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MULTIPARAMETER ROOT VECTORS
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0. Preliminaries

The concept of "root vectors" is investigated for a class of multiparameter eigenvalue
problems

where Wm(X) = Tm—£S=1 XnVmn operate in Hilbert spaces Hm and ieCk. Previous work
on this "uniformly elliptic" class has demonstrated completeness of the decomposable
tensors xt ® • • • ® xk in a subspace G of finite codimension in H = H1^>-<S)Hk, but
questions remain about extending this to a basis of H. In this work, bases of elements
ym, in general nondecomposable but satisfying recursive equations of the type Wm(k)ym

=Z*=i Ku,zmn> a r e constructed for the "root subspaces" corresponding to XeUk.

1. Introduction

Let Tm, Vmn be self-adjoint operators in Hilbert spaces Hm, Tm being bounded below
with compact resolvent, and Vmn being bounded, for l ^ m , n^k. We are interested in a
spectral decomposition of the Hilbert Space tensor product H = / / j ® ••• ® Hk by the
eigenvalue problem (*) of Section 0.

Let us begin with the case k=l, when (•) becomes, with subscripts suppressed,

Despite the self-adjointness assumptions, X need not be real and the eigenvectors x need
not be complete in H. Under a suitable nondegeneracy condition (e.g. if V is 1 — 1), it
can be shown [6] that the span G of the eigenvectors has a finite dimensional
complement F which is in turn spanned by elements xJ satisfying equations of the form

where x~l =0. Evidently this is equivalent to the Jordan chain condition

(r-A)x-'W-1 (1.1)
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20 P. BINDING

where F = V~1Tso xJ~1eN(T — AI)J. The xj are called root vectors and

N(r-U)d (1.2)

d=dimF, is called the root subspace associated with X.
For fc>l, there seems to be no analogue in the literature, although various authors

have addressed the problem. Atkinson [1] raises the question of how to define root
vectors for k>\ and gives one answer as follows, at least in finite dimensions [2,
Chapter 6]. With f denoting induced operators in H (e.g. V\ t = Ft 1 ® I2 <S> • • • ® /*), we
set

A0 = det[FL] (1.3)

which is well defined since the elements of different rows commute. Then AB is defined
as the determinant in (1.3) but with column n replaced by [T\,..., T\Y Under a
suitable nondegeneracy condition (e.g. if Ao is 1 — 1) the operators Vn = AQ i An commute
for n = 1,..., k and thus H admits a decomposition into joint root subspaces of the form

j(A)= n N((rn-Ajy) (1.4)
11 = 1

where v^dimH, cf. (1.2).
This leads to a rather complicated definition of root vectors, since an element of (1.4)

will in general belong to different Jordan chains for each Tn, cf. (1.1), and moreover such
chains are not defined directly in terms of the data in (*). This is particularly important
when dim H = oo, since the construction and commutativity of the Fn are then by no
means obvious. In a more general situation, Isaev [10] has addressed the relation
between elements of (1.4) and equations of the form

in H, but concludes that the topic "faces essential difficulties". Gadzhiev [9] has shown
the relevance of tensors, formed from generalized chains satisfying equations of the form

L= t vmnxL~l (1.6)
i

in Hm, to systems of differential equations with multiple time scales. Our root vectors
will be formed from a generalisation of (1.6) and will satisfy (1.5), for a class of problems
obeying a "definiteness condition" defined below.

The simplest of many definiteness conditions in the literature on (*) is uniform right
definiteness (URD) where Ao»0, i.e. has a positive definite bounded inverse, on H. It is
known that URD holds if (M,AOM) has a positive lower bound for unit decomposable
tensors, giving a condition expressible directly in terms of the data in (*). Also URD
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MULTIPARAMETER ROOT VECTORS 21

implies that each XeUk in (*), that each exponent v in (1.4) may be taken as unity, and
that P)*=i Af(Fn —An7) is spanned by eigentensors, i.e. elements

x® = x1<g>-<g>xk, (1.7)

where xm satisfy (•). References for these facts are [2,3,11].
Another important definiteness condition, with application to various separation of

variables problems, is uniform ellipticity (UE) where, instead of Ao, the cofactors of Ao,
labelled AOmB, » 0 on H. For various equivalent conditions, see [3] where UE is labelled
LD6—again UE may be checked directly in terms of the data in (*). Under a suitable
nondegeneracy condition, e.g. if Ao is 1 — 1, the span G of the eigentensors (1.7) has a
finite dimensional complement F which is in turn spanned by joint root subspaces (1.4).
This is an easy consequence of [7, Lemma 4.2] and will be demonstrated in Section 2.
In the special case when each Tm»0 on Hm, known as uniform left definiteness (ULD),
each exponent v may be taken as unity in (1.4), so the eigentensors (1.7) span H, as for
URD, cf. [4,13]. Actually this holds under the weaker condition of UE and A n »0 for
some n. This will be seen in Section 4, but has already been observed for the case of k
= 2 Sturm-Liouville equations (*) in [8, Theorem 4.3].

This work of Faierman makes important contributions both to the completeness of
eigentensors in G (cf. the discussion in [7, Section 1]) and to the nature of root vectors
required to span F. In the case when A 2 ^ 0 , [8, Theorem 5.5] gives a basis for F in
terms of the data in (*), and we shall discuss this further in Section 4, noting here that
in general k has real components and v = 2 suffices in (1.4), cf. [7, Theorem 5.4]. When
A2 is indefinite, [8, Theorem 9.2] gives a basis of N(T2 — A27) and in Section 3 we shall
give an extension of this to general v, k and A e Uk, for our abstract formulation. While
our methods also have a bearing on A ÎR*, they do not cover all possibilities, and we
hope to discuss the nonreal situation separately. In Section 2 we discuss the non-
defective case (v=l) and we embed (*) in a parametric family which is almost always
non-defective. In Section 3 we use analytic perturbation theory, cf. [5], to discuss the
defective case by a limiting process, and we connect our work with (1.5) and (1.6).
Section 4 is devoted to remarks on determination of the root vectors, on Jordan
structure of the Fn and on the case where one of the An^0. We conclude with a
numerical example.

2. The nondefective case

We shall need certain constructions from [7]. Self adjoint operators Tm and Vmn are
induced in H by Tm and Vmn, and Ao is defined by (1.3), with AOmn as the (m,n) cofactor
of this determinant. We assume (i) UE, i.e. each AOmn»0, and (ii) Ao is 1 — 1. Then each
operator

2j
m=\

has a self-adjoint closure in H, denoted by An. If, for fixed m, we replace Vnm by $„„!*<
(7m = identity on Hm) for n=l,...,k then A, is replaced by a "cofactor" operator which
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we denote by Almm. As in [7, Theorem 2.5] we may assume (by translating the k origin if
necessary) that each An is bounded below with compact inverse, and we define

Theorem 2.1. H is the closure of F + G where F is a finite dimensional direct sum of
joint root subspaces {1.4) and G is a linear span of eigentensors {1.7).

Proof. In [7, Lemma 4.2] it is shown that D(|Aj|1/2) is the closure, in a norm
stronger than that in H, of F + G say where dim F < oo and the eigentensors span G. F is
a direct sum of joint root subspaces for the Bn, and an easy computation shows that
N(Bn-Ji^ll)1' = N(rm-kJ)\ so the result follows from density of D{\^\112) in H. •

From now on we shall concentrate on the subspace F. If v = 1 suffices in (1.4) for a
fixed k then we say that k is nondefective. If each eigenvalue A is nondefective then (•) is
nondefective.

Corollary 2.2. //(*) is nondefective then F, and hence H, is spanned by eigentensors.

Proof. By [7, Theorem 3.2] the equations

are equivalent to

and hence to

xe (g) N{Wm{k)).
m = l

It suffices therefore to construct an eigentensor basis out of arbitrary basis elements
xmeN{Wm{k)), for each k corresponding to a joint root subspace in F. •

The basis of our subsequent analysis in an embedding with Tk replaced by Tk + filk,
fieU. Then Ao remains unchanged but An is replaced by An + fiAokn.

Theorem 2.3. The set of n values for which (*) is defective has no finite accumulation.

Proof. Eliminating all but kn from (*) we obtain

i.e.

AnA0)x®=0 (2.1)
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MULTIPARAMETER ROOT VECTORS 23

where A -̂= A^J, A7- 0 = 0 , n) are self-adjoint in HOkn. Here HOkn denotes H with inner
product given by (x,y)Okn=(x, AOkny). We shall prove that the set of \i values for which
(2.1) is defective (as a problem in kn) has no finite accumulation for any fixed n, and
hence for all n. For other values of /i, kn will be a nondefective eigenvalue of

(2.2)

and so v= 1 will suffice in (1.4).
For large real fi, An + nI»0 and hence has a positive square root S. Thus r n ( / i ) - 1

= S~2A\) is compact symmetric in D(S) with inner product given by [x, y] = (Sx, Sy). It
follows that all eigenvalues of FJifi)'1, and hence of Fn(^), are nondefective. Moreover
rn((i) is holomorphic in \i [5, Lemma 3.2] and we then conclude that the eigennilpotents
for rn(fi) vanish for large real n, and hence for all n [13, Theorem VII.1.8].

