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Abstract

In this paper a proper class of barrelled spaces which strictly contains the suprabarrelled spaces
is considered. A closed graph theorem and some permanence properties are given. This allows
us to prove the necessity of a condition of a theorem of S. A. Saxon and P. P. Narayanaswami
by constructing an example of a non-suprabarrelled Baire-like space which is a dense subspace
of a Frechet space and is not an (LF)-space under any strong locally convex topology.
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In [9], S. A. Saxon and P. P. Narayanaswami prove that if E is a Frechet space
and F is a barrelled dense subspace, then F is not suprabarrelled if and only if
there exists a subspace G of E such that G contains F and G with a topology
stronger than the relative one is an (LF)-space. In this paper we give an example
which allows us to prove that G cannot be replaced by F in the former theo-
rem. We introduce the quasi-suprabarrelled spaces which satisfy the inclusion
relationships indicated by

suprabarrelled => quasi-suprabarrelled =>• barrelled.

A closed graph theorem together with some permanence properties are given.
We use some of those results later in order to construct the quoted example.

The linear spaces we use are defined over the field of the reals or complex
numbers. By "space" we mean "Hausdorff locally convex space". If A is a
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subset of a linear space we denote by (A) its linear span. If B is a bounded
closed absolutely convex subset of a space E, EB denotes the normed space over
the linear hull of B. If {£*: i € / } is a family of spaces, E := IK^t1 * e ^} an(^ ^
is a part of / , we write E{ J) to denote the subspace of E of those elements which
have zero in any coordinate position indexed by /—J. A space E is suprabarrelled
or (db), [12], [6] and [9], if given an increasing sequence of subspaces of E covering
E there is one of them which is barrelled and dense in E. A space E is Baire-
like, [7], if given an increasing sequence of closed absolutely convex subsets of
E covering E there is one of them which is a neighbourhood of the origin. A
space E is quasi-Baire, [7], if it is barrelled and given an increasing sequence of
subspaces of E covering E there is one of them which is dense.

1. Quasi-suprabarrelled spaces and the closed graph theorem

We say that a space E is quasi-suprabarrelled if given an increasing sequence
of subspaces of E covering E there is one of them which is barrelled.

We have that suprabarrelled implies quasi-suprabarrelled and this last class
of spaces is contained in the class of the barrelled ones. The following examples
distinguish these classes.

EXAMPLE 1. A non-complete (LF)sp&ce is not quasi-suprabarrelled. In
fact, if E(T) is quasi-suprabarrelled, from the sequence {J5n(rn): n = 1,2,...} of
Frechet spaces which defines E(T) we can extract a sequence {£>i(p) (T/En(P))- P —
1,2,...} of barrelled spaces which are of Frechet by Ptak's homomorphism the-
orem, since the identity i:£^n(p)(rn(p)) —• £n(p) {T/En(p)) is continuous. Now
E(T) is the strict inductive limit of the 2?n(i>) (r/£'n(p)) since E{T) is barrelled,
[7, Lemma 2.17]. We must conclude then that E(T) is complete, [3, p. 225], a
contradiction. We note that if besides E{T) is metrizable, then E(T) is Baire-like.

The L. Schwartz space D(Q) is not quasi-suprabarrelled as we are going to
show. We first note that every separated quotient of an (LF)-space is an (LF)-
space or a Freshet space ([2, p. 147, lines 5.6]; also, see [4, Theorem 9]). Actually,
let E(T) = limEn(Tn) be an (LF)-space and let H be a closed subspace of

n
E. Every canonical mapping from En{Tn)/H f~l En into E{T)/H is continous.
Therefore the identity i from limEn(r)/H nE n onto E(T)/H is continuous. The

n
conclusion follows now from Grothendieck's closed graph theorem. As D(Q)
has a noncomplete metrizable quotient F, [14], and every quotient of a quasi-
suprabarrelled space is quasi-suprabarrelled as we shall see later, by the above
F is not quasi-suprabarrelled and thus neither is D(Q).
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EXAMPLE 2 . The topological direct sum <t>oj = w ® u @ •• • is complete and
barrelled. Now <j>u is covered by the subspaces Rn = u" x <pu, where <f>u denotes
<p with the topology induced by w. No Fn is barrelled, since 4>w is not-barrelled,
and so (JKJ is not quasi-suprabarrelled.

EXAMPLE 3 . The space <f> is quasi-suprabarrelled since every subspace is
of countable codimension, ([11] and [8]). Now </> is covered by an increasing
sequence of finite-dimensional subspaces, therefore <fi is not quasi-Baire and so <j>
is not suprabarrelled. In fact, if d is a cardinal number and 0<j denotes a linear
space of dimension d wi th the strongest locally convex topology, then every
subspace of <j>d has the strongest locally convex topology and, therefore, is closed
and barrelled. It follows t h a t <$>& is quasi-suprabarrelled. If H is a countable
codimensional subspace of </>d, then </>d = H © <p. As 0 is not suprabarrel led we
conclude tha t 0<j is not suprabarrel led.

We give now a characterization of quasi-suprabarrelled spaces which are not
suprabarrelled.

PROPOSITION 1. Let E be a quasi-suprabarrelled space. E is not suprabar-
relled if and only if there exists an increasing sequence of barrelled subspaces
covering E having each of them a copy of <j> with a topological supplement.

PROOF. Obviously, E is suprabarrