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On Flat and Gorenstein Flat Dimensions of
Local Cohomology Modules

Majid Rahro Zargar andHossein Zakeri

Abstract. Let a be an ideal of a Noetherian local ring R and let C be a semidualizing R-module.
For an R-module X, we denote any of the quantities fdR X, GfdR X and GC-fdR X by T(X). Let
M be an R-module such that Hi

a(M) = 0 for all i ≠ n. It is proved that if T(M) < ∞, then
T(Hn

a(M)) ≤ T(M) + n, and the equality holds whenever M is ûnitely generated. With the aid of
these results, among other things, we characterize Cohen–Macaulay modules, dualizing modules,
and Gorenstein rings.

1 Introduction

_roughout this paper, R is a commutative Noetherian ring, a is an ideal of R, and
M is an R-module. From Section 3, we assume that R is local with maximal ideal m.
In this case, R̂ denotes the m-adic completion of R and E(R/m) denotes the injec-
tive hull of the residue ûeld R/m. For each non-negative integer i, we use Hi

a(M) to
denote the i-th local cohomology module of M with respect to a (see [3] for its deû-
nition and basic results). Also, we use idR M, pdR M, and fdR M to denote the usual
injective, projective, and �at dimensions of M, respectively. _e notions of Goren-
stein injective,Gorenstein projective andGorenstein �at, were introduced by Enochs
and Jenda in [10]. Notice that the classes of Gorenstein injective, Gorenstein pro-
jective, and Gorenstein �at modules include the classes of injective, projective, and
�at modules, respectively. Recently, the authors proved, in [17, _eorem 2.5], that
if M is a certain module over a local ring R, then idR M and idR HhtM a

a (M) are si-
multaneously ûnite and the equality idR HhtM a

a (M) = idR M − htM a holds. Also, a
counterpart of this result was established in Gorenstein homological algebra. Indeed,
it was proved that if R has a dualizing complex and GidR M < ∞, then the equality
GidR HhtM a

a (M) = GidR M − htM a holds.
_e principal aim of this paper is to study, in likemanner, the �at (resp. Gorenstein

�at) dimension of certain R-modules in terms of �at (resp. Gorenstein �at) dimension
of their local cohomology modules.

_e organization of this paper is as follows. As our ûrst main result, it is proved,
in _eorem 3.2. that if Hi

a(M) = 0 for all i ≠ n, then fdR Hn
a(M) ≤ fdR M + n and

the equality holds whenever M is ûnitely generated. Next, using the above result, we
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prove, in Proposition 3.5, that a d-dimensional ûnitely generated R-moduleM with û-
nite projective dimension isCohen–Macaulay if and only if fdR Hd

m(M) = pdR M+d.
Notice that this result recovers [10, Corollary 9.5.22]. Propositions 3.7 and 3.9, which
provide characterization of dualizing modules and Gorenstein rings, respectively, re-
cover some results that have been proved in [16,17]. It iswell known that a local ring R
isCohen–Macaulay if it admits a ûnitely generated R-moduleM with pdR M <∞. In
_eorem 3.10, we recover this result, by using the assumption C-pdR M <∞ instead
of the assumption pdR M < ∞, where C is a semidualizing R-module. _eorem 4.3,
which is an another main result, provides a Gorenstein �at version of _eorem 3.2.
Next, with the aid of this result, over a Cohen–Macaulay local ring, a Gorenstein �at
version of Proposition 3.5 is established. Finally, again with the aid of _eorem 4.3,
we obtain a GC-fd version of _eorem 3.2. Indeed, we show that if Hi

a(M) = 0
for all i ≠ n and C is a semidualizing R-module such that GC-fdR M < ∞, then
GC-fdR Hn

a(M) ≤ GC-fdR M +n and the equality holdswhenever M is ûnitely gener-
ated. As a generalization of Proposition 3.5, this result provides a characterization of
Cohen–Macaulaymodules in terms ofGC-fd dimension of certain local cohomology
modules.

2 Preliminaries

In this section we recall some deûnitions and facts that are needed throughout this
paper.

Deûnition 2.1 Following [20, Deûnition 2.1], let X be a class of R-modules and let
M be an R-module. An X-coresolution of M is a complex of R-modules in X of the
form

X = 0Ð→ X0
∂X
0Ð→ X−1

∂X
−1Ð→ ⋅ ⋅ ⋅

∂X
n+1Ð→ Xn

∂X
nÐ→ Xn−1

∂X
n−1Ð→ ⋅ ⋅ ⋅

such that H0(X) ≅ M and Hn(X) = 0 for all n ≤ −1. _e X-injective dimension of M
is the quantity

X-id RM = inf{ sup{−n ≥ 0 ∣ Xn ≠ 0} ∣ X is an X-coresolution of M } .