Suppose lj is a defective (i.e. nonsemisimple) eigenvalue for Fn(/ij), with Hj-*n0 as
j-xx). Without loss of generality we may assume k}-*XQ by virtue of [5, Theorem 3.7].
Appealing to [13, Section VII. 1.3] we may separate <T(rn(/i,)) by means of a small
contour in C encircling Xo. This leads to a finite dimensional problem with a defective
eigenvalue for each sufficiently large /i,. From the previous paragraph, such /z, are
exceptional in the sense of [13, p. 64], and their accumulation at /i0 is therefore a
contradiction. •

In summary, we find that the eigentensors are complete in H for almost all \i. On the
other hand \i = 0 may still yield a defective problem, and we turn next to this case.

3. The defective case

We fix our attention on a defective A*eR* corresponding to /z = 0. For notational
ease, we shall consider first the simple case, when A\ — AfA0, which is a self-adjoint
operator on HOkk in the notation of (2.1), has nullity one. By [13, Theorem VII.3.9]
there exist real n(lk), and x(Xk) of unit norm in HOkk, holomorphic at Aj*, such that

N(Ak): = N(Ak + n(Xk)I - kk Ao) = N{YMXk)) - kkl) (3.1)

is spanned by x(Xk), in the notation of (2.2). Moreover the Tn(n(Xk)) commute for each kk

[7, Theorem 3.1], so they have eigenvalues An(At) and a common eigenvector x(kk). By
[7, Theorem 3.2], x(Xk) is a decomposable tensor x®(kk) say, where

(3.2)

Eliminating all but A, and kk from the first k— 1 equations (3.2), we obtain

{Ajkk-kj(kk)AOkk + kkAOkj)x®(kk)=0 (3.3)
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24 P. BINDING

in terms of the cofactor operators introduced in the first paragraph of Section 2.
Operating by A ^ , we derive an equation analogous to (2.1), viz.

involving self-adjoint operators on HOkk. It follows that N(Xk) is invariant for Ajkk

+ XkAOkj. Applying [13, p. 386] to the (HOkk) orthoprojector P(Xk) onto N(Xk), we
construct an (HOkk) unitary operator U(Xk), holomorphic at A?, such that

Thus

A(Xk): = U(Xk) ~ HA,™ + A, AOkj)U(Xk) | N(Ajf) (3.4)

is (HOkk) self-adjoint on N(X$) and is holomorphic at Af, and its eigenvalue Xj(Xk) is
therefore real and holomorphic at A?.

In summary, the l(Xk) and xm(Xk) of (3.2) can be taken holomorphic at A?, and, since
/i(Afc) is nonconstant [5, Corollary 2.4],

(A?) (3.5)

for some finite v. We are now ready for the construction of root vectors.

Theorem 3.1. In the simple case satisfying (3.2) and (3.5), the joint root subspace J(k*):
= n * = i N(Tn — A*/)d, d = dimF, has a basis consisting of elements

where

n=l i=0 ~

y'n = X%\X*)/i\ and y1, = xm as in (*), l^m, n^k.

Proof. By simplicity and [5, Theorem 3.3], J(k*) is contained in N(Fk — Af/)v which
has a basis B = {x®(A*),*®W),-..,x®(v-1)(A?)}. Moreover

- An(AJ)x®(A,) = 0, n = 1,..., k

and repeated differentiation, together with (3.5), gives

I (3.7)
i = 0
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It follows inductively that

so J(X*) contains B, which is therefore a basis as required.
Thus it suffices to prove that

satisfy (3.6). This is clear for j = 0, so assume v > l . Since xm = xm(Xk) is holomorphic at
Af, we have by repeated differentiation of (*)

Z(Wm-'Kmx<2(Xi)/n (3.8)
i = O

for l^m^k, and also for m = k by virtue of (3.5).
Finally we compute

and (3.6) is established. •

Remark 3.2. (1.6) is the special case of (3.6) obtained by setting kl — k2= ••• = kk and

Remark 3.3. Evidently (*) yields

and repeated differentiation leads to

n = l i = 0

k

n = l

say. Thus our basis elements automatically satisfy equations of the form (1.5).
We return now to the general case, when dim N{Fk — A?/) is an arbitrary finite

number. Geometrically, (3.2) generates nc curves parameterized by U,kk) and touching
each of the nk\ =dimN(Wk(X*)) surfaces corresponding to the feth equation of (•). Each
of the ncnk possible combinations leads to a different set of vectors satisfying (3.6), each
with its own initial element y0 and its own length v. These ncnk sets form our basis of
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26 P. BINDING

Theorem 3.4. If XeUk then J(A*) is a direct sum of subspaces spanned by sets of root
vectors yj as in Theorem 3.1 where the various initial elements yo = x® form a basis for
O W) = &m=x N(WJLX*)).

