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Abstract

Simple proofs are given of improved results of Brown and Shepp which are useful in
calculations with fractal sets. A new inequality for convex functions is also obtained.

1. Introduction

Recently there has been a resurgence of interest in sum sets, which have, inter alia,
application to fractals, iterated function systems and dynamical systems (see the
authors [2] for some select references in the area). The calculation of associated
Hausdorff dimensions and Hausdorff measures and other properties can be delicate.
In [1], Brown and Shepp provided two key lemmas which have proved valuable in
making available a number of simple calculations in this area. Improvements of the
results of Brown and Shepp were obtained in [2]. Further generalizations of these
results are given in [3].

In particular, let £, be a non-empty set and L, a class of nonnegative functions
fi : Ej -> R (/ = 1,2). We consider functionals At : L,- —> R which satisfy the
following conditions for / = 1, 2.

(a) ft e Li = * A,(f,) > 0.
(b) / , € Li, A, > 0 = > k,f, e Li and A,(k,f,) = k,A,(fi).
(c) I € Lh that is, if ft(t) = 1 Vt e £, then / G L,.
(d) f,,gieL, with f,{fi) > gl(ti) QiU&Ei) = • A,(fi) > Ai(g,).

(e) AM + gi) < Mfi) + Ai(gi) (fi, gi G Li = • / , + g, e Li).

Then we have the following
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THEOREM A. Let f : L, -> (0, oo) (/ = 1, 2) be real functions and let thefunc-
tionals At (i = 1, 2) satisfy the jive conditions above. Further, let st, t{ (i = 0, 1, 2)
be positive numbers such that asf1 + bt~x = 1 for positive constants a, b and
•5; < Jo < ^2- Then

In proving this theorem we used Lemma 1 below from [4] and Theorem B.

LEMMA 1. If fr e L, 0 = 1, 2) for all r e (0, oo), then the functions

Gi(r) = Mff) 0 = 1,2)

are logarithmically convex on (0, oo), that is, the functions log G,(r) are convex.

THEOREM B. Suppose that positive numbers sh ?, satisfy as^+bt^1 = 1 (/ = 0, 1, 2)
for positive constants ait bt and s^ < s0 < s2. If f, g : (0, oo) —> R are convex
functions, then

S0 tQ 1 = 1,2 [ Si tj

The following generalization of Theorem B is also given in [3].

(1)

THEOREM C . Suppose that positive numbers s t j (/ = 0 , 1, 2 ; j — 1 , . . . , « ) satisfy
s\j < sOj < s2J O' = 1 , . . . , « ) and ajs'l + bjs'J = 1 (/ = 0, 1, 2; j = 2 , . . . , n)
for positive constants ajt bj (j — 2 , . . . , n). If fj : (0, oo) —> R, (_/ = 1, . . . , n) are
convex functions, then

7=1 ' ' [j=i J

Here we shall give simpler proofs of Theorems B and C.

2. Results

Our proofs stem from the following lemma, which is of some interest in its own
right. For example, it implies from Lemma 1 that the functions

H,{r) = Mfi")' (i = l,2)

are logarithmically convex or that the means

M,(r) = Mff?" (/= 1,2)

are logarithmically convex functions of \/r.
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LEMMA 2. Suppose f : (0, oo) -> R. Then f is a convex function if and only if the
function F given by

F{x) = xf{\/x)

is convex.

PROOF. First suppose that / is convex. Then if x < y < z, we have

(z - x)f(y) <(y~ x)f(z) + (z - y)f(x). (2)

For b > a > 0, set z = I/a, x = l/b, y = l/[ka + (1 - k)b], where k € (0, 1).
Then (2) becomes

[a ~ b) * \ka + (\-k)b) ~ \ka + (1 - k)b ~b)^ \a)

+ \a~ ka + (l- k)b) * \b) '

that is,

G) + ( i - w G) •
or

F(Xa + (1 - k)b) < kF(a) + (1 - k)F(b).

Therefore F also is convex.

Because f(x) = xF(l/x), the converse follows from the result just shown.

PROOF OF THEOREM B. Let F and G be two convex functions on (0, oo). Then
F(x) + G(y), with ax + by = 1 (a, b > 0) is also a convex function of x. Hence if
M2 < «o 5 Mi and a«, + bvi = 1 for / = 0, 1,2, then

F(M0) + G(«o) < max{F(ii,) + G(u,)}. (3)
( = 1,2

For the functions / and g of Theorem B we have, by Lemma 2, that the functions
given by F(x) = xf(l/x), G(x) = xg(l/x) are convex. Thus (3) becomes

{
(=1,2

that is, (1) holds for u, = 1/s,, u, = 1/r, (/ = 0, 1, 2).
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We now prove a generalization of Theorem C.

THEOREM 1. Suppose that positive numbers U;j (i = 0, 1, 2; j = 1 , . . . , n) satisfy

u\j > "0,7 > u2J (1 < ; < n) and OjUiA + fyw,,, = 1 (i = 0, 1,2; 2< j < n)

(4)

for positive constants Oj, bj (2 < _/ < n). If Fj : (0, oo) -»• R (1 < _/ < n) are convex
functions, then

<=1'217=>

PROOF. From (4) we have for U\j > MO,7 > "2,7

a;(«,u - "t,i) + bjiiiij - M M ) = 0

for each of the pairs (i, k) = (1,0), (2,1), (2, 0). That is, for X e (0, 1),

"0,7 - "2,7 «2.1 - "0,1
(:= >.),

"1,7 - "2.7 "2,1 - " l , l

0 = 1 - * • ) •
\j — UQJ MQ,1 ~ " l , l

"2,1 - «1,1

(4)

On the other hand, the functions Fj are convex, so

^("0,7) < — -FM\,j) H
"1,7 - "2,7

that is, F(iioj) < A.Fy(«u) + (1 - A.)F;(«2.y).
Summation gives

-(«o.y) < A E ^("w) + d - ^
7=1 7=1 7=1

Theorem C follows in the particular case Fj(x) = xfj(\/x) and M,,y = l/stj (i =
0,1,2; 1 < y < « ) .
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REMARK 1. Lemma 2 can be generalized as follows.
For an integer n > 1, the reciprocal transformation of order n of a function / whose
domain is an interval of positive numbers is the function </>„ given by

MO = (-iyr-70/o.
The reciprocal transformation of order n of </)„ is evidently / . We have the following.
The reciprocal transformation of order n preserves n-convexity, that is, <pn is n-convex
if and only if / is n-convex.
Recall that a function / is n-convex if, for n + 1 distinct points xn, we have

(xk-Xj) > 0 (5)

(see [5, pages 14-16]).
To establish the statement enunciated, suppose / is n-convex and set xk = \/tk in
(5). Simple manipulations provide

D / f l - o ) >o,u=° J /
that is,

*=0

so 4>n is n-convex too.
Since n-convexity coincides with ordinary convexity for n = 2, this establishes an
alternate proof for Lemma 2.
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