
COMPOSITIO MATHEMATICA

Semistable reduction for overconvergent
F -isocrystals, III: Local semistable reduction at

monomial valuations

Kiran S. Kedlaya

Compositio Math. 145 (2009), 143–172.

doi:10.1112/S0010437X08003783

FOUNDATION 

COMPOSITIO 

MATHEMATICA

https://doi.org/10.1112/S0010437X08003783 Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X08003783
https://doi.org/10.1112/S0010437X08003783


Compositio Math. 145 (2009) 143–172
doi:10.1112/S0010437X08003783

Semistable reduction for overconvergent

F -isocrystals, III: Local semistable reduction at
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Abstract

We resolve the local semistable reduction problem for overconvergent F -isocrystals
at monomial valuations (Abhyankar valuations of height 1 and residue transcendence
degree zero). We first introduce a higher-dimensional analogue of the generic radius of
convergence for a p-adic differential module, which obeys a convexity property. We then
combine this convexity property with a form of the p-adic local monodromy theorem
for so-called fake annuli.

1. Introduction

This paper is the third of a series, preceded by [Ked07c, Ked08a]. The goal of the series is to
prove a ‘semistable reduction’ theorem for overconvergent F -isocrystals, a class of p-adic analytic
objects associated to schemes of finite type over a field of characteristic p > 0. Such a theorem
is expected to have consequences for the theory of rigid cohomology, in which overconvergent
F -isocrystals play the role of coefficient objects.

In [Ked07c], it was shown that the problem of extending an overconvergent isocrystal on
a variety X to a log-isocrystal on a larger variety X is governed by the triviality of a sort of
local monodromy along components of the complement of X. In [Ked08a], it was shown that the
problem can be localized on the space of valuations on the function field of the given variety. In
this paper, we solve the local semistable reduction problem at monomial valuations (Abhyankar
valuations of height one and residue transcendence degree zero).

The context of this result (including a complex analogue) and a description of potential
applications is already given in the introduction of [Ked07c], so we will not repeat it here.
Instead, we devote the remainder of this introduction to an overview of the results specific to
this paper, and a survey of the structure of the various sections of the paper.

1.1 Local semistable reduction
The problem of (global) semistable reduction is to show that an overconvergent F -isocrystal
on a nonproper k-variety can be extended to a log-isocrystal with nilpotent residues on a
proper k-variety after passing to a suitable generically finite cover. In [Ked07c], it was shown
that existence of a log-extension on a smooth pair (X, D) can be checked generically along
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each component of D. One can ensure the existence of the log-extension along the proper
transform of any given component, using the p-adic local monodromy theorem of André [And02],
Mebkhout [Meb02], and this author [Ked04]; however, when passing to the generically finite
cover (and making sure it is smooth by applying de Jong’s alterations theorem [DJ96]), one
typically introduces exceptional components along which one has not achieved any control of
local monodromy. See Example A.2.1 for an explicit example of this phenomenon.

The main addition of [Ked08a] was to show that the problem of controlling exceptional
components can be localized within the Riemann–Zariski space of valuations of the function
field of the variety. Moreover, the resulting problem of local semistable reduction can be reduced
to a lower-dimensional case whenever one is working in neighborhoods of a valuation which is
composite (of height greater than 1), or which has a residue field with positive transcendence
degree over the base field.

1.2 Local monodromy at monomial valuations
Monomial valuations on an n-dimensional variety can be described as follows: in suitable local
coordinates x1, . . . , xn, they are determined by the fact that v(x1), . . . , v(xn) are linearly
independent over Q. On the one hand, such valuations are particularly easy to describe, so
one expects to have an easier time working with them than with other valuations. On the other,
they form a subset of the Riemann–Zariski space which, in some sense that we will not make
precise here, is rather large. (A related statement is that the set of Abhyankar places of a finitely
generated field extension is dense in the Riemann–Zariski space under the patch topology [Kuh04,
Corollary 2].)

In order to understand the structure of isocrystals in a neighborhood of a monomial
valuation, it is helpful to make some analysis at the valuation itself. This is the content of the
paper [Ked07a], which proves an analogue of the p-adic local monodromy theorem for differential
equations on a so-called fake annulus inside a higher-dimensional affine space. It then makes sense
to consider the (semisimplified) local monodromy representations attached to overconvergent F -
isocrystals not just at divisorial valuations, but also at monomial valuations.

One is then led to ask how local monodromy varies as one varies the monomial valuation,
e.g., by varying v(x1), . . . , v(xn). We give a tangible answer to this question by defining a
higher-dimensional analogue of the generic radius of convergence, as considered by Christol and
Dwork [CD94]. This gives a numerical invariant which in the one-dimensional case computes the
highest ramification break of the local monodromy representation, as in the work of, for example,
André, Christol-Mebkhout, Crew, Matsuda and Tsuzuki (see [Ked05a, § 5] for an exposition).
This number is shown to be a convex function in v(x1), . . . , v(xn) by the Hadamard three circles
lemma in rigid geometry. (One can similarly construct an invariant that generalizes the full Swan
conductor in the one-dimensional case; see [Ked07b] for the beginning of this story.)

It is worth noting that this study has an interesting analogue over the complex numbers, in the
investigation of the Stokes phenomenon conducted by Sabbah [Sab00]. This concerns irregular
connections on complex surfaces, and (echoing an analogy already seen in the one-dimensional
situation) the variational behavior of irregularity along divisors is apparently quite similar to
that of the invariant we consider.

Given what we have just described, we prove local semistable reduction at a monomial
valuation as follows. Using the p-adic local monodromy theorem for fake annuli, we can force the
highest ramification break at the valuation itself to be zero. Then the convexity of the highest
break function implies that at certain nearby divisorial valuations the highest break is also forced
to be zero, which forces the isocrystal to be unipotent there also.
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1.3 Structure of the paper

We conclude this introduction with a summary of the structure of the paper.

In § 2, we derive some properties of convex functions. The most important of these is a result
which we were unable to find in the literature (Theorem 2.3.2), which shows that a convex
function whose values have the divisibility properties of a piecewise affine function with integral
coefficients must in fact be such a function.

In § 3, we recall the relationship between Newton polygons and norms of differential operators,
as developed by Christol and Dwork, Robba, Young and others.

In § 4, we define our higher-dimensional analogue of generic radius of convergence, and gather
its key properties.

In § 5, we introduce a form of the p-adic local monodromy theorem covering so-called fake
annuli. We then assert some related results, notably the relationship between wild ramification
and generic radius of convergence for differential equations on p-adic curves.

In § 6, we develop some properties of monomial valuations, then prove local semistable
reduction at a monomial valuation using the log-concavity of the generic radius of convergence.

In Appendix Appendix A, we describe two examples of semistable reduction. One illustrates
that one cannot insist on using a finite cover of a fixed compactification, rather than an alteration
(as promised in the introduction of [Ked07c]). The other illustrates that even if one starts with a
good compactification, one cannot achieve semistable reduction by doing so just for the divisors
visible in that compactification (as promised above).

Notation 1.3.1. We retain the basic notations of [Ked07c, Ked08a]. In particular, k will always
denote a field of characteristic p > 0, K will denote a complete discretely valued field of
characteristic zero with residue field k, equipped with an continuous endomorphism σK lifting
the q-power Frobenius for some power q of p, and oK will denote the ring of integers of K.

2. Some properties of convex functions

This section is completely elementary; it consists of some basic properties of convex functions
on subsets of Rn, which we will use later to study variation of the highest ramification break as
a function of a valuation on a variety. We initially follow [Roc70] for notation and terminology.

2.1 Convex functions

In the study of convex functions, as in [Roc70], it is customary to use a slightly different setup
than one might expect.

Definition 2.1.1. Denote R∞ = R ∪ {+∞}. A function f : Rn→ R∞ is convex if, for any
x, y ∈ Rn and t ∈ [0, 1],

tf(x) + (1− t)f(y) > f(tx+ (1− t)y).

Equivalently, f is convex if and only if the epigraph of f , defined as

epi(f) = {(x1, . . . , xn, y) ∈ Rn+1 : y > f(x1, . . . , xn)},

is a convex set.
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Definition 2.1.2. If U is a convex subset of Rn and f : U → R is a function, we say that f is
convex if the function g : Rn→ R∞ defined by

g(x) =

{
f(x) x ∈ U
+∞ x /∈ U

is convex in the sense of Definition 2.1.1. Conversely, for g : Rn→ R∞ a convex function, we
define the essential domain of g to be

dom(g) = {x ∈ Rn : g(x)<+∞};

then the restriction of g to dom(g) is a convex function in the sense just described. Write
intdom(g) for the interior of dom(g); then g is continuous on intdom(g) [Roc70, Theorem 10.1].

Definition 2.1.3. For C ⊆ Rn, define the indicator function δC : Rn→ R∞ by

δC(x) =

{
0 x ∈ C
+∞ x /∈ C;

then δC is a convex function if and only if C is a convex set.

Definition 2.1.4. An affine functional is a map λ : Rn→ R of the form λ(x1, . . . , xn) = a1x1 +
· · ·+ anxn + b for some a1, . . . , an, b ∈ R. A generalized affine functional is a map λ : Rn→ R∞
which is either an affine functional, or an affine functional plus the indicator function of a closed
halfspace, i.e., a set of the form

{(x1, . . . , xn) ∈ Rn : a1x1 + · · ·+ anxn 6 b}

with a1, . . . , an not all zero. If a1, . . . , an, b ∈ Z (in both places, if working in the generalized
case), we say that λ is an integral (generalized) affine functional.

Lemma 2.1.5. Let f : Rn→ R∞ be a convex function. Then, for any m ∈ R, the function
gm : Rn−1→ R∞ defined by

gm(x1, . . . , xn−1) = inf
xn∈R
{f(x1, . . . , xn)−mxn}

is convex.

Proof. Since f(x1, . . . , xn)−mxn is again a convex function of x1, . . . , xn, it suffices to consider
the case m= 0. Given x1,1, . . . , x1,n−1, x2,1, . . . , x2,n−1 ∈ R and ε > 0, choose x1,n, x2,n ∈ R such
that

f(xi,1, . . . , xi,n) 6 g0(xi,1, . . . , xi,n−1) + ε (i= 1, 2).

For t ∈ [0, 1], put x3,j = tx1,j + (1− t)x2,j for j = 1, . . . , n. Write xi = (xi,1, . . . , xi,n) and x′i =
(xi,1, . . . , xi,n−1) for i= 1, 2, 3. Then

tg0(x′1) + (1− t)g0(x′2) + 2ε > tf(x1) + (1− t)f(x2) > f(x3) > g0(x′3).

Taking ε arbitrarily small, we deduce the convexity of g0. 2
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2.2 Internally polyhedral functions

Definition 2.2.1. For f : Rn→ R∞ a convex function, a domain of affinity is a subset U of Rn

with nonempty interior on which f agrees with an affine functional λ. The nonempty interior
condition ensures that λ is uniquely determined; we call it the ambient functional on U .

Remark 2.2.2. Note that if λ is an ambient functional on some domain of affinity for f , then the
graph of λ is a supporting hyperplane for the epigraph of f , and so f(x) > λ(x) for all x ∈ Rn.