Proof. N(Xk), defined as in (3.1), is now finite dimensional, so several branches
(n(Ak), x(Xk)) may exist holomorphic at A?. By Theorem 2.3, the rn(/i(At)) on each set of
coincident branches continue to generate a common eigenvector basis of N(Xk), provided
n(kk) is small and nonzero. We may now repeat the analysis of the simple case, choosing
basis elements x{kk) to be decomposable and to satisfy (3.2) for some A(At), which are
again Revalued and holomorphic at Aj? by (HOkk) self-adjointness and holomorphy of
the operators A(Xk) defined as in (3.3). Thus the Wm(k{Xk)) in (3.2) are Hm self-adjoint and
holomorphic, and so we may choose the xm(Xk) to be holomorphic at AjJ".

We now apply Theorem 3.1 to each branch in turn. An easy extension of [5, Theorem
3.3] shows that the x®(/)(A*) form a basis of N(rk-A£I)d. Repeating the argument with k
replaced by each n in turn, we automatically restrict the y0 to f]k

=1N(Tn — X*I) and the
yj generate a basis of J(A*) as required.

4. Remarks and special cases

4.1. Determination of !'„. At first sight this seems to require the eigenvalues An as
functions of At, but in fact much less information is needed. Let us illustrate for small v,
using lower case letters for quadratic forms, e.g. vmn{x) = (x, Vmnx), 5Okk(y) = (y, Aouy).

From (3.8) with 1=1 we have, with xm = xm(Ak
¥),

0 = (xm, Wm{k*)x'm{kt)) = t KW)vmn(xm), l^m<k.

Since A o w » 0 , we thus have a uniquely soluble system of linear equations in the
unknowns A (̂Af), 1 = n < k. In fact

i.e. a quotient of (k— l)x(/c— 1) determinants with entries of the form vmn(xm), and no
explicit differentiation is required to calculate yj,.

We now use (3.8) to find x'm(X^), again without explicit differentiation and proceed to /
= 2, giving

= 2 t Wt)(xm,Vmnxm(W)+ t mftv^xj
n = 1 n = l

which may be solved uniquely for A '̂(A?), 1 ^n<k. This yields y;J, and so on.

4.2. Jordan structure of the Fn. In the simple case, (3.7) shows that the x®(l)/i! form a
Jordan basis for Tk, i.e. Tk has Jordan block structure relative to this basis. Similarly Tn
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has Toeplitz structure. Since any set of matrices commuting with a Jordan block will be
of this form, the Fn thus inherit no special properties (other than commutativity) from
the multiparameter connection in the simple case. In the general case, however, the Tn

are direct sums of blocks as above, and this is a considerable specialization from the
arbitrary commuting case.

43. Nonnegative AB. If at least one of the An is nonnegative definite, say A*SO, then
/lt must be real [7, Lemma 5.1]. Thus (3.3) gives

in the quadratic form notation of 4.1, and so XeUk.
If At»0 then kk is an eigenvalue of the compact self-adjoint operator Bk = Ak

l Ao on
D(A{12) with inner product given by [x,y]=(Ak

l2x,Ak'
2y), and is thus a nondefective

eigenvalue. The analysis of 4.2 thus shows that one may take v = l in (1.4). This case
occurs e.g. when 7^,»0, i.e. ULD.

If At^0 but not »0, i.e. N(Ak) is nontrivial, then Fk has Jordan chains of length at
most two, and if the length is two then A* = 0 [7, Lemma 5.1]. Appealing again to 4.2,
then, we see that F is spanned by Jordan chains of the form {x®} or {x®,x®'}.

The analysis of 4.1 thus gives a complete description of F in terms of the original data
in (*): x® = Xj ® • • • ® xk, xm as in (*) and

k

m = l

where

Wm(X)x'm= £ SOkn(x®)VmnxJ6Okk(x®). (4.1)

In the case of k = 2 Sturm-Liouville equations, this result can be obtained from [9,
Theorem 5.5] although it is stated differently. In the case where each Tm^0 (so each
An ^ 0) the Jordan chain structure of F (and its dimension) were analysed in [7, Section
5] but without explicit formulae for x®'.

4.4 An example. Let k = 2, Hx = H2 = C2,

Then 0=det W1(X) = E2+ e-k{, e = 2kl-k2 and O = det W2(l)=4e2-2e-k2. The so-
lutions are E = 1 , giving X=(±y/2, ±2^/2—1), and e=0, giving X=0 (a double root).
When e= 1, we calculate eigenvectors

•-[3] -
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When

n oi ro~i
e = O, \xm = \ \, sayx_

O O O
I— —I L _J

The root vector x®' = Xi ® x2 + xt ® x'2 may be calculated via (4.1). Evidently

so

ra
and

Using the isomorphism H 2 ^C 4 , we may write the two eigentensors corresponding to
e = l as ( — y/l, + 1, + 2,yjl), the one corresponding to e=0 as (0,0,0,1) and the root
vector x®' as (0,1/2,0,0)+(0,0, l/2,0)=(0,1/2,1/2,0). It is readily verified that these four
elements are indeed a basis of C4.
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