω̃
is a holomorphic 1-form). A polynomial function of degree k on C

n is a meromorphic function
on CP

n with the pole locus kCP
n−1∞ .

Let us give a version of Theorem 1 for this case. The fact that the pole divisor of a 1-form is
multiple means that the corresponding line bundle is a power of another one. Let ω be a meromorphic
1-form on a compact complex manifold Mn, that is, a holomorphic section of the bundle T ∗M ⊗L,
where L = λk, k > 1. Suppose that D1 = D, D2, . . . ,Dn are zero divisors of holomorphic sections
of the line bundle λ such that, for each i = 1, . . . , n, D1 ∩ · · · ∩ Di is non-singular and the form ω
itself and its restrictions to D1 ∩ · · · ∩Di have isolated zeros. Let m0 (respectively mi, i = 1, . . . , n)
be the number of zeros of the 1-form ω (respectively of its restriction to D1 ∩ · · · ∩Di) counted with
multiplicities.

Theorem 4. We have

cn(T ∗M)[M ] = (−1)nχ(M) = m0 − km1 + · · · + (−1)nkmn.

Proof. For n = 1, i.e. for curves, the statement is obvious. Suppose that the statement holds for
manifolds of dimension n − 1, in particular,

cn−1(T ∗D)[D] = m1 − km2 + · · · + (−1)n−1kmn.
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Since m0 = cn(T ∗M ⊗L)[M ], m1 = cn−1(T ∗D⊗L)[D], to prove the formula it is sufficient to show
that the number

cn(T ∗M)[M ] + cn−1(T ∗D)[D] − cn(T ∗M ⊗ L)[M ] + (k − 1)cn−1(T ∗D ⊗ L)[D] (1)

is equal to zero. In order to prove this let us suppose that

c(T ∗M) =
n∏

i=1

(1 + ξi).

Let c1 := c1(λ) and let j : D ↪→ M be the inclusion. Then

c(T ∗D) = j∗
(∏

(1 + ξi)
1 − c1

)
,

c(T ∗M ⊗ L) =
∏

(1 + ξi + kc1),

c(T ∗D ⊗ L) = j∗
(∏

(1 + ξi + kc1)
1 + (k − 1)c1

)
(everywhere the product is taken for i = 1, . . . , n). Since j∗(a)[D] = c1a[M ], the expression (1) is
equal to the residue of

1
tn+1

(∏
(1 + ξit) + c1t

∏
(1 + ξit)
1 − c1t

−
∏

(1 + (ξi + kc1)t) + (k − 1)c1t

∏
(1 + (ξi + kc1)t)
1 + (k − 1)c1t

)
(2)

at t = 0. The function (2) has simple poles at t1 = 1/c1 and t2 = −1/(k−1)c1 . One easily calculates
the residues of (2) at t1, t2 and ∞. The residue at ∞ turns out to be equal to zero and the residues
at t1 and t2 cancel. By the residue theorem the residue at the origin is equal to zero.

Remark 5. The proof of Theorem 4 does not work for k = 1 directly (the corresponding expression
which differs from (2) by absence of the last summand has non-zero residues at t = 1/c1 and t = ∞
which cancel). Moreover, the proof of Theorem 1 is more straightforward. This is the reason why
we kept it.

Remark 6. In [HS98, Theorem 3.1] there is given a formula for the sum of the residues corresponding
to the singular points of the foliation on the projective plane CP

2 given by df = 0, where f is a
polynomial function of degree k on C

2 (which defines a meromorphic function on CP
2). In our

terms this is the formula for the number m0 of zeros of the meromorphic 1-form df , the pole locus
of which is k + 1 times the infinite line. Thus Theorem 4 can be considered as a generalization of
[HS98, Theorem 3.1] to higher dimensions and to meromorphic 1-forms which are not, in general,
differentials of functions.
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GSV91 X. Gómez-Mont, J. Seade and A. Verjovsky, The index of a holomorphic flow with an isolated
singularity, Math. Ann. 291 (1991), 737–751.

HS98 T. Honda and T. Suwa, Residue formulas for meromorphic functions on surfaces, Ann. Fac. Sci.
Toulouse Math. (6) 7 (1998), 443–463.

Loo84 E. J. N. Looijenga, Isolated singular points on complete intersections, London Math. Soc. Lecture
Note Series, vol. 77 (Cambridge University Press, Cambridge, 1984).

SS96 J. Seade and T. Suwa, A residue formula for the index of a holomorphic flow, Math. Ann. 304
(1996), 621–634.

SS98 J. Seade and T. Suwa, An adjunction formula for local complete intersections, Int. J. Math. 9 (1998),
759–768.

W. Ebeling ebeling@math.uni-hannover.de
Universität Hannover, Institut für Mathematik, Postfach 6009, D-30060 Hannover, Germany

S. M. Gusein-Zade sabir@mccme.ru
Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 119992, Russia

817

https://doi.org/10.1112/S0010437X03000691 Published online by Cambridge University Press

mailto:ebeling@math.uni-hannover.de
mailto:sabir@mccme.ru
https://doi.org/10.1112/S0010437X03000691

	1 Singular points of meromorphic 1-forms
	2 A Poincaré--Hopf type formula for meromorphic 1-forms
	3 Meromorphic 1-forms on ICIS
	4 Multiple pole divisor