Definition 2.2.3. A function f : Rn→ R∞ is polyhedral if it has the form

f(x) = max{λ1(x), . . . , λm(x)} (2.2.3.1)

for some generalized affine functionals λ1, . . . , λm : Rn→ R∞. We say that f is integral polyhedral
if the λi can be taken to be integral; we say that a set C is rational polyhedral if the indicator
function δC is integral polyhedral. We say that f is internally (integral) polyhedral if, for each
bounded (rational) polyhedral set C ⊆ intdom(f), f + δC is (integral) polyhedral.

Remark 2.2.4. It may look a bit strange to say that C is rational polyhedral if δC is integral
polyhedral. The point is that to get what one would properly call an ‘integral polyhedral set’, i.e.,
the convex hull of a finite subset of Zn, we would have to force the λi in (2.2.3.1) to have the form
a1x1 + · · ·+ anxn + b in which a1, . . . , an, b ∈ Z but a1, . . . , an are additionally constrained to
be coprime.

Remark 2.2.5. The condition that a function f be internally polyhedral is more permissive than
the condition that it be locally polyhedral, in the sense of, e.g., [Fuj05, § 15]. To say that f is
locally polyhedral means that, for every bounded polyhedral set C meeting dom(f), f + δC is
polyhedral. To see the difference, note that the functions f : R→ R∞ given by

f(x) =


+∞, x 6 0,
2N −N(N + 1)x, x ∈ [1/(N + 1), 1/N ], N ∈ Z>0,

0, x > 1

and by

f(x) =


+∞, x < 0,
1, x= 0,
0, x > 0

are internally integral polyhedral but not locally polyhedral.

Lemma 2.2.6.

(a) Let f : Rn→ R∞ be a convex function such that dom(f) is polyhedral with nonempty
interior. Then f is polyhedral if and only if dom(f) is covered by finitely many domains of
affinity for f .

(b) Let f : Rn→ R∞ be a convex function. Then f is internally polyhedral if and only if
intdom(f) is covered by (possibly infinitely many) domains of affinity for f .

Proof. The ‘only if’ implication is evident in both cases, so we focus on the ‘if’ implications.
To prove part (a), put C = dom(f); since C is polyhedral, we can write

δC(x) = max{µ1(x), . . . , µr(x)}
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where each µj is the indicator function of a closed halfspace. If dom(f) is covered by domains of
affinity U1, . . . , Um with ambient functionals λ1, . . . , λm, then, by Remark 2.2.2, we have

f(x) = max
i,j
{λi(x) + µj(x)},

so f is polyhedral.

To prove part (b), let C be any bounded rational polyhedral subset of intdom(f). Since C
is compact, it is covered by finitely many domains of affinity for f ; hence part (a) implies that
f + δC is polyhedral. Since intdom(f) is the union of its bounded rational polyhedral subsets,
this proves the claim. 2

Corollary 2.2.7. Let f : Rn→ R∞ be a convex function. Then f is internally integral
polyhedral if and only if there exists a (possibly infinite) subset S of Zn and a function b : S→ Z
such that

f(x) = sup
s∈S
{s1x1 + · · ·+ snxn + b(s)} (x ∈ intdom(f)). (2.2.7.1)

Moreover, in this case the supremum in (2.2.7.1) is always achieved.

Proof. If f is internally integral polyhedral, we choose S and b so that s1x1 + · · ·+ snxn +
b(s) runs over the ambient functionals on the domains of affinity of f ; then Remark 2.2.2
implies (2.2.7.1) with the supremum being achieved. Conversely, suppose that S and b exist. Pick
x ∈ intdom(f), and then choose ε > 0 such that the box B =

∏n
i=1[xi − 2ε, xi + 2ε] is contained

in intdom(f). Put B′ =
∏n
i=1[xi − ε, xi + ε]. Let U and L be the supremum and infimum,

respectively, of f on B (which exist because f is continuous on intdom(f)). If s1 > (U − L)/ε,
then, for y = (y1, . . . , yn) ∈B′,

f(y) > L

> U − s1ε

> U − s1(x1 + 2ε− y1)
= U − (s1(x1 + 2ε) + s2y2 + · · ·+ snyn + b(s)) + (s1y1 + · · ·+ snyn + b(s))
> U − f(x1 + 2ε, y2, . . . , yn) + s1y1 + · · ·+ snyn + b(s)
> s1y1 + · · ·+ snyn + b(s).

That is, for all x ∈B′, any term in (2.2.7.1) for an s with s1 > (U − L)/ε can be omitted
without changing the supremum. Similarly, we can omit all s for which |si|> (U − L)/ε for
i ∈ {1, . . . , n}. Consequently, we can compute the supremum in (2.2.7.1) using only finitely many
affine functionals, and so f + δC is integral polyhedral for any rational polyhedron C ⊆B′.

Consequently, the point x ∈ intdom(f) admits a neighborhood contained in a union of finitely
many domains of affinity for f corresponding to integral affine functionals. Since x was arbitrary,
we deduce that all of intdom(f) can be covered by domains of affinity for f whose ambient
functionals are integral. By Lemma 2.2.6, f is internally integral polyhedral, as desired. 2

2.3 Integral values and integral polyhedral functions

The key result in this section (Theorem 2.3.2) asserts that the fact that a convex function is
internally integral polyhedral can be observed from its values at rational n-tuples.
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Lemma 2.3.1. Let f : Rn→ R∞ be a convex function such that

f(x1, . . . , xn) ∈ (Z + Zx1 + · · ·+ Zxn) ∪ {+∞} (x1, . . . , xn ∈Q). (2.3.1.1)

Then, for any x1, . . . , xn−1 ∈Q, the function g : R→ R∞ given by g(x) = f(x1, . . . , xn−1, x) is
internally polyhedral, and on each domain of affinity of g we have g(x) =mx+ b for some m ∈ Z
and some b ∈ Z + Zx1 + · · ·+ Zxn−1.

Proof. Fix (x1, . . . , xn−1) ∈Qn. We may assume that intdom(g) is nonempty, as otherwise the
claim is vacuously true; choose xn ∈ intdom(g). Let d be the least common denominator of
x1, . . . , xn, so that

1
d

Z = Z + Zx1 + · · ·+ Zxn.

For N any sufficiently large positive integer, we have

f(x1, . . . , xn−1, xn + 1/(dN))− f(x1, . . . , xn)
1/(dN)

∈ dN

(
Z + Zx1 + · · ·+ Zxn +

1
dN

Z
)

= Z.

As N →∞, this difference quotient runs through a sequence of integers which is nonincreasing
and bounded below (because g is convex and xn ∈ intdom(g)). Thus the quotient stabilizes for N
large. By convexity, the function g must be affine with integral slope in a one-sided neighborhood
of xn; since Q is dense in R, the closed intervals on which g is affine with integral slope cover
the interior of the essential domain. By Lemma 2.2.6, g is internally polyhedral.

Let d′ be the least common denominator of x1, . . . , xn−1. On any domain of affinity for g,
we can write g(x) =mx+ b for some m ∈ Z. In this domain, we can find y1, y2 such that, when
we write yi = ri/si in lowest terms, we have d′, s1, s2 coprime in pairs. From (2.3.1.1), we have
g(yi) =m(ri/si) + b ∈ (1/d′si)Z, implying d′sib ∈ Z. Since this holds for both i= 1 and i= 2, we
find d′b ∈ Z. 2

Theorem 2.3.2. Let f : Rn→ R∞ be a convex function such that

f(x1, . . . , xn) ∈ (Z + Zx1 + · · ·+ Zxn) ∪ {+∞} (x1, . . . , xn ∈Q).

Then f is internally integral polyhedral.

Proof. We proceed by induction on n, the case n= 1 being solved by Lemma 2.3.1. Write for
brevity x= (x1, . . . , xn) and x′ = (x1, . . . , xn−1). For m ∈ Z, define

gm(x′) = inf
x∈R
{f(x1, . . . , xn−1, x)−mx};

by Lemma 2.1.5, gm is a convex function on Rn−1. By Lemma 2.3.1, for x′ ∈Qn−1 ∩ intdom(gm),
gm(x′) ∈ Z + Zx1 + · · ·+ Zxn−1. We may thus apply the induction hypothesis to deduce that
gm is internally integral polyhedral.

By one direction of Corollary 2.2.7, we can construct sets Sm ⊆ Zn−1 and functions
bm : Sm→ Z such that

gm(x′) = sup
s∈Sm
{s1x1 + · · ·+ sn−1xn−1 + bm(s)} (x′ ∈ intdom(gm)).

By Lemma 2.3.1, we know that, for x ∈Qn,

f(x) = sup
m∈Z
{gm(x1, . . . , xn−1) +mxn},
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so we conclude that

f(x) = sup{s1x1 + · · ·+ sn−1xn−1 +mxn + bm(s)} (2.3.2.1)

for all x ∈Qn ∩ intdom(f), with the supremum running over m ∈ Z and s= (s1, . . . , sn−1) ∈ Sm.
Since both sides of (2.3.2.1) represent convex functions on intdom(f) and they agree on a dense
subset thereof, we may invoke the continuity of convex functions to deduce that (2.3.2.1) holds
in fact for all x ∈ intdom(f). By the other direction of Corollary 2.2.7, f is internally integral
polyhedral, as desired. 2

2.4 Extension to rational polyhedral sets

Although we will not use it in this paper, we note for future reference a slight strengthening of
Theorem 2.3.2.

Lemma 2.4.1. Let C be a bounded rational polyhedral subset of Rn, and let v ∈Qn be a vertex
of C. Let f : Rn→ R∞ be a convex function with f(v)<∞, and let Tv be the set of integral
affine functionals λ which achieve their maximum on C at v, and which agree with f on some
domain of affinity meeting C. Then Tv is finite.

Proof. Let S ⊂ Zn be the set of n-tuples for which

max
x∈C
{s1x1 + · · ·+ snxn}= s1v1 + · · ·+ snvn.

Then S is the intersection of Zn with a strictly convex rational polyhedral cone, and so is
isomorphic to the intersection of Zn>0 with a sublattice of Zn of finite index. Consequently, S
is well partially ordered, that is, any infinite sequence of S contains an infinite nondecreasing
subsequence.

Suppose that Tv is infinite. For λ ∈ Tv, write

λ(x) = s1x1 + · · ·+ snxn + b

with s= s(λ) ∈ S and b= b(λ). Note that no two λ ∈ Tv can have the same s(λ), by Remark 2.2.2.
By the above, we can choose λ(1), λ(2), . . . ∈ Tv so that the corresponding s(i) = s(λ(i)) form an
infinite increasing sequence.

For any x in a domain of affinity for f on which f agrees with λ(i), we must have
λ(i)(x) = f(x) > λ(i−1)(x) because f is convex; moreover, because λ(i) 6= λ(i−1), we can choose
x so that the inequality is strict. Since s(i) − s(i−1) ∈ S by construction, we have

λ(i)(v)− λ(i−1)(v) > λ(i)(x)− λ(i−1)(x)> 0.