_emodules of X-injective dimension zero are precisely the non-zero modules of X
and also X-id R0 = −∞.
Dually, an X-resolution and X-projective dimension of M is deûned. We will use

the notation X-pd RM to denote the X-projective dimension of M.
_e following notion of semidualizing modules goes back at least to Vasconcelos

[23], but was rediscovered by others. _e reader is referred to [19] for more details
about semidualizing modules.

Deûnition 2.2 Aûnitely generatedR-moduleC is called semidualizing if thenatural
homomorphism R → HomR(C ,C) is an isomorphism and ExtiR(C ,C) = 0 for all
i ≥ 1. An R-module D is said to be a dualizing R-module if it is semidualizing and has
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ûnite injective dimension. For a semidualizing R-module C, we set

IC(R) = {HomR(C , I) ∣ I is an injective R-module},
PC(R) = {C ⊗R P ∣ P is a projective R-module},
FC(R) = {C ⊗R F ∣ F is a �at R-module}.

_e R-modules in IC(R), PC(R), and FC(R) are called C-injective, C-projective,
and C-�at, respectively. For convenience the quantities IC(R)-idR M and PC(R)-
pdR M, which are deûned as inDeûnition 2.1, are denoted by C-idR M and C-pdR M,
respectively. Notice that if C = R, then the above quantities are the usual injective and
projective dimensions, respectively.

Based on the work of E. E. Enochs and O. M. G. Jenda [10], the following notions
were introduced and studied by H. Holm and P. Jørgensen [14].

Deûnitions 2.3 Let C be a semidualizing R-module. A complete ICI-coresolution
is a complex Y of R-modules such that
(i) Y is exact andHomR(I,Y) is exact for each I ∈ IC(R), and that
(ii) Yi ∈ IC(R) for all i > 0 and Yi is injective for all i ≤ 0.
An R-module M is called GC-injective if there exists a complete ICI-coresolution Y
such that M ≅ ker(∂Y0 ). In this case Y is a complete ICI-coresolution ofM. _e class
of GC-injective R-modules is denoted by GIC(R), and for convenience, the quantity
GIC(R)-idR M, which is deûned as in Deûnition 2.1, is denoted by GC-idR M .
Dually, we can deûne the notions of GC-projective and GC-�at dimensions for an

R-module M that are denoted by GC-fdR M and GC-pdR M, respectively. For more
details, the reader is referred to [14, Deûnition 2.7]. Note that when C = R, these
notions are exactly the concepts of Gorenstein injective, Gorenstein projective, and
Gorenstein �at dimensions that were introduced in [10].

Deûnition 2.4 We say that a ûnitely generated R-module M is relative Cohen–
Macaulay with respect to a if there is precisely one non-vanishing local cohomology
module of M with respect to a. Clearly, this is the case if and only if grade(a,M) =
cd(a,M), where cd(a,M) is the largest integer i for which Hi

a(M) ≠ 0 and
grade(a,M) is the least integer i such thatExtiR(R/a,M) ≠ 0. Observe that thenotion
of relative Cohen–Macaulaymodule is connectedwith the notion of cohomologically
complete intersection ideal which has been studied in [13].

Remark 2.5 Let M be a relative Cohen–Macaulaymodule with respect to a and let
cd(a,M) = n. _en, in view of [3, theorems 6.1.4, 4.2.1, 4.3.2], it is easy to see that
SuppHn

a(M) = Supp(M/aM) and htM a = grade(a,M), where

htM a = inf{dimRp
Mp ∣ p ∈ Supp(M/aM)} .

Next, we recall some elementary results about the trivial extension of a ring by a
module.
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Deûnition and Facts 2.6 Let C be an R-module. _en the direct sum R ⊕ C has
the structure of a commutative ring with respect to themultiplication deûned by

(a, c)(a′ , c′) = (aa′ , ac′ + a′c),
for all (a, c), (a′ , c′) of R⊕C. _is ring is called the trivial extension of R by C and is
denoted by R ⋉ C. _e following properties of R ⋉ C are needed in this paper.
(i) _ere are natural ring homomorphisms R ⇄ R ⋉ C that enable us to consider

R-modules as R ⋉ C-modules, and vice versa.
(ii) For any ideal a of R, a⊕ C is an ideal of R ⋉ C.
(iii) (R ⋉ C ,m ⊕ C) is a Noetherian local ring whenever (R,m) is a Noetherian

local ring and C is a ûnitely generated R-module. Also, in this case, dimR =
dimR ⋉ C.