However, for all i, we have f(v) > λ(i)(v). Consequently, the λ(i)(v) form a strictly increasing,
bounded above sequence with values in the discrete subset Z + Zv1 + · · ·+ Zvn of R. This is
impossible, yielding the desired contradiction. 2

Theorem 2.4.2. Let C be a bounded rational polyhedral subset of Rn. Then a continuous
convex function f : C→ R is integral polyhedral if and only if

f(x) ∈ Z + Zx1 + · · ·+ Zxn (x ∈ C ∩Qn). (2.4.2.1)
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Proof. If f is integral polyhedral, then (2.4.2.1) is clear. Conversely, assume (2.4.2.1); by
Theorem 2.3.2, f is internally integral polyhedral.

Let T be the set of integral affine functionals λ which agree with f on some domain of
affinity. For v a vertex of C, let Tv be the set of λ ∈ T which achieve their maximum on C at v.
By Lemma 2.4.1, each Tv is finite; since C has only finitely many vertices, and T is the union of
the Tv, T must be finite. By Lemma 2.2.6, f is integral polyhedral, as desired. 2

3. Differential equations and Newton polygons

In this section, we review the relationship between differential equations over complete valued
fields and Newton polygons. The analysis here draws from Young [You92], Christol and
Dwork [CD94], and particularly Robba [Rob80].

Hypothesis 3.0.1. Until § 3.4, let F denote a valued (nontrivial) differential field of
characteristic zero. That is, F is a field equipped with a nonzero derivation ∂ : F → F , and with
a nonarchimedean absolute value | · |; we write v(·) =−log | · | for the corresponding valuation.
We will later require that F be complete (starting in § 3.2).

3.1 Valued differential fields and twisted polynomials

Definition 3.1.1. For T a bounded linear operator on a normed vector space V , the operator
norm of T , denoted |T |V , is the infimum of those c ∈ R>0 for which |T (x)| 6 c|x| for all x ∈ V .
For m, n ∈ Z>0, we have the evident inequality

|Tm+n|V 6 |Tm|V |Tn|V .

By taking logarithms, we arrive at the situation of Fekete’s lemma: if {an}∞n=1 is a sequence
of reals with am+n 6 am + an for all m, n, then the sequence {an/n}∞n=1 either converges to its
infimum or diverges to −∞ [PS98, Part 1, Problem 98]. We may thus define the spectral norm
of T as

|T |V,sp = lim
n→∞

|Tn|1/nV = inf
n
{|Tn|1/nV };

it depends only on the equivalence class of the norm on V . In particular, we will apply
this notation with T = ∂ acting on F (as a vector space over the subfield killed by ∂); put
r0 =−log |∂|F .

Definition 3.1.2. Let F{T} denote the twisted polynomial ring over F in the sense of
Ore [Ore33], so that, for x ∈ F , Tx= xT + ∂(x). By the Leibniz rule, for x ∈ F ,

Tnx=
n∑
i=0

(
n

i

)
∂n−i(x)T i.

The twisted polynomial ring admits division with remainder on both sides, so the Euclidean
algorithm applies to show that left ideals and right ideals are all principal (again, see [Ore33]).

Remark 3.1.3. Note that the opposite ring of F{T} is also a twisted polynomial ring, for the
difference field F ′ with the same underlying field as F , but with derivation −∂. The passage to
the opposite ring corresponds, in the classical language of differential equations, to replacing a
differential operator with its adjoint.
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Definition 3.1.4. For P =
∑
cnT

n ∈ F{T}, define the Newton polygon of P as the lower
convex hull of the set

{(−n, v(cn)) : n ∈ Z>0, cn 6= 0}.
Define the multiplicity of a real number r (as a slope of P ) as the width of the segment of the
Newton polygon of slope r, or 0 if there is no such segment. For r ∈ R, define

vr(P ) = min
n
{rn+ v(cn)};

this is the y-intercept of the supporting line of the Newton polygon of slope r. Note that, for P
fixed, vr(P ) is a continuous function of r.

As originally observed by Robba [Rob80, § 1], this Newton polygon behaves like its
counterpart for untwisted polynomials, but only for slopes which are not too large.

Lemma 3.1.5. For P, Q ∈ F{T} and r 6 r0, we have vr(PQ) = vr(P ) + vr(Q).

Proof. Write P =
∑

i aiT
i and Q=

∑
j bjT

j ; then

PQ=
∑
k

( ∑
i+j=k

∑
h>0

(
i+ h

h

)
ai+h∂

h(bj)
)
T k,

and hence

vr(PQ) > min
h,i,j
{v(ai+h) + v(bj) + r(i+ j)− log |∂h|F }

> min
h,i,j
{v(ai+h) + v(bj) + r(i+ j) + hr0}

> min
h,i,j
{v(ai+h) + v(bj) + r(i+ h+ j)}. (3.1.5.1)

This immediately yields vr(PQ) > vr(P ) + vr(Q). To establish equality for r < r0, let i0 and j0 be
the smallest values of i and j which minimize ri+ v(ai) and rj + v(bj), respectively; then (3.1.5.1)
achieves its minimum for h= 0, i= i0, j = j0 but not for any other h, i, j with i+ j = i0 + j0.
Hence vr(PQ) = vr(P ) + vr(Q); equality for r = r0 follows by continuity (compare with [Rob80,
Proposition 1.6(2)]). 2

Corollary 3.1.6. For P, Q ∈ F{T} and r < r0, the multiplicity of r as a slope of PQ is the
sum of its multiplicities as a slope of P and of Q.

The moral here is that, when one is only looking at phenomena in slopes less than r0, one
does not see the difference between twisted and untwisted polynomials. For instance, here is
an explicit instance of this conclusion modeled on [CD94, Lemme 1.4] (compare also [Rob80,
Proposition 1.6(1)]).

Lemma 3.1.7. For r 6 r0, let Q= Ud +
∑d−1

i=0 aiU
i ∈ F [U ] be a polynomial with all slopes

at least r. (Here F [U ] denotes the untwisted polynomial ring.) Put W = F [U ]/F [U ]Q as an
F -vector space with norm |

∑d−1
i=0 ciU

i|= max{|ci|e−ri}. Let U act on W by left multiplication,
and let ∂ act coordinatewise with respect to the basis 1, U, . . . , Ud−1. Then

|(U + ∂)n|W 6 e−rn for all n ∈ Z>0;

moreover, equality holds in the case when r < r0 and Q has all slopes equal to r.

Proof. Rewrite the slope hypothesis as |ai|F 6 e−r(d−i) for i= 0, . . . , d− 1; then clearly |Un|W
6 |U |nW = e−rn, so |(U + ∂)n − Un|W 6 e−r(n−1)|∂|F . This yields all of the claims. 2
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3.2 Splitting over a complete field

For F complete, we obtain Robba’s analogue for differential operators [Rob80, Théorème 2.4] of
Hensel’s lemma for an untwisted polynomial over a complete nonarchimedean field.

Hypothesis 3.2.1. Throughout this subsection and the next, assume that F is complete for its
norm.

Proposition 3.2.2. Fix r < r0 and m ∈ Z>0. Let R ∈ F{T} be a twisted polynomial such that
vr(R− Tm)> vr(Tm). Then R can be factored uniquely as PQ, where P ∈ F{T} has degree
deg(R)−m and has all slopes less than r, Q ∈ F{T} is monic of degree m and has all slopes
greater than r, vr(P − 1)> 0, and vr(Q− Tm)> vr(Tm).

Proof. We first check existence. Define sequences {Pl}, {Ql} as follows. Define P0 = 1 and
Q0 = Tm. Given Pl and Ql, write

R− PlQl =
∑
i

aiT
i,

then put

Xl =
∑
i>m

aiT
i−m, Yl =

∑
i<m

aiT
i

and set Pl+1 = Pl +Xl, Ql+1 =Ql + Yl. Put cl = vr(R− PlQl)− rm, so that c0 > 0. Suppose
that vr(Pl − 1) > c0, vr(Ql − Tm) > c0 + rm, and cl > c0. Then visibly vr(Pl+1 − 1) > c0 and
vr(Ql+1 − Tm) > c0 + rm; by Lemma 3.1.5,

cl+1 = vr(R− (Pl +Xl)(Ql + Yl))− rm
= vr(Xl(Tm −Ql) + (1− Pl)Yl −XlYl)− rm
> min{cl + (c0 + rm), c0 + (cl + rm), cl + (cl + rm)} − rm
> cl + c0.

By induction on l, we deduce that cl > (l + 1)c0. Moreover, each Pl has degree at most
deg(R)−m, and each Ql − Tm has degree at most m− 1. Consequently, the sequences {Pl}
and {Ql} converge under vr to polynomials P and Q, which have the desired properties.

We next check uniqueness. Suppose that R= P1Q1 is a second such factorization; put
c= min{vr(P − P1), vr(Q−Q1)− vr(Tm)}. Put

X =R− P1Q= (P − P1)Q= P1(Q1 −Q),

and suppose that X 6= 0; then vr(X) = c+ rm by Lemma 3.1.5. Write X =
∑
bkT

k, and choose
k such that vr(X) = vr(bkT k). The equality

X = (P − P1)Tm + (P − P1)(Q− Tm)

shows that we cannot have k <m, while the equality

X =Q1 −Q+ (P1 − 1)(Q1 −Q)

shows that we cannot have k >m. This contradiction forces X = 0, proving P = P1, Q=Q1 as
desired. 2
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Remark 3.2.3. Note that the proof of Proposition 3.2.2 does not involve any divisions.
Consequently, if the coefficients of P lie in a subring S of F which is complete under the norm,
then the coefficients of Q and R also lie in S.

We obtain a corollary akin to a factorization result of Dwork and Robba
[DR77, Theorem 6.2.3].

Corollary 3.2.4. Any monic twisted polynomial P ∈ F{T} admits a unique factorization

P = Pr1 · · · PrmP+

for some r1 < · · ·< rm < r0, where each Pri is monic with all slopes equal to ri, and P+ is monic
with all slopes at least r0.

Remark 3.2.5. Note that, by Remark 3.1.3, Corollary 3.2.4 can also be stated with the factors in
the reverse order; the degrees of the individual factors will not change, but the factors themselves
may differ.

3.3 Differential modules
Remember that we are still assuming that F is complete (Hypothesis 3.2.1).

Definition 3.3.1. A differential module over F is a finite-dimensional F -vector space V
equipped with an action of ∂, or equivalently, a left F{T}-module which is finite over F . Given
a basis B of V , we may equip V with the supremum norm with respect to B, and thus define
operator and spectral norms |∂|V,B and |∂|V,B,sp. Changing B gives an equivalent norm on V , so
the spectral norm |∂|V,B,sp does not depend on B; we thus write it as |∂|V,sp.

Remark 3.3.2. We will also have occasion to speak about differential modules over fields
equipped with multiple derivations, in which case the notation for the operator/spectral norm
will indicate which derivation is being measured. See § 3.4.

Remark 3.3.3. Instead of the spectral norm |∂|V,sp, we will invariably consider the truncated
spectral norm max{|∂|F,sp, |∂|V,sp}. (It turns out that these coincide [Ked, Lemma 6.2.4], but we
will not use that fact here.) The truncated spectral norm can be computed in terms of a basis
of V as follows: if Dn denotes the matrix via which ∂n acts on this basis, then

max{|∂|F,sp, |∂|V,sp}= max
{
|∂|F,sp, lim sup

n→∞
|Dn|1/n

}
, (3.3.3.1)

where the norm applied to Dn is the supremum over entries [CD94, Proposition 1.3].

Definition 3.3.4. Let V be a differential module over F . A cyclic vector for V is an
element v ∈ V not contained in any proper differential submodule; it is equivalent to ask that
v, ∂(v), . . . , ∂n−1(v) form a basis of V for n= dimF (V ). A cyclic vector defines an isomorphism
V ∼= F{T}/F{T}P for some P ∈ F{T}.

Lemma 3.3.5. Every differential module over F contains a cyclic vector.

Proof. See, e.g., [DGS94, Theorem III.4.2]. 2

Lemma 3.3.6. Let P ∈ F{T} be a monic twisted polynomial and let V = F{T}/F{T}P be
the corresponding differential module. Then every short exact sequence 0→ V1→ V → V2→ 0
of differential modules arises uniquely from a factorization P = P1P2 of P into monic twisted
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polynomials, in which V1
∼= F{T}/F{T}P1 and V2

∼= F{T}/F{T}P2 and the map V → V2 is
induced by the natural projection F{T}/F{T}P → F{T}/F{T}P2.

Proof. The kernel of F{T}→ V2 is a left ideal of F{T}, so it is generated by a unique monic
P2, giving the isomorphism V2

∼= F{T}/F{T}P2 and the factorization P = P1P2. We also have
V1
∼= F{T}P2/F{T}P , and the latter is isomorphic to F{T}/F{T}P1 via right division by P2. 2

The following is attributed to ‘Dwork–Katz–Turritin’ (sic) in [CD94, Théorème 1.5].

Theorem 3.3.7. Let P ∈ F{T} be a nonzero twisted polynomial with least slope r, and put
V = F{T}/F{T}P . Then

max{|∂|F , |∂|V,sp}= max{|∂|F , e−r}.

Proof. If P has a single slope r and that slope satisfies r < r0, or if P has all slopes at least
r0, then we obtain the claim by using the basis 1, T, . . . , T deg(P )−1 and invoking Lemma 3.1.7.
Otherwise, we may apply Corollary 3.2.4 to reduce to such cases. 2

Remark 3.3.8. The proof of [CD94, Théorème 1.5] contains a minor error in its implication
1 =⇒ 2: in its notation, one passes from K to an algebraic extension K(z) without worrying
about whether ‖D‖ increases as a result. (In our notation, this amounts to passing from F to
an extension without checking whether |∂|F increases.) The proof of Theorem 3.3.7 shows that
the final result is nonetheless correct, and indeed the proof is only slightly changed.

Lemma 3.3.9. Let P ∈ F{T} be a nonzero twisted polynomial with all slopes equal to r < r0

(respectively all slopes at least r0). Then every Jordan–Hölder factor W of V = F{T}/F{T}P
satisfies |∂|W,sp = e−r (respectively |∂|W,sp 6 |∂|F ).

Proof. We induct on dimF (V ). If V is irreducible, then Theorem 3.3.7 implies the claim.
Otherwise, choose a short exact sequence 0→ V1→ V → V2→ 0; by Lemma 3.3.6, we have a
factorization P = P1P2 such that Vi ∼= F{T}/F{T}Pi for i= 1, 2. By Corollary 3.1.6, P1 and P2

also have all slopes equal to r (respectively all slopes at least r0), so we may apply the induction
hypothesis to V1, V2 to conclude. 2

Theorem 3.3.10. Let V be a differential module over F . Then there is a unique decomposition

V = V+ ⊕
⊕
r<r0

Vr

of differential modules, such that each Jordan–Hölder factor W+ of V+ satisfies |∂|W+,sp 6 |∂|F ,
and each Jordan–Hölder factor Wr of Vr satisfies |∂|Wr,sp = e−r.

Proof. The decomposition is clearly unique if it exists. To produce it, we induct on dimF (V ).
Choose a cyclic vector, let V ∼= F{T}/F{T}P be the resulting isomorphism, and let r1 be the
least slope of P . If r1 > r0, we may take V = V+ and be done, so assume that r1 < r0. If P has all
slopes equal to r1, then Lemma 3.3.9 implies that we may take V = Vr1 and be done, so assume
the contrary.

Apply Corollary 3.2.4 to factor P = Pr1Q with Pr1 having all slopes equal to r1, and Q
having all slopes greater than r1. By Lemma 3.3.6, this factorization gives rise to an exact
sequence 0→ V1→ V → V2→ 0 in which (by Lemma 3.3.9 and the induction hypothesis) each
Jordan–Hölder factor of V1 has spectral norm of ∂ equal to e−r1 , and each Jordan–Hölder factor
of V2 has spectral norm of ∂ strictly less than e−r1 .
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Now apply Corollary 3.2.4 to factor P again, but this time in the opposite ring of F{T} as
per Remark 3.2.5. That is, write P =Q′P ′r1 with P ′r1 having all slopes equal to r1 and Q′ having
all slopes greater than r1. Then Lemma 3.3.6 and Lemma 3.3.9 give an exact sequence 0→ V ′1 →
V → V ′2 → 0 in which each Jordan–Hölder factor of V ′2 has spectral norm e−r1 , and each Jordan–
Hölder factor of V ′1 has spectral norm strictly less than e−r1 . In particular, dim(V1) = dim(V ′2),
and V1 ∩ V ′1 = {0}; this forces V ∼= V1 ⊕ V ′1 . Splitting off Vr1 = V1 and repeating, we obtain the
desired decomposition. 2

3.4 Differential fields of higher order
Hypothesis 3.4.1. We now modify Hypothesis 3.0.1 to say that F is a complete valued
differential field of order n of characteristic zero. That is, in addition to being complete for
a norm, F is equipped with not one but n commuting nonzero derivations ∂1, . . . , ∂n.

When comparing norms for different derivations acting on a differential module, it is useful
to renormalize to remove the spectral norms of the derivations themselves.

Definition 3.4.2. A differential module over F is now a finite-dimensional K-vector space V
equipped with actions of ∂1, . . . , ∂n. Define the scale of V as

max
{

max
{

1,
|∂i|V,sp
|∂i|F,sp

}
: i= 1, . . . , n

}
.

For each i at which the outer maximum is achieved, we say that ∂i is dominant for V .

Theorem 3.4.3. Suppose that the |∂i|F /|∂i|F,sp for i= 1, . . . , n are all equal to a common value
s0. Let V be a differential module over F . Then there is a unique decomposition

V = V+ ⊕
⊕
s>s0

Vs

such that each Jordan-Hölder factor of Vs has scale s, and each Jordan–Hölder factor of V+ has
scale at most s0.

Proof. Apply Theorem 3.3.10 for each ∂i; the uniqueness assertion in the proposition means
that the decomposition with respect to ∂i is respected by the other ∂j . By taking the common
refinement of these decompositions, then appropriately recombining terms, we obtain the
desired result. 2

Proposition 3.4.4. Suppose that F is discretely valued, and the |∂i|F /|∂i|F,sp for i= 1, . . . , n
are all equal to a common value s0. Let V be a differential module over F , and consider the
decomposition in Theorem 3.4.3. Then, for s > s0, we have sdim(Vs) ∈ sZ0 |F ∗|.

Proof. Apply Theorem 3.3.10 to V for each ∂i. From the result, we obtain a decomposition
Vs =

⊕
Vs,i in which, for each Jordan–Hölder factor Wi of Vs,i, we have that ∂j is dominant for

Wi when j = i but not when j = 1, . . . , i− 1.
Choose a cyclic vector for Vs,i with respect to ∂i; let P (T ) = T d +

∑d−1
i=0 aiT

i be the resulting
twisted polynomial. By Corollary 3.2.4, the Newton polygon of P must have all slopes equal to
−log(s|∂i|F,sp); it follows that (s|∂i|F,sp)d = |a0|.

Note that |∂i|F ∈ |F ∗| because F is discretely valued, so |∂i|F,sp = |∂i|F /s0 ∈ sZ0 |F ∗|, and so
sdim(Vs,i) ∈ sZ0 |F ∗|. Since

∑
i dim(Vs,i) = dim(Vs), sdim(Vs) ∈ sZ0 |F ∗|, as desired. 2
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4. Generic radii of convergence

In this section, we revisit the usual notion of generic radii of convergence of differential equations
from the work of Dwork, Robba and others, but this time working in several dimensions.

4.1 Generalized polyannuli

It will be convenient to consider subsets of affine spaces more general than the polyannuli
considered in [Ked07c, Definition 3.1.5].

Notation 4.1.1. For X = (X1, . . . , Xn) an n-tuple:

– for A an n× n matrix, write XA for the n-tuple whose jth entry is
∏n
i=1 x

Aij
i ;

– for B an n-tuple, put XB =XA for A the diagonal matrix with Aii =Bi;

– for c a number, put Xc =XA for A the scalar matrix cIn.

Definition 4.1.2. By a log-(rational polyhedral) subset, or log-RP subset, of (0,+∞)n, we will
mean a subset S whose image under the logarithm map to Rn is a rational polyhedral set in the
sense of Definition 2.2.3. We say that S is ind-log-RP if it is the union of an increasing sequence
of log-RP subsets.

Notation 4.1.3. Let S be an ind-log-RP subset of (0,+∞)n. Write AK(S) for the rigid analytic
subspace of An

K defined by the conditions

(|t1|, . . . , |tn|) ∈ S;

if S is log-RP and log(S) is bounded, then AK(S) is affinoid. Note that

Γ(AK(S),O) =
{∑
J∈Zn

cJT
J : cJ ∈K, lim

J→∞
|cJ |RJ = 0 (R ∈ S)

}
,

where T = (t1, . . . , tn). (The limit condition should be interpreted as follows: for each R ∈ S and
each ε > 0, there are only finitely many J ∈ Zn with |cJ |RJ > ε.) For S = {R} a singleton set, we
write AK(R) for AK(S).

The following toric coordinate changes will be useful.

Definition 4.1.4. For A an n× n matrix, let fA : Gn
m→Gn

m be the map T 7→ TA, or the
induced map AK(R)→AK(RA).

Lemma 4.1.5. For any complete extension K ′ of K, any c1, . . . , cn ∈K ′ with |ci|= ri, and any
λ ∈ (0, 1], define the open polydisc

D(C, λR) = {T ∈AK(R) : |ti − ci|< λri (i= 1, . . . , n)}.

Then fA carries D(C, λR) to D(CA, λRA).

Proof. Rewrite the defining condition of D(C, λR) as |1− ti/ci|< λ. Then note that this implies
|1− (ti/ci)n|< λ for any n ∈ Z, by examination of the binomial expansion of (1− (1− ti/ci))n.
To finish, recall that, for λ ∈ (0, 1], |1− a|, |1− b|< λ implies |1− ab|< λ because 1− ab=
(1− a) + (1− b)− (1− a)(1− b). 2

157

https://doi.org/10.1112/S0010437X08003783 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003783


K. S. Kedlaya

Definition 4.1.6. For R= (r1, . . . , rn) ∈ S, the space AK(S) carries a Gauss norm | · |R defined
by ∣∣∣∣∑

J

cJT
J

∣∣∣∣
R

= sup
J
{|cJ |RJ};

it is in fact the supremum norm on AK(R).