_e classes deûned next are collectively known as Foxby classes. _e reader is
referred to [19] for some basic results about those classes.

Deûnition 2.7 Let C be a semidualizing R-module. _e Bass class with respect to
C is the class BC(R) of R-modules M such that
(i) ExtiR(C ,M) = 0 = TorRi (C ,HomR(C ,M)) for all i ≥ 1, and that
(ii) the natural evaluation map C ⊗R HomR(C ,M)→ M is an isomorphism.
Dually, the Auslander class with respect to C, denoted by AC(R), consists of all
R-modules M such that
(i) TorRi (C ,M) = 0 = ExtiR(C ,C ⊗R M) for all i ≥ 1, and that
(ii) the natural map M → HomR(C ,C ⊗R M) is an isomorphism.

3 Local Cohomology and Flat Dimension

_e starting point of this section is the following proposition,which plays an essential
role in this paper.

Proposition 3.1 Let n and s be non-negative integers and let N be an R-module.
Suppose that Hi

a(M) = 0 for all i ≠ n. _en the following statements hold true.
(i) If TorRi (N ,M) = 0 for all i > s, then TorRi (N ,Hn

a(M)) = 0 for all i > s + n.
(ii) If N is a-torsion, then TorRi (N ,Hn

a(M)) ≅ TorRi−n(N ,M) for all i.

Proof (i): We may assume Hn
a(M) ≠ 0. Let c be the arithmetic rank of a. _en

there exists a sequence x1 , . . . , xc of elements of R such that
√
a =

√
(x1 , . . . , xc). Let

C(R)● denotes the Čech complex of R with respect to x1 , . . . , xc and let F● be a free
resolution for N . For the ûrst quadrant bicomplexM = {Mp,q = Fp ⊗R M ⊗R Cc−q}
we denote the total complex ofM by Tot(M). Now, with the notation of [18], E1 is
the bigradedmodule whose (p, q) term is H

′′

q(Mp,∗), the q-th homology of the p-th
column. Since Fp is �at, by assumption we have

IE1
p,q = H

′′

q(Mp,∗) =
⎧⎪⎪⎨⎪⎪⎩

0 if q ≠ c − n,
Fp ⊗R Hn

a(M) if q = c − n.
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_erefore,

IE2
p,q = H

′

pH
′′

q(M) =
⎧⎪⎪⎨⎪⎪⎩

0 if q ≠ c − n,
TorRp(N ,Hn

a(M)) if q = c − n,

and hence the spectral sequence collapses. Note that, in view of [18, _eorem 10.16]
we have

IE2
p,q Ô⇒p Hp+q(Tot(M))

for all p, q. _us, for all t = p + q, there is the following ûltration

0 = Φ−1Ht ⊆ Φ0Ht ⊆ ⋅ ⋅ ⋅ ⊆ Φt−1Ht ⊆ ΦtHt = Ht

such that IE∞p,q ≅ ΦpHt/Φp−1Ht . _erefore, one can use the above ûltration to see
that

(3.1) TorRp(N ,Hn
a(M)) ≅ Hp+c−n(Tot(M))

for all p.
A similar argument applies to the second iterated homology, using the fact that

each Cc−q is �at, and yields

IIE2
p′ ,q′ = H

′′

p′H
′

q′ (M) =
⎧⎪⎪⎨⎪⎪⎩

0 if q
′ > s

Hc−p
′

a (TorRq′ (N ,M)) if q
′ ≤ s.

Now we claim that IIE∞p′ ,q′ = 0 for all p
′

, q
′

such that p
′ + q

′ = p + c − n and that
p > s + n. To this end, ûrst notice that, by [18,_eorem 10.16], we have

IIE2
p′ ,q′ Ô⇒p′ Hp′+q′ (Tot(M)) .

If q
′ > s, there is nothing to prove. Let q

′ ≤ s. _en 0 > c − p
′

and hence IIE2
p′ ,q′ = 0,

which in turn yields IIE∞p′ ,q′ = 0. Now, by using a similar ûltration as above, one can

see that Hp+c−n(Tot(M)) = 0 for all p > s + n. _erefore, TorRp(N ,Hn
a(M)) = 0 for

all p > s + n.
(ii): First, notice that TorRi (N ,M) is an a-torsion R-module for all i. _erefore, by

using the same arguments as above, one can deduce that

IIE2
p′ ,q′ = H

′′

p′H
′

q′ (M) =
⎧⎪⎪⎨⎪⎪⎩

0 if p
′ ≠ c

TorRq′ (N ,M) if p
′ = c.

_us, the spectral sequence collapses at the c-th column, and hence we get the iso-
morphism TorRq′ (N ,M) ≅ Hq′+c(Tot(M)) for all q′ . It therefore follows, by the iso-
morphism (3.1), that

TorRp(N ,Hn
a(M)) ≅ TorRp−n(N ,M)

for all p.

_e following theorem, which is one of themain results of this section, provides a
comparison between the �at dimensions of a relative Cohen–Macaulay module and
its non-zero local cohomology module. Here we adopt the convention that the �at
dimension of the zero module is to be taken as −∞.
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_eorem 3.2 Let n be a non-negative integer such thatHi
a(M) = 0 for all i ≠ n. _en

(i) fdR Hn
a(M) ≤ fdR M + n, and

(ii) the equality holds whenever M is ûnitely generated.

Proof (i) follows immediately from Proposition 3.1(i). It is well known (see for ex-
ample [18, _eorem 8.27]) that pdR M = fdR M whenever M is ûnitely generated.
_erefore, one can use [18, Corollary 8.54] in conjunction with Proposition 3.1(ii)
and the inequality (i) to establish the ûnal assertion.

Next, we provide an example to show that ifM is not ûnitely generated, then _e-
orem 3.2(ii) is no longer true.

Example 3.3 Let k be a ûeld and let R = k[[x , y, z]]/(x2 , xy). Set p = (x , y)R.
Notice that Rp is not Gorenstein, p ∉ V(zR), and R is relative Cohen–Macaulay with
respect to zR. Set M = R ⊕ E(R/p). Now, since R is a local ring with dimR = 2, M
is not ûnitely generated. Note that Hi

zR(M) = 0 for all i ≠ 1 and H1
zR(M) ≅ H1

zR(R).
_erefore, one can use_eorem 3.2 to see that fdR H1

zR(M) = 1. On the other hand,
since Rp is not Gorenstein, fdR E(R/p) =∞, and hence fdR M =∞.

_e next corollary shows that the equality in _eorem 3.2(i) may happen even if
M is not ûnitely generated.

Corollary 3.4 Suppose that R is relative Cohen–Macaulay with respect to a and that
htR a = n. _en, for every non-zero faithfully �at R-module M, we have fdR Hn

a(M) =
n.

Proof Let M be a non-zero faithfully �at R-module. Since the functor Hn
a(−) is

right exact, we have Hn
a(M) ≅ Hn

a(R) ⊗R M, and hence by assumption Hn
a(M) ≠ 0

and mM ≠ M. By [18, _eorem 5.40], there is a directed index set I and a family of
ûnitely generated free R-modules {M i}i∈I such that

M = limÐ→
i∈I

M i .

Notice that each M i is relative Cohen–Macaulay with respect to a and that htM i a = n.
_erefore,

H j
a(M) = limÐ→

i∈I
H j

a(M i) = 0

for all j ≠ n, and hence, in view of _eorem 3.2(i), we get fdR Hn
a(M) ≤ n. Now, if

fdR Hn
a(M) < n, then TorRn(R/m,Hn

a(M)) = 0. But, by Proposition 3.1(ii),

TorRn(R/m,Hn
a(M)) ≅ M/mM ≠ 0,

which is a contradiction.

_e next proposition is a generalization of [10, Proposition 9.5.22].
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Proposition 3.5 Let M be a d-dimensional ûnitely generated R-module of ûnite pro-
jective dimension. _en the following statements are equivalent.
(i) M is Cohen–Macaulay.
(ii) fdR Hd

m(M) = fdR M + d.
(iii) pdR Hd

m(M) = pdR M + d.

Proof We ûrst notice that the Artinian R-module Hd
m(M) has a natural R̂-module

structure and that fdR Hd
m(M) = fdR̂ Hd

m(M). Now, assume that fdR Hd
m(M) < ∞.

_en, in view of [15, Proposition 6] and [12,_eorem 3.2.6],we see that fdR Hd
m(M) ≤

pdR Hd
m(M) ≤ dimR. Next, by [4,_eorem 3.1.17], [6,_eorem 4.16], and the Bass’s

theorem, one can deduce that

fdR̂ Hd
m(M) = idR̂ HomR̂(H

d
m(M), ER̂(R̂/mR̂)) = depth R̂ = dimR.

It therefore follows that fdR Hd
m(M) = pdR Hd

m(M) = dimR and that R is Cohen–
Macaulay.

Now, the implications (ii)⇔(iii) follow immediately from the above argument.
(ii)⇒(i): Since fdR Hd

m(M) <∞, one canuse the conclusion of the above argument
in conjunctionwith theAuslander–Buchsbaum_eorem [4,_eorem1.3.3] to see that
M isCohen–Macaulay. Finally the implication (i)⇒(ii) follows from_eorem 3.2.

Let (R,m) be a local ring and let M be a ûnitely generated R-module with û-
nite projective dimension. It follows from _eorem 3.2 that if M is relative Cohen–
Macaulay with respect to an ideal a of R, then fdR Hcd(a,M)

a (M) = pdR M+cd(a,M).
Also, in previous proposition, we deduced that the converse holds whenever a = m.
_erefore, it is natural to ask the following question.

Question 3.6 Let M be a ûnitely generated R-module of ûnite projective dimension
and let a be a non-maximal ideal of R. Are the following statements equivalent?
(i) M is relative Cohen–Macaulay with respect to a.
(ii) fdR Hcd(a,M)

a (M) = pdR M + cd(a,M).

_enext propositionwas proved in [16,Proposition 3.3]under the extra conditions
that the underlying ring is Cohen–Macaulay and admits a dualizing complex.

Proposition 3.7 Let C be a semidualizing R-module. _en the following statements
are equivalent.
(i) C is a dualizing R-module.
(ii) GC-idR Hn

a(R) < ∞ for all ideals a of R such that R is relative Cohen–Macaulay
with respect to a and that htR a = n.

(iii) GC-idR Hn
a(R) <∞ for some ideal a of R such that R is relative Cohen–Macaulay

with respect to a and that htRa = n.

Proof _e implication (i)⇒(ii) follows from [16,_eorem 3.2(ii)], and the implica-
tion (ii)⇒(iii) is clear.

(iii)⇒(i): Suppose that GC-idR Hn
a(R) < ∞, where a is an ideal of R such that

R is relative Cohen–Macaulay with respect to a and that htR a = n. _en, in view
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of _eorem 3.2, fdR Hn
a(R) < ∞. Hence, one can use [15, Proposition 6] to see

that pdR Hn
a(R) < ∞. _erefore, by [20, _eorem 2.3], we have GC-idR Hn

a(R) =
C-idR Hn

a(R). Hence, one can use [16,_eorem 3.2(ii)] to complete the proof.

An immediate consequence of the previous proposition is thenext corollary,which
was proved in [17, Corollary 3.10] under the additional assumptions that R is Cohen–
Macaulay and admits a dualizing complex.

Corollary 3.8 _e following statements are equivalent.
(i) R is a Gorenstein ring.
(ii) GidR Hn

a(R) < ∞ for all ideals a of R such that R is relative Cohen–Macaulay
with respect to a and that htR a = n.

(iii) GidR Hn
a(R) < ∞ for some ideal a of R such that R is relative Cohen–Macaulay

with respect to a and that htR a = n.

It follows from the proof of [16,_eorem 3.2(i)] that if n is a non-negative integer
and M is an R-module (not necessarily ûnitely generated) such that Hi

a(M) = 0 for
all i ≠ n and that C-idR M is ûnite, then C-idR Hn

a(M) is ûnite. _is fact leads us to
the following proposition, which recovers [16,_eorem 3.8].

Proposition 3.9 Let C be a semidualizing R-module. Consider the following state-
ments.
(i) R is Gorenstein.
(ii) C-idR Hn

a(C) < ∞ for all ideals a of R such that R is relative Cohen–Macaulay
with respect to a and that htR a = n.

(iii) C-idR Hn
a(C) <∞ for some ideal a of R such that R is relative Cohen–Macaulay

with respect to a and that htR a = n.
_en the implications (i)⇒(ii)⇒(iii) hold true, while (iii) implies (i) whenever R is
Cohen–Macaulay.

Proof First, notice that R ≅ C whenever R is Gorenstein. Hence, the implication
(i)⇒(ii) follows from [17,_eorem 2.5(i)] and the implication (ii)⇒(iii) is clear.

(iii)⇒(i): Let a be an ideal of R such that R is relative Cohen–Macaulay with
respect to a and htR a = n. Since SuppR(C) = Spec(R), in view of [8, _eorem
2.2], we get cd(a, R) = cd(a,C). On the other hand, by [19, _eorem 2.2.6(c)],
grade(a, R) = grade(a,C). Hence, using Deûnition 2.4 implies that C is relative
Cohen–Macaulay with respect to a. SinceH0

m(E(R/m)) = E(R/m) and for any non-
maximal prime ideal p of R, the R-moduleH0

m(E(R/p)) vanishes, wemay apply [17,
Proposition 2.8] to see that Hi

m(Hn
a(C)) = Hn+i

m (C) for all i ≥ 0. _erefore, by con-
sidering the additional assumption that R is Cohen–Macaulay, one can deduce that

Hi
m(Hn

a(C)) =
⎧⎪⎪⎨⎪⎪⎩

0 if i ≠ dimR/a,
Hd

m(C) if i = dimR/a,

where d = dimR. _us, by the assumption and [16, _eorem 3.2(i)], we see that
C-idR Hd

m(C) is ûnite. Now, one can use [16,_eorem 3.8] to complete the proof.
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It is known that if a local ring admits a non-zeroCohen–Macaulaymodule of ûnite
projective dimension, then it is a Cohen–Macaulay ring. _e following theorem is a
generalization of this result.

_eorem 3.10 Let C be a semidualizing R-module. If there exists a non-zero Cohen–
Macaulay R-moduleM with ûnite C-pdR M, then R is Cohen–Macaulay.

Proof Let M be a non-zero Cohen–Macaulay R-module of dimension n such that
C-pdR M is ûnite. Notice that, in view of [22,_eorem 2.11(c)], we have

C-pdR M = pdR HomR(C ,M).

Also, since C ⊗R R̂ is a semidualizing R̂-module and

HomR̂(Ĉ , M̂) ≅ HomR(C ,M)⊗R R̂,

wemay assume that R is complete. Now, by using [22, Corollary 2.9(a)], we haveM ∈
BC(R). _erefore, TorRi (C ,HomR(C ,M)) = 0 for all i > 0 and C⊗R HomR(C ,M) ≅
M. Hence, one can use [1,_eorem 1.2] to obtain the following equalities:

depthR M = depthR(C ⊗R HomR(C ,M))
= depthR C − depthR + depthR HomR(C ,M)
= depthR HomR(C ,M).

On the other hand, since AssR(HomR(C ,M)) = AssR(M) and M is Cohen–Macau-
lay, we see that dimR M = dimR HomR(C ,M). _erefore, HomR(C ,M) is Cohen–
Macaulay. Hence, one can use_eorem 3.2 to see that the injective dimension of the
ûnitely generated R-module HomR(Hn

m(HomR(C ,M)), ER(R/m)) is ûnite. _ere-
fore, by Bass’s theorem, R is Cohen–Macaulay.

Applying _eorem 3.10 to the semidualizing R-module C = R, we immediately
obtain the following well-known result.

Corollary 3.11 If R admits a non-zero Cohen–Macaulay module of ûnite projective
dimension, then R is Cohen–Macaulay.

4 Local Cohomology and Gorenstein Flat Dimension

_e starting point of this section is the next lemma, which was proved in [17, Lemma
3.7] and [17, Corollary 3.9], under the extra assumption that R is Cohen–Macaulay.

Lemma 4.1 Suppose that M is a non-zero ûnitely generated R-module. _en the
following statements hold true.
(i) Suppose that x ∈ m is both R-regular and M-regular. _en GidR M < ∞ if and

only if GidR/xR(M/xM) <∞.
(ii) Assume that M is Cohen–Macaulay of dimension n. _en GidR M < ∞ if and

only if GidR Hn
m(M) <∞.
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Proof Firstnotice that, by [6,_eorem 3.24],GidR M = GidR̂ M̂. On the other hand,
sinceHi

m(M) is Artinian, in view of [21, Lemma 3.6], we have

GidR Hn
m(M) = GidR̂ Hn

m(M) = GidR̂ Hn
mR̂(M̂).

_us, we can assume that R is complete, and hence it has a dualizing complex D.
(i): Set R = R/xR. We notice that fdR R <∞ and

µ i+depth R(m, R) = µ i+depth R(m, R)

for all i ∈ Z, where µ i(m, R) denotes the i-th Bass number of R with respect to m.
Hence, by using [2, 2.11],we see thatD⊗L

R R is a dualizing complex for R. On the other
hand, by assumption, one can deduce that TorRi (R,M) = 0 for all i > 0. _erefore,
M ≃ M⊗L

RR, in derived categoryD(R). Now,we can use [7,_eorem 5.3] to complete
the proof.

(ii): Let M beCohen–Macaulaywith dimM = n. _en the implication (⇒) follows
from [17,_eorem 3.8(i)]. To prove the converse, we proceed by induction on n. _e
case n = 0 is obvious. Assume that n > 0 and that the result has been proved for
n − 1. Now, by using [17, _eorem 3.12(ii)] in conjunction with the assumption, one
can choose an element x inm that is both R-regular andM-regular. Next, we can use
the induced exact sequence

0Ð→ Hn−1
m (M/xM)Ð→ Hn

m(M)Ð→ Hn
m(M)Ð→ 0

and [6, Proposition 3.9] to see that GidR Hn−1
m (M/xM) is ûnite. Hence, by the in-

ductive hypothesis, GidR M/xM is ûnite. _erefore, in view of [6, _eorem 7.6(b)],
GidR/xR M/xM <∞. It therefore follows from part (i) that GidR M is ûnite. Now the
result follows by induction.