The following convexity lemma (analogous to the Hadamard three circles theorem) is a
repackaging of [Ked07c, Lemma 3.1.6], but similar observations occur much earlier in the
literature, e.g., [Ami75, Corollaire 4.2.8] and [CR94, Corollaire 5.4.9].

Lemma 4.1.7. For A, B ∈ S and c ∈ [0, 1], put R=AcB1−c; that is, ri = acib
1−c
i for i= 1, . . . , n.

Then, for any f ∈ Γ(AK(S),O),
|f |R 6 |f |cA|f |1−cB .

Proof. Since each Gauss norm is calculated as a supremum over monomials, it suffices to check
the inequality in the case of a single monomial, in which case it becomes an equality. 2

4.2 Generic radii of convergence
Definition 4.2.1. Let S be a log-RP subset of (0,+∞)n, take R ∈ S, and let E be a ∇-module
(locally free coherent sheaf plus integrable connection) on AK(S). Let F (or FR in case of
ambiguity) be the completion of Frac Γ(AK(S),O) under | · |R, and put

V = Γ(AK(S), E)⊗Γ(AK(S),O) F.

For i= 1, . . . , n, define ∂i = ∂/∂ti as a derivation on F . View F as a differential field of order n,
view V as a differential module over F , and let T (E , R) be the reciprocal of the scale of V ; that
is,

T (E , R) = min
i
{min{1, |∂i|−1

V,sp|∂i|F,sp}}.

Remark 4.2.2. We may interpret T (E , R) as the largest λ ∈ (0, 1] such that, for any complete
extension K ′ of K and any C = (c1, . . . , cn) ∈ (K ′)n with |ci|= ri for i= 1, . . . , n, E admits a
basis of horizontal sections on D(C, λR). In particular, for n= 1, our function T (E , R) is equal
to R−1 times the generic radius of convergence R(E , R) of [CD94]. The letter T is used here to
denote ‘toric normalization’.

Remark 4.2.3. It may be helpful to compare Remark 4.2.2 with [Ked05a, Definition 5.3], but
one must beware of three typos in the latter: the min should be a max, the subscript ρ is missing,
and the reference to [CD94, Proposition 1.2] should be to Proposition 1.3 therein.

Remark 4.2.4. The following are easily verified.

• If 0→E1→E → E2→ 0 is exact, then

T (E , R) = min{T (E1, R), T (E2, R)}.

• We have
T (E1 ⊗ E2, R) 6 min{T (E1, R), T (E2, R)}.

• We have
T (E∨, R) = T (E , R).

The function T also satisfies a toric invariance property.
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Proposition 4.2.5. Let S be a log-RP subset of (0,+∞)n, take R ∈ S, and let E be a∇-module
on AK(S). For A ∈Mn(Z), put SA = {RA :R ∈ S}. Then, for any ∇-module E on AK(SA),

T (f∗AE , R) > T (E , RA),

with equality if A ∈GLn(Z).

Proof. This follows immediately from Lemma 4.1.5. 2

Lemma 4.1.7 yields the following log-concavity property, which generalizes [CD94,
Proposition 2.3].

Proposition 4.2.6. Let S be a log-RP subset of (0,+∞)n. Let E be a ∇-module on AK(S).
For A, B ∈ S and c ∈ [0, 1],

T (E , AcB1−c) > T (E , A)cT (E , B)1−c.

Proof. Since S is log-RP, AK(S) is affinoid; by Kiehl’s theorem, E is generated by finitely many
global sections. Let e1, . . . , em be a maximal linearly independent set of global sections, and let
Di,l be the matrix over Frac Γ(AK(S),O) via which ∂l/∂tli acts on e1, . . . , em. Since e1, . . . , em
are maximal linearly independent, we can choose f ∈ Γ(AK(S),O) so that fΓ(AK(S), E) is
contained in the span of e1, . . . , em. This implies that fDi,l has entries in Γ(AK(S),O) for all
i, l.

Put R=AcB1−c. By Lemma 4.1.7, we have

|f |R|Di,l|R 6 |f |cA|Di,l|cA|f |1−cB |Di,l|1−cB ;

taking lth roots of both sides and taking limits superior yields

max
{
|∂i|FR,sp, lim sup

l→∞
|Di,l|

1/l
R

}
6 max

{
|∂i|FA,sp,

(
lim sup
l→∞

|Di,l|
1/l
A

)c}
·max

{
|∂i|FB ,sp,

(
lim sup
l→∞

|Di,l|
1/l
B

)1−c}
because the factors coming from f all tend to 1. By (3.3.3.1), this yields the desired result. 2

Example 4.2.7. Let E be the ∇-module of rank one defined by ∇v = λπd(ti11 · · · tinn ), where
λ ∈ o∗K , π ∈K satisfies πp−1 =−p (that is, π is a Dwork pi and E is a Dwork isocrystal), and
i1, . . . , in ∈ Z are not all divisible by p. Then, as in [Ked05a, ch. 5], one may check that

T (E , R) = min{1, r−i11 · · · r−inn }.

4.3 The Frobenius antecedent theorem
We now revisit the Frobenius antecedent theorem of Christol and Dwork [CD94, Théorème 5.4]
in a higher-dimensional context, following [Ked05a, Theorem 6.15].

Hypothesis 4.3.1. Let Y be an affinoid space over K, and suppose that t1, . . . , tn ∈ Γ(Y,O)∗

are such that dt1, . . . , dtn freely generate Ω1
Y/K ; let f : Y → An

K be the resulting étale morphism.
Form the Cartesian diagram

Y ′
g //

��

Y

f
��

An
K

// An
K

(4.3.1.1)
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in which the morphism An
K → An

K is given by ti 7→ tpi (i= 1, . . . , n). Let E ′ be a ∇-module on Y ′

such that ∣∣∣∣ ∂∂ti
∣∣∣∣
E ′,sp

< |ti|−1
sup,Y (i= 1, . . . , n), (4.3.1.2)

where the left-hand side is computed using any norm on Γ(Y ′, E ′) compatible with the affinoid
norm on Γ(Y ′,O). (Since any two such norms are equivalent, the spectral norm does not depend
on the choice.)

Definition 4.3.2. Suppose that K contains a primitive pth root of unity ζ. For J =
(j1, . . . , jn) ∈ (Z/pZ)n, let gJ : Y ′→ Y ′ be the map defined by ti 7→ tiζ

ji for i= 1, . . . , n. (More
precisely, we get gJ from the Cartesian square (4.3.1.1) using the original map Y ′→ Y and the
map Y ′→ An

K given by t1ζj1 , . . . , tnζjn .) Then the map hJ : g∗JE ′→E ′ defined by

hJ(v) =
∞∑

i1,...,in=0

(ζj1 − 1)i1 · · · (ζjn − 1)in
ti11 · · · tinn
i1! · · · in!

∂i1

∂ti11
· · · ∂

in

∂tinn
v

converges because of (4.3.1.2).

Proposition 4.3.3. Suppose that K contains a primitive pth root of unity ζ. Under
Hypothesis 4.3.1, there is a unique ∇-module E on Y such that g∗E ∼= E ′ and the action of
the hJ on E ′ is induced by the trivial action on E .

Proof. Put M ′ = Γ(Y ′, E ′). The maps hJ satisfy hJ(tiv) = ζjitihJ(v); hence for J =
(j1, . . . , jn) ∈ {0, . . . , p− 1}n, if we define

fJ(v) = t−j11 · · · t−jnn

∑
J ′∈(Z/pZ)n

ζ−j1j
′
1−···−jnj′nhJ ′(v),

then fJ(v) is fixed by the hJ ′ . Let M be the Γ(Y ′, g−1(O))-span of the fJ(v); then M is a
coherent Γ(Y,O)-module, and (by an appropriate form of Hilbert’s theorem 90) the natural map
M ⊗ Γ(Y ′,O)→M ′ is a (Z/pZ)n-equivariant isomorphism. We give M a ∇-module structure by
declaring the action of ∂/∂ti on M to be p−1t1−pi times the action of ∂/∂ti on M ′. This gives rise
to E such that E ′ ∼= g∗E , which evidently is unique for the property of being fixed by the hJ . 2

Definition 4.3.4. Under Hypothesis 4.3.1, we call E ′ the Frobenius antecedent of E . Note that
the uniqueness implies that it makes sense to define a Frobenius antecedent for a ∇-module
on a rigid space Y even if (4.3.1.2) is only satisfied after replacing Y with each element of an
admissible open cover, or if K does not contain a primitive pth root of unity.

4.4 Frobenius antecedents and generic radii
Notation 4.4.1. Throughout this subsection, write S1/p = {R1/p :R ∈ S} for S ⊆ (0,+∞)n, and
let fp denote the map fpIn :AK(S1/p)→AK(S) for any S.

Lemma 4.4.2. Let S be a log-RP subset of (0,+∞)n, suppose that (1, . . . , 1, ρ) ∈ S, and let E
be a ∇-module on AK(S). Then

T (f∗pE , (1, . . . , 1, ρ1/p)) > T (E , (1, . . . , 1, ρ))1/p.

This inequality can be shown to be an equality when T (E , (1, . . . , 1, ρ))> |p|p/(p−1), but we
will not need that more precise result here.
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Proof. It suffices to observe that, for R= (1, . . . , 1, ρ), fp carries D(C1/p, λ1/pR1/p) into
D(C, λR). The latter follows from [Ked05a, Lemma 5.12], but note a misprint therein: in the
last line of the statement, the quantities rρ1/p and rpρ should be r1/pρ1/p and rρ, respectively. 2

Theorem 4.4.3. Put S = [1, 1]n−1 × (ε, 1) for some ε ∈ (0, 1). Let F be a ∇-module on
AK(S1/p) such that

T (F , (1, . . . , 1, ρ1/p))> |p|1/(p−1) (ρ ∈ (ε, 1)). (4.4.3.1)
Then F admits a Frobenius antecedent E on AK(S), which satisfies

T (E , (1, . . . , 1, ρ))1/p = T (F , (1, . . . , 1, ρ1/p)) (ρ ∈ (ε, 1)). (4.4.3.2)

Proof. For each point in S, (4.4.3.1) implies that one can find a neighborhood S′ of that point
in S such that, on AK(S′), (4.3.1.2) holds. We then glue to obtain a Frobenius antecedent on all
of AK(S).

To prove (4.4.3.2), note that with R= (1, . . . , 1, ρ), given c1, . . . , cn with |ci|= 1 for
i= 1, . . . , n− 1 and |cn|= ρ1/p ∈ (ε1/p, 1), we can apply the maps fJ (from the proof of
Proposition 4.3.3) to horizontal sections on a polydisc D(C, λ1/pR1/p) to obtain horizontal
sections on D(Cp, λR). Consequently,

T (E , (1, . . . , 1, ρ))1/p > T (F , (1, . . . , 1, ρ1/p)) (ρ ∈ (ε, 1));

the reverse inequality follows from Lemma 4.4.2. 2

Using Frobenius antecedents, one overcomes the scale barrier built into the results of § 3.

Lemma 4.4.4. Take S as in Theorem 4.4.3, and let E be a ∇-module on AK(S). Then, for each
ρ ∈ (ε, 1), there exists an integer j ∈ {1, . . . , rank(E)} and a nonnegative integer m such that

T (E , (1, . . . , 1, ρ))j ∈ ρZ(|K∗||p|(1/(p−1))Z)p
−m
.

Proof. Let m be the least nonnegative integer such that

T (E , (1, . . . , 1, ρ))p
m

6 |p|1/(p−1).

If T (E , (1, . . . , 1, ρ))p
m

= |p|1/(p−1), then we are done, so assume not. By Proposition 4.2.6,
T (E , (1, . . . , 1, ρ)) is a log-concave and hence continuous function of ρ, so we can choose a closed
interval I with endpoints in the divisible closure of |K∗|, such that ρ ∈ I and T (E , (1, . . . , 1, η))>
|p|p1−m/(p−1) for η ∈ I. Apply Theorem 4.4.3 m times to produce a ∇-module E ′ with

T (E , (1, . . . , 1, ρ)) = T (E ′, (1, . . . , 1, ρpm))1/pm .

Then apply Proposition 3.4.4 to E ′, noting that for the derivation ∂/∂ti on Frac Γ(AK(S),O)
under the R-Gauss norm, the operator norm and spectral norm are r−1

i and |p|1/(p−1)r−1
i ,

respectively. This yields the desired result (compare with [CM00, Théorème 4.2-1]). 2

Lemma 4.4.5. Take S as in Theorem 4.4.3, and let E be a ∇-module on AK(S). Suppose that
T (E , (1, . . . , 1, ρ))→ 1 as ρ→ 1−. Then there exist η ∈ [ε, 1), an integer 1 6 j 6 rank(E), and a
nonnegative integer i such that T (E , (1, . . . , 1, ρ)) = ρi/j for ρ ∈ (η, 1).

Proof. There is no harm in assuming that |p|1/(p−1) ∈ |K∗|. For c ∈ (0,−log(ε)), define

f(c) = log T (E , (1, . . . , 1, e−c));

this function is concave by Proposition 4.2.6, takes nonpositive values, and by hypothesis has
limit 0 as c→ 0+. Consequently, f is nonincreasing.
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For i a sufficiently large integer, we can find ci ∈ (0,−log(ε)) such that

f(ci) =
1

pm(p− 1)
log |p|;

the ci then form a decreasing sequence. By Lemma 4.4.4, for each c ∈ (ci+1, ci) ∩Q log |p|, there
exists j ∈ {1, . . . , rank(E)} such that

f(c) ∈ 1
j

(p−m−1 log |K∗|+ Zc).

By Theorem 2.3.2, f is piecewise affine on (ci+1, ci), and each slope is a rational number with
denominator bounded by rank(E). In particular, the slopes of f belong to a discrete subgroup
of R.

As c→ 0+, the slopes of f on successive domains of affinity form a nondecreasing sequence
of values, each of which is nonpositive because f is nonincreasing. Since these values lie in a
discrete subgroup of R, they must stabilize; that is, f is affine in some neighborhood of 0. Since
f → 0 as c→ 0+, f must actually be linear in a neighborhood of 0. This yields the desired result
(compare with [CM00, Théorème 4.2-1]). 2

Definition 4.4.6. We say that an n-tuple R ∈ (0,+∞)n is commensurable if r1, . . . , rn
generate a discrete subgroup of the multiplicative group R>0. In this case, we call the generator
of that subgroup lying in (0, 1) the generator of R.

Theorem 4.4.7. Let R 6= (1, . . . , 1) ∈ (0,+∞)n be commensurable with generator ρ. Let S be
an ind-log-RP subset of (0,+∞)n containing Rc for all c > 0 sufficiently small. Let E be a ∇-
module on AK(S) such that T (E , Rc)→ 1 as c→ 0+. Then there exist integers i, j with i > 0
and 1 6 j 6 rank(E), such that

T (E , Rc) = ρi/j for c > 0 sufficiently small.

Proof. This reduces to Lemma 4.4.5 by applying a suitable toric change of coordinates fA. 2

Remark 4.4.8. As in the one-dimensional case [CM00, Proposition 6.3-11], one can enforce the
condition that T (E , Rc)→ 1 as c→ 0+ by equipping E with a Frobenius structure. Explicitly,
suppose that q is a power of p, and that σ :AK(S1/q)→AK(S) is a map obtained by composing
the toric map fqIn with a q-power Frobenius lift on K. If there is an isomorphism σ∗E ∼= E over
AK(S1/q), then Lemma 4.4.2 implies that, for R ∈ S, T (E , R1/qm) > T (E , R)1/qm , so the values of
T (E , Rc) get arbitrarily close to 1; by Proposition 4.2.6, it follows that T (E , Rc)→ 1 as c→ 0+.

5. Around the local monodromy theorem

In this section, we recall the p-adic local monodromy theorem, in a generalized form suited to
treating monomial valuations. We then mention some related results, on the interplay between
generic radii of convergence in the one-dimensional case and local monodromy.

5.1 The monodromy theorem for fake annuli
To state the monodromy theorem at the level of generality we need, we must recall some
terminology from [Ked07a].

Definition 5.1.1. We say that a linear functional λ : Rn→ R is irrational if Zn ∩ ker(λ) = {0}.
For λ an irrational functional, write λ1, . . . , λn for the images under λ of the standard generators
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of Zn. For I ⊆ (0, 1), let RλI (respectively Rλ,int
I ) be the Fréchet completion of K[t±1 , . . . , t

±
n ]

(respectively oK [t±1 , . . . , t
±
n ]) with respect to the Gauss norms | · |ρλ1 ,...,ρλn for ρ ∈ I. Write Rλ

(respectively Rλ,int) for the union of Rλ[ρ,1) (respectively Rλ,int
[ρ,1) ) over all ρ ∈ (0, 1).

Remark 5.1.2. In our notation for generalized polyannuli, RλI would be the global sections of
the structure sheaf on AK(S) for

S = {(ρλ1 , . . . , ρλn) : ρ ∈ I}

if the latter were an ind-log-RP subset; however, that can only happen when I consists of a
single point, or when n= 1 (the case of a true annulus). This is what is fake about a so-called
fake annulus: it does not fit any conventional definition of an analytic subspace of An

K , even in
Berkovich’s framework for nonarchimedean analytic geometry [Ber90].

Remark 5.1.3. Given an interval I, let I ′ be the interval consisting of those r ∈ (0,+∞) such that
|p|r/w(p) ∈ I. For λ an irrational functional, the ring ΓλI′ of [Ked07a, Definition 2.4.1] (with the
lattice therein taken to be Zn) is isomorphic to RλI via a map sending {zi} to ti for i= 1, . . . , n.
This identification has a number of consequences, some captured in Lemma 5.1.4 below.

Lemma 5.1.4.

(a) For I closed, RλI is a principal ideal domain.

(b) For any ρ ∈ (0, 1), Rλ[ρ,1) is a Bézout domain (an integral domain whose finitely generated

ideals are principal).

(c) Let I1 ⊂ I2 ⊂ · · · be an increasing sequence of closed intervals with union [ρ, 1). Given any
sequence M1, M2, . . . in which Ml is a finite free RλIl-module, together with isomorphisms

ιl :Ml+1 ⊗RλIl
∼=Ml, there exist a finite free Rλ[ρ,1)-module M and isomorphisms ψl :

M ⊗RλIl
∼=Ml such that ιl ◦ ψl+1 = ψl; moreover, M and the ψl are determined up to unique

isomorphism.

Proof. For part (a), see [Ked05b, Proposition 2.6.8]. For part (b), see [Ked05b, Theorem 2.9.6].
For part (c), see [Ked05b, Theorem 2.8.4]. 2

Definition 5.1.5. Define a ∇-module over Rλ as a finite free Rλ-module M equipped with an
integrable connection ∇ :M →M ⊗ Ω1

Rλ/K . We say that a ∇-module over Rλ is constant if it
has a basis of horizontal sections, quasi-constant if it becomes constant after tensoring with a
finite étale extension of Rλ,int, and (quasi)-unipotent if it admits a filtration by ∇-submodules
whose successive quotients are (quasi)-constant.

Definition 5.1.6. Let σ :Rλ→Rλ be a continuous endomorphism lifting a power of the
absolute Frobenius map on the residue field of Rλ,int. Define an F -module (respectively (F,∇)-
module) over Rλ relative to σ as a finite free Rλ-module (respectively ∇-module) M equipped
with an isomorphism F : σ∗M →M of modules (respectively of ∇-modules). As with true annuli,
the category of (F,∇)-modules over Rλ is canonically independent of the choice of σ [Ked07a,
Proposition 3.4.7].

Definition 5.1.7. For s= c/d ∈Q, an F -module M is pure (or isoclinic) of slope s if there
exists a basis of M on which F d acts via the product of a scalar of valuation c with an invertible
matrix overRλ,int. Note that this is the equivalent characterization of [Ked05b, Proposition 6.3.5]
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rather than the original definition; one can in fact develop the slope theory for F -modules using
this definition instead, as in [Ked08b].

In this language, one has the following result from [Ked07a].

Theorem 5.1.8. Let E be an (F,∇)-module over Rλ.

(a) There exists a unique filtration 0⊂ E1 ⊂ · · · ⊂ Em ⊂ E of E by (F,∇)-submodules such that
each Ei/Ei−1 is pure of some slope si as an F -module, and s1 < · · ·< sm.

(b) Each successive quotient of the filtration in (a) is quasi-constant as a ∇-module.
Consequently, E is quasi-unipotent as a ∇-module.

Proof. Statement (a) is [Ked07a, Theorem 5.2.1]; note that this depends on the generalized slope
filtration theorem of [Ked05b], not just on the original form of the theorem of [Ked04]. Statement
(b) is [Ked07a, Theorem 5.2.4]. 2

5.2 Monodromy and convergence (one-dimensional case)

We now revert from fake annuli back to true annuli, to recall some results relating generic radii
of convergence to wild ramification. We defer to [Ked05a] for a more extensive discussion of the
points we only summarize here, including attributions.

Notation 5.2.1. Throughout this subsection, we take n= 1, drop λ, and write t for t1. Also, as
in [Ked07c], when we write an interval I out explicitly, we typically omit the parentheses in the
notation AK(I).

Proposition 5.2.2. The category of quasi-unipotent ∇-modules over R is equivalent to the
category of representations of

Gal(k((t))sep/k((t)))×K
in finite-dimensional Kunr-vector spaces, which are semilinear and permissible (the restriction to
some open subgroup is trivial) on the first factor, and algebraic, K-rational, and unipotent on
the second factor.

Proof. See [Ked05a, Theorem 4.45]. 2

Definition 5.2.3. Let E be a ∇-module on AK(ε, 1) for some ε ∈ (0, 1). By Lemma 5.1.4(c), E
corresponds to a ∇-module over R(ε,1); let ME be the corresponding ∇-module over R.