Lemma 4.2 Suppose that M is a Cohen–Macaulay R-module of dimension n such
that GfdR Hn

m(M) is ûnite. _en GfdR M is ûnite.

Proof First notice that, in view of [6,_eorem 4.27], we have

GfdR Hd
m(M) = GfdR̂ Hd

mR̂(M̂) and GfdR M = GfdR̂ M̂ .

_erefore, without loss of generality, we can assume that R is complete, and hence it
is a homomorphic image of a Gorenstein local ring (S , n) of dimension d. Now, in
view of the local duality theorem [3,_eorem 11.2.6], we have

(4.1) Hn
m(M) ≅ HomR(Extd−n

S (M , S), E(R/m)) .

Next, we notice that M is a Cohen–Macaulay S-module of dimension n, and hence,
by [4, _eorem 3.3.10(c)(i)], the S-module Extd−n

S (M , S) is Cohen–Macaulay of di-
mension n. So that it is a Cohen–Macaulay R-module. _erefore, again, we can use
the local duality theorem and [4, _eorem 3.3.10(c)(iii)] to obtain the following iso-
morphisms

Hn
m(Extd−n

S (M , S)) ≅ HomR(Extd−n
S (Extd−n

S (M , S), S), E(R/m))
≅ HomR(M , E(R/m)) .

(4.2)
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Now, by our assumption, (4.1) and [6,_eorem 4.25], we have GidR Extd−n
S (M , S) <

∞. _erefore, one can use (4.2), [6, _eorem 4.16] and Lemma 4.1(ii) to see that
GfdR M is ûnite.

_e following theorem,which is themain result of this section, provides a compar-
ison between the Gorenstein �at dimensions of a relative Cohen–Macaulay module
and its non-zero local cohomology module.

_eorem 4.3 Let n be a non-negative integer and let M be an R-module such that
Hi

a(M) = 0 for all i ≠ n. _en the following statements hold true.
(i) If GfdR M <∞, then GfdR Hn

a(M) ≤ GfdR M + n.
(ii) If GfdR Hn

a(M) <∞, then GfdR M <∞ whenever M is Cohen–Macaulay.
Furthermore, in (i) equality holds whenever M is ûnitely generated.

Proof First notice that∑n Hn
a(M) ≃ Ca(R)⊗R M, where Ca(R) denotes the Čech

complex of R with respect to a generator of a. Now assume that s ∶= GfdR M is û-
nite and that X● is a Gorenstein �at resolution for M. _en there exists a quasi-
isomorphism X● ≃→M. Hence, by [7, Corollary 2.16], ∑n Hn

a(M) ≃ Ca(R) ⊗L
R X●.

Since Ca(R) ⊗L
R X● is a bounded complex of Gorenstein �at modules, we see that

GfdR Hn
a(M) is ûnite. Next, by [6, _eorem 4.17], TorRi (E ,M) = 0 for all i > s and

for all injective R-modules E. Hence, by Proposition 3.1(i), TorRi (E ,Hn
a(M)) = 0 for

all i > n + s and for all injective R-modules E. _erefore, GfdR Hn
a(M) ≤ s + n.

(ii). Suppose that M isCohen–Macaulay and that dimM = d. _en, by [17, Propo-
sition 2.8], one can deduce that

Hi
m(Hn

a(M)) =
⎧⎪⎪⎨⎪⎪⎩

0 if i ≠ dimM/aM ,
Hd

m(M) if i = dimM/aM .

_erefore, we can use (i) and Lemma 4.2 to see that GfdR M is ûnite.
For the ûnal assertion, suppose that M is ûnitely generated with GfdR M = s <∞.

_en, by (i),GfdR Hn
a(M) ≤ s+n. IfGfdR Hn

a(M) < s+n, then, in view of [6,_eorem
4.17], we deduce that TorRs+n(E(k),Hn

a(M)) = 0. Hence, by Proposition 3.1(ii), one
can see that TorRs (E(k),M) = 0 which is a contradiction by [5,_eorem 2.4.5(b)] and
[6, Proposition 4.24]. _erefore, GfdR Hn

a(M) = GfdR M + n.

An immediate consequence of the previous theorem is the following corollary.

Corollary 4.4 Let M be a Cohen–Macaulay R-module of dimension d. _en

GfdR Hd
m(M) = GfdR M + d .