Proposition 5.2.4. Assume that the field k is perfect. Let E be a ∇-module on AK(ε, 1)
for some ε ∈ (0, 1) such that ME is quasi-unipotent. Then, for ρ ∈ (0, 1) sufficiently close to
1, T (E , ρ) = ρβ for β equal to the highest ramification break of the Galois factor of the
representation associated to ME by Proposition 5.2.2. Moreover, if β > 0 and the lowest
ramification break is also equal to β, then, for ρ ∈ (0, 1) sufficiently close to 1, every nonzero local
horizontal section of E around a generic point of radius ρ has exact radius of convergence ρβ+1.

Proof. See [Ked05a, Theorem 5.23]. 2

Corollary 5.2.5. Let E be a ∇-module on AK(ε, 1) for some ε ∈ (0, 1), such that ME is quasi-
unipotent. Then the following are equivalent.
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(a) There exists a positive integer m coprime to p such that ME ⊗R[t1/m] is unipotent.

(b) T (E , ρ) = 1 for ρ ∈ (ε, 1) sufficiently close to 1.

(c) T (E , ρ)> ρ1/rank(E) for ρ ∈ (ε, 1) sufficiently close to 1.

Proof. There is no harm in enlarging K, so we may assume that k is perfect. Clearly (a) =⇒
(b) =⇒ (c). Given (c), by Proposition 5.2.4, the highest ramification break of the corresponding
Galois representation must be less than 1/rank(E); since the highest break must be a nonnegative
rational number with denominator at most rank(E) (by the Hasse–Arf theorem), it must equal
0, that is, the representation is only tamely ramified. This yields the claim. 2

5.3 Monodromy and convergence (relative case)
In light of Proposition 5.2.4, it is natural to make the following definition.

Definition 5.3.1. With notation as in Theorem 4.4.7, we call the rational number i/j the
(differential) highest ramification break of E in the direction of R, denoted b(E , R).

Proposition 5.3.2. Let A, B ∈ (0,+∞)n be commensurable, take c ∈ [0, 1] ∩Q, put R=
AcB1−c, and suppose that R is also commensurable. Let α, β, ρ be the generators of A, B, R,
respectively. Let S be an ind-log-RP subset of (0,+∞)n which contains Ah, Bh, Rh for h > 0
sufficiently small. Let E be a ∇-module on AK(S) such that T (E , ∗h)→ 1 as h→ 0+ for
∗ ∈ {A, B, R}. Then

ρb(E,R) > αcb(E,A)β(1−c)b(E,B).

Proof. Apply Proposition 4.2.6. 2

Definition 5.3.3. Take S as in Theorem 4.4.3, and let E be a ∇-module on AK(S). Let L be
the completion of K(t1, . . . , tn−1) under the (1, . . . , 1)-Gauss norm. Let E be a ∇-module on
AK(S). Let I1 ⊂ I2 ⊂ · · · be an increasing sequence of closed intervals with union (ε, 1). Put
Sl = [1, 1]n−1 × Il, and put

Ml = Γ(AK(Sl), E)⊗Γ(AK(Sl),O) Γ(AL(Il),O);

then there is a unique locally free coherent sheaf F on AL(ε, 1) admitting identifications
Ml
∼= Γ(AL(Il), F) compatible with restriction. Moreover, F inherits the structure of a ∇-module

relative to L. We call F the generic fibre of E ; note that

T (E , (1, . . . , 1, ρ)) 6 T (F , ρ) (ρ ∈ (ε, 1)). (5.3.3.1)

Proposition 5.3.4. Take S as in Theorem 4.4.3. Let E be a ∇-module on AK(S) such
that T (E , (1, . . . , 1, ρ)) = 1 for all ρ ∈ (ε, 1), and suppose that the generic fibre of E is quasi-
unipotent. Then there exists a positive integer m coprime to p such that f∗mInE is unipotent on
AK([1, 1]n−1)×AK(η, 1), in the sense of [Ked07c, § 3.2].

Proof. By (5.3.3.1) and Corollary 5.2.5, we can choose m so that the generic fibre of f∗mInE is
unipotent. The claim then follows from [Ked07c, Proposition 3.4.3]. 2

Remark 5.3.5. Although we have defined a differential highest ramification break, we have not
defined a full set of differential ramification breaks, among which our highest ramification break
is the largest number occurring. For the present paper, the highest ramification break is enough;
for the construction of the other breaks, see [Ked07b].
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6. Local semistable reduction for monomial valuations

We conclude by proving local semistable reduction for monomial valuations.

6.1 Monomial valuations
Definition 6.1.1. Let F be a finitely generated field over k. A valuation v on F over k is
monomial (in the sense of [Ked08a, Definition 2.5.3]) if

rank(v) = 1, ratrank(v) = trdeg(F/k), κv = k.

Note that v is then minimal in the sense of [Ked08a, Definition 4.3.2]. Moreover, v is an
Abyhankar valuation in the sense of [Ked08a, Definition 2.5.3], which forces the value group
of v to be a finite free Z-module.

Proposition 6.1.2. Let F be a finitely generated field over k, let v be a monomial valuation
on F with residue field k, and let x1, . . . , xn ∈ F be such that v(x1), . . . , v(xn) freely generate
the value group of v. Then the completion F̂ is isomorphic to the completion k((x1, . . . , xn))v of
k(x1, . . . , xn) under v, i.e., the set of formal sums

∑
I aIx

I with aI ∈ k such that, for any c ∈ R,
there are only finitely many indices I with v(xI)< c and aI 6= 0.

Proof. (For properties of valuations used in this argument, see for instance [Rib99, ch. 6].) The
extension F̂ of k((x1, . . . , xn))v is finitely generated and of transcendence degree zero, and hence
finite. Suppose that this extension is nontrivial. Since it is immediate (it changes neither the value
group nor the residue field), by Ostrowski’s theorem [Rib99, Theorem 6.1.2], its degree is a power
of p, as is the degree of its Galois closure. By an elementary argument with p-groups, F̂ contains
an Artin–Schreier subextension which is also immediate.

However, any Artin–Schreier extension of k((x1, . . . , xn))v can be written as zp − z =
P (x1, . . . , xn), where no monomial of P of negative degree is a pth power. Hence one of the
following is true, yielding a contradiction.

• We have v(P ) > 0, in which case the extension is unramified and hence not immediate.

• We have v(P )< 0, and the lowest degree monomial of P has valuation not divisible by p in
the value group; then the extension has strictly larger value group, so is not immediate.

• We have v(P )< 0, and the lowest degree monomial of P has valuation divisible by p, but
its coefficient is not a pth power in k; then the extension has strictly larger residue field, so
is not immediate.

This yields the desired result. 2

Since monomial valuations are Abyhankar valuations, they satisfy local uniformization; the
following is a special case of [KK05, Theorem 1.1].

Proposition 6.1.3. Let F be a finitely generated field over a field k, let v be a monomial
valuation on F , and let Z be a finite subset of the valuation ring ov. Then there exists an
irreducible k-scheme of finite type X with k(X) = F , on which v is centered at a smooth closed
point x, and a system of parameters a1, . . . , an of X at x such that each z ∈ Z can be written
as a unit in OX,x times a monomial in the ai.

Definition 6.1.4. Let X be a smooth irreducible k-variety, and let v be a monomial valuation
on k(X) centered at a point x ∈X. We say that a system of parameters a1, . . . , an for X at x
is descriptive for v if v(a1), . . . , v(an) generate v(k(X)∗).
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Proposition 6.1.5. Let (X, D) be a smooth pair over an algebraically closed field k with X
irreducible, and let v be a monomial valuation on k(X) over k centered on X. Then there exist a
smooth pair (X ′, D′), a birational (regular) morphism f :X ′→X, a point x′ ∈X ′, and a system
of parameters a1, . . . , an for X ′ at x′, such that:

– f−1(D)⊆D′;
– v is centered at x′;

– a1, . . . , an is descriptive for v;

– each component of D′ is the zero locus of one of the ai.

Proof. We may as well take X to be affine. Take the set Z to contain:

(a) a set of generators of the coordinate ring k[X] as a k-algebra;
(b) a sequence t1, . . . , tn such that v(t1), . . . , v(tn) freely generate v(k(X)∗) as a Z-module;
(c) some functions which cut out the components of D passing through the center of v on X.

Apply Proposition 6.1.3; if we take X ′ to be a sufficiently small open affine neighborhood of
the center x′ of v on the resulting scheme, and take D′ to be the zero locus of a1, . . . , an, then
(X ′, D′) will form a smooth pair. By (a), there will be a birational regular map f :X ′→X. By
(b), v(a1), . . . , v(an) generate v(k(X)∗) as a Z-module. By (c), we can force f−1(D)⊆D′ by
possibly shrinking X ′. This yields the desired result. 2

Proposition 6.1.6. Let (X, D) be a smooth pair over an algebraically closed field k with X
irreducible, let v be a monomial valuation on k(X) centered at a point x ∈D, let F be a finite
Galois extension of k(X), and let w be an extension of v to F . For (X ′, D′) a toroidal blowup of
(U, U ∩D) for some open neighborhood U of x in X, write f : Y ′→X ′ for the normalization of
X ′ in F . Then it is possible to choose (X ′, D′) such that (Y ′, f−1(D′)) is a smooth pair and w
is centered on Y ′.

Proof. We may assume without loss of generality that x is the intersection of all of the
components of D. Let y′ denote the center of w on Y ′.

Note that the conclusion implies that, in a neighborhood of y′, the pullback of D′ to Y ′ as
a Cartier divisor is a Z-linear combination of the components of f−1(D′). Consequently, if F ′ is
an intermediate field between k(X) and F , we can prove the claim by first passing from k(X)
to F ′ and then from F ′ to F : the point is that, in the second step, the toroidal blowup on the
middle variety in the tower is induced by a toroidal blowup on the bottom variety.

We can write F/k(X) as a tower F/T/U/k(X), where U/k(X) is unramified at v, T/U
is totally tamely ramified at v, and F/T is a p-power extension for p= char(k) (or the trivial
extension if char(k) = 0). Moreover, by elementary group theory, F/T can be written as a tower of
Z/pZ-extensions. We may thus reduce to the cases where F/k(X) is unramified, tamely ramified,
or an Artin–Schreier extension.

There is nothing to check in the unramified case. In the tamely ramified case, the morphism
Y ′→X ′ is toroidal, so (Y ′, f−1(D′)) is automatically toroidal; it thus suffices to perform toroidal
resolution of singularities [KKMS73] upstairs, as again we can mimic the toroidal blowups
downstairs. In the Artin–Schreier case, we have F = k(X)[z]/(zp − z − h) for some h ∈ k(X) with
v(h)< 0. By Proposition 6.1.3 (or a direct calculation), we can choose the blowup (X ′, D′) so
that, at x′ = f(y′), h−1 becomes a unit in OX′,x′ times a product of powers of local parameters of
components ofD′ at x′. Then (Y ′, f−1(D′)) is toroidal, so again toroidal resolution of singularities
yields the claim. 2
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Remark 6.1.7. Beware that, in Proposition 6.1.6, the morphism Y ′→X ′ is in general not
toroidal when char(k) = p > 0. This is already true for curves: consider the covering

Spec k[x, t]/(t− xp − xp+1)→ Spec k[x].

6.2 The contagion of unipotence
Proposition 6.2.1. Let S be the set of n-tuples (ρx1 , . . . , ρxn−1 , ρ) for ρ in some interval (ε, 1)
and x= (x1, . . . , xn−1) in some rational polyhedral subset U of Rn−1. Let q be a power of p. Let
E be a ∇-module on AK(S) equipped with an isomorphism σ∗E ∼= E on AK(S1/q) for some map
σ :AK(S1/q)→AK(S) obtained by composing the toric map fqIn with a q-power Frobenius lift
on K. Suppose that y ∈ U is such that 1, y1, . . . , yn−1 are linearly independent over Q, and

T (E , (ρy1 , . . . , ρyn−1 , ρ)) = 1 for ρ ∈ (ε, 1) sufficiently close to 1.

Then there exists a neighborhood V of y in U such that, for x ∈ V , T (E , (ρx1 , . . . , ρxn−1 , ρ)) = 1
for ρ ∈ (ε, 1) sufficiently close to 1.

Proof. By Theorem 4.4.7 (applicable because of Remark 4.4.8), for each x ∈ U ∩Qn−1, there
exists f(x) > 0 with

f(x) ∈ 1
rank(E)!

(Z + x1Z + · · ·+ xn−1Z)

such that

T (E , (ρx1 , . . . , ρxn−1 , ρ)) = ρf(x) for ρ ∈ (ε, 1) sufficiently close to 1.

Moreover, f(x) is convex by Proposition 5.3.2. Thus we may apply Theorem 2.3.2 to deduce that
rank(E)!f is internally integral polyhedral.

The boundaries between domains of affinity of f all lie on rational hyperplanes, whereas y
lies on no such hyperplanes because 1, y1, . . . , yn−1 are linearly independent over Q. Hence y lies
in the interior of some domain of affinity. In that domain, there exist a1, . . . , an−1, b ∈ Z such
that

rank(E)!f(x) = a1x1 + · · ·+ an−1xn−1 + b.

Since f(y) = 0 and 1, y1, . . . , yn−1 are linearly independent over Q, we must have a1 = · · ·=
an−1 = b= 0, that is, f(x) = 0 identically in an open neighborhood of y, as desired. 2

6.3 F -isocrystals near a monomial valuation
We are now ready to prove our first instances of local semistable reduction at a minimal valuation
on a variety of dimension greater than one. (The theorem also applies for X of dimension one,
but in that case one can simply apply the usual p-adic local monodromy theorem for the same
effect.)

Theorem 6.3.1. Let X be a smooth irreducible k-scheme, let X be a partial compactification
of X, and let E be an F -isocrystal on X overconvergent along X \X. Then E admits local
semistable reduction at any monomial valuation on k(X) centered on X.

Proof. We may assume that k is algebraically closed thanks to [Ked08a, Proposition 3.2.6]. Let v
be a monomial valuation on k(X). By Proposition 6.1.5, there is a smooth pair (Y, D) containing
an open dense subscheme of X, such that v is centered at an intersection of components of D, and
the valuations of some system of parameters t1, . . . , tn at that point freely generate v(k(X)∗).
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Put yi = v(ti)/v(tn) for i= 1, . . . , n− 1; we can then realize E as a ∇-module on AK(S) for
some set S containing (ρx1 , . . . , ρxn−1 , ρ) for ρ in some interval (ε, 1) and x= (x1, . . . , xn−1)
in some neighborhood of y in Rn−1. Moreover, E admits a Frobenius action for a Frobenius
lift on AK(S) given by composing a q-power Frobenius lift on K with the toric map fqIn .
Take λ= (y1, . . . , yn−1, 1) and form the (F,∇)-module ME over Rλ corresponding to E . If
ME is unipotent, we may apply Proposition 6.2.1 to deduce that, for x in a possibly smaller
neighborhood of y, T (E , (ρx1 , . . . , ρxn−1 , ρ)) = 1 for ρ sufficiently close to 1.

This means (by virtue of Proposition 5.3.4 applied after a toric coordinate change) that by
passing to a suitable toroidal blowup in the sense of [KKMS73], we can obtain another smooth
pair (Y ′, D′) such that v is centered at the intersection of n components of D′, and E becomes
unipotent along each of those components after making a suitable tamely ramified cover. (For
instance, it suffices to perform a blowup corresponding to a barycentric subdivision sufficiently
many times.) If we take m sufficiently divisible and prime to p, then pass to a cover that is tamely
ramified of degree m along each of the n components of D′, we get a smooth pair (Y ′′, D′′) on
which v is centered at an intersection of components of D′′, along each of which E is unipotent.
By [Ked07c, Theorem 6.4.5], E extends to a log-isocrystal with nilpotent residues on (Y ′′, D′′).

If ME is not unipotent, we apply Theorem 5.1.8 (to produce a good finite cover) and
Proposition 6.1.6 (to toroidalize) to deduce that, after passing up to a suitable quasi-resolution,
we get into the situation where ME is indeed unipotent. This yields local semistable reduction
at v, as desired. 2

By virtue of earlier work, we obtain the same conclusion more generally for Abhyankar
valuations.

Corollary 6.3.2. Let X be a smooth irreducible k-scheme, let X be a partial compactification
of X, let E be an F -isocrystal on X overconvergent along X \X, and let v be any Abhyankar
valuation on k(X) centered on X. Then E admits local semistable reduction at v.

Proof. This follows from Theorem 6.3.1 as in the proofs of [Ked08a, Proposition 4.2.4 and
Theorem 4.3.4]. 2
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Appendix A. Some examples

In this appendix, we make good on two promises of examples to illustrate aspects of the semistable
reduction problem.

A.1 Finite covers are not enough

The following example illustrates that one cannot necessarily render unipotent the local
monodromy of an overconvergent F -isocrystal by pulling back along a finite cover instead of
an alteration, as alluded to in the introduction of [Ked07c].
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Example A.1.1. Let F be the pullback along the map t 7→ t−1 of the Bessel isocrystal on Gm, as
defined in [Tsu98, Example 6.2.6]. Then there exists a finite flat morphism f :X → P1

k such that
f∗F extends to a convergent log-isocrystal F1 on (X, f−1({0,∞})), and the Frobenius slopes of
F1 at a closed point x ∈X equal 1/2, 1/2 if f(x) =∞ and 0, 1 otherwise.

Let π1, π2 : P1
k × P1

k→ P1
k denote the canonical projections, and put E = π∗1F ⊗ π∗2F . Based

on the properties of F , we know that there exists an alteration f1 :X1→ P1
k × P1

k such that f∗1E
extends to a convergent log-isocrystal E1 on X1 for some log structure. Moreover, for one such
alteration, the Frobenius slopes of E1 at a closed point x ∈X1 equal

1, 1, 1, 1 f1(x) = (∞,∞)
1/2, 1/2, 3/2, 3/2 f1(x) ∈ ({∞} × A1

k) ∪ (A1
k × {∞})

0, 1, 1, 2 f1(x) ∈ A1
k × A1

k;

(A1)

it follows that the same holds for any such alteration. (Given a second such alteration f2 :X2→
P1
k × P1

k, we can construct a third alteration f3 :X3→ P1
k × P1

k factoring through both f1 and
f2, then transfer the information about the Frobenius slopes from X1 to X3 to X2.)

We now wish to argue that there cannot exist a finite morphism f :X → P2
k such that f∗E

extends to a convergent log-isocrystal on X for some log structure. To see this, we may reduce
to the case where f is Galois (by replacing the cover by its normal closure), in which case the
Frobenius slopes of the extension of f∗E at a point x ∈X depend only on the projection f(x).

Let P be the closure of the graph of a rational map P1
k × P1

k 99K P2
k identifying A1

k × A1
k with

A2
k. Put Y =X ×P2k P , so that base change induces a finite morphism f : Y → P , and let f1

denote the composition Y
f→ P → P1

k × P1
k. Then the above analysis shows that the Frobenius

slopes of the extension of f∗1E at a point y ∈ Y depend only on f1(y).
However, this yields a contradiction as follows. Each of the three components of Z = P \ A2

k is
contracted by one of the projections P → P1

k × P1
k or P → P2

k. Consequently, the Frobenius slopes
must be constant along each component; since Z is connected, the slopes must be constant along
all of f−1

1 (Z). However, this contradicts the explicit formula (A1).

Remark A.1.2. This example is not meant to suggest that one is compelled to blow up in the
locus where the isocrystal is already defined. Indeed, it is entirely possible that one can always
use an alteration which is finite étale over that locus; however, even if one had as strong a form
of resolution of singularities in positive characteristic as desired, it is not clear how to use the
valuation-theoretic approach to prove this refined form of semistable reduction.

A.2 Extra monodromy on exceptional divisors
The following example illustrates that one cannot necessarily render unipotent the local
monodromy of an overconvergent F -isocrystal by doing so only for the divisors in a specified
good compactification of the locus of definition, as alluded to in the introduction of this paper.

Example A.2.1. Consider an affine plane A2
k with coordinates x, y, embed it into a projective

plane P2
k, and let X be the complement of the line y = 0 in P2

k. View P (x, y, z) = yzp
2 − xp−1zp +

z as a polynomial in k(x, y)[z]. One checks that the extension k(x, y)[z]/(P ) of k(x, y) = k(X)
defines a finite étale cover f : Y →X. Let E be the overconvergent F -isocrystal f∗OY on X. We
consider twisted polynomials again as in [Ore33], but for the Frobenius automorphism instead
of for a derivation. Over the y-adic completion k(x)((y)) of k(x, y), we can factor the twisted
polynomial Q= yF 2 − xp−1F + 1 as (yF − c)(F − 1/c) for some c≡ xp−1 (mod y); in particular,
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c has a (p− 1)th root in k(x)((y)). We may thus split P over an Artin–Schreier extension
of k(x)((y)); by Krasner’s lemma, we can realize this as the completion of a degree p
extension of k(x, y).

This means that we can construct a finite flat morphism g : Y1→ P2
k of degree p such that

g∗E has constant local monodromy along each component of the proper transform of the line
y = 0. However, if we blow up at x= y = 0 and complete the function field along the resulting
exceptional divisor, we obtain k(x/y)((y)), over which Q remains irreducible. Consequently, g∗E
cannot have constant local monodromy along the proper transform of the exceptional divisor.

Remark A.2.2. In Example A.2.1, the overconvergent F -isocrystal E is unit-root because it is
a pushforward of the unit-root isocrystal OY . Hence one can recover semistable reduction for E
using the results of Tsuzuki [Tsu02]. The method of proof follows the model that one would use
in the `-adic setting: convert E into a p-adic representation of the étale fundamental group of X,
choose a stable lattice, and pick a finite étale cover of X that trivializes a suitable quotient of the
lattice. Unfortunately, without a unit-root condition, one has no useful functor from isocrystals
to Galois representations; the compactness of the Riemann–Zariski space serves as a replacement
for this construction.
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