_e following proposition is a Gorenstein projective version of Proposition 3.5.

Proposition 4.5 Assume that R is Cohen–Macaulay and that M is a d-dimensional
ûnitely generated R-module of ûnite Gorenstein projective dimension. _en the follow-
ing statements are equivalent.
(i) M is Cohen–Macaulay.
(ii) GfdR Hd

m(M) = GfdR M + d.

https://doi.org/10.4153/CMB-2015-080-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-080-x


414 M. R. Zargar andH. Zakeri

(iii) GpdR Hd
m(M) = GpdR M + d.

Proof _e implication (i)⇒(ii) follows from Corollary 4.4. (ii)⇒(iii) and (i). Since
R has ûnite Krull dimension and GfdR Hd

m(M) is ûnite, we have the ûniteness of
GpdR Hd

m(M) by [11, _eorem 3.4]. Hence, by [9, Corollary 2.4], GpdR Hd
m(M) ≤

dimR. _erefore, in view of [6,_eorem 4.23], we get the following inequalities:

GpdR M + d = GfdR Hd
m(M) ≤ GpdR Hd

m(M) ≤ dimR.

Now, one can use [6, Proposition 2.16 and_eorem 1.25] to see that GfdR Hd
m(M) =

GpdR Hd
m(M) and that depthM = dimM. _us, M is Cohen–Macaulay, and (iii)

holds true.
(iii)⇒(ii): First, we notice that, by [6,_eorem 4.27],

GfdR Hd
m(M) = GfdR̂ Hd

mR̂(M̂)
and, in view of [6, propositions 4.23 and 2.20], the following inequalities hold:

(4.3) GfdR̂ Hd
mR̂(M̂) ≤ GpdR̂ Hd

mR̂(M̂) ≤ GpdR Hd
m(M).

Now, since Hd
m(M) is an Artinian R̂-module, one can use [6, _eorem 4.16] to

see that the ûnitely generated R̂-moduleHomR(Hd
m(M), E(R/m)) is of ûniteGoren-

stein injective dimension. _erefore, by [6, _eorem 3.24] and [6, _eorem 4.16],
GfdR Hd

m(M) = GidR̂ HomR(Hd
m(M), E(R/m)) = dimR. Hence, one can use [9,

Corollary 2.4] and (4.3) to complete the proof.

Next, we single out a certain case of Proposition 4.5. Notice that the proof of the
following corollary is similar to the proof of Proposition 4.5(ii)⇒(i).

Corollary 4.6 Suppose that dimR = d. _en the following statements are equivalent.
(i) R is Cohen–Macaulay.
(ii) GfdR Hd

m(R) = d.

_e following proposition is a generalization of _eorem 4.3 in terms of GC-di-
mensions.

Proposition 4.7 Let n be a non-negative integer, let C be a semidualizing R-module,
and let M be an R-module such that Hi

a(M) = 0 for all i ≠ n. _en the following
statements hold true.
(i) If GC-fdR M <∞, then GC-fdR Hn

a(M) ≤ GC-fdR M + n.
(ii) If GC-fdR Hn

a(M) <∞, then GC-fdR M <∞ whenever M is Cohen–Macaulay.
Furthermore, in (i) the equality holds whenever M is ûnitely generated.

Proof First, we notice that, in view of [3, _eorem 4.2.1], Hi
a(M) ≅ Hi

a⊕C(M) for
all i. On the otherhand, byusing [14,_eorem 2.16],wehaveGC-pdR M = GpdR⋉C M
and GC-fdR Hn

a(M) = GfdR⋉C Hn
a(M) = GfdR⋉C Hn

a⊕C(M). Hence, by replacing R
with R ⋉ C, one can use_eorem 4.3 to complete the proof.

_e following corollary is a consequence of Propositions 4.5 and 4.7.
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Corollary 4.8 Let R be Cohen–Macaulay, C be a semidualizing R-module and let M
be a d-dimensional ûnitely generated R-module of ûniteGC-projective dimension. _en
the following statements are equivalent.
(i) M is Cohen–Macaulay.
(ii) GC-fdR Hd

m(M) = GC-fdR M + d.
(iii) GC-pdR Hd

m(M) = GC-pdR M + d.

Proof We notice that, by using [4, Exercise 1.2.26] and [19,_eorem 2.2.6], one can
deduce that (R ⋉ C ,m ⊕ C) is a Cohen–Macaulay local ring. Also, M is a Cohen–
Macaulay R-module if and only ifM is a Cohen–Macaulay R⋉C-module. _erefore,
the assertion follows from Propositions 4.5 and 4.7.
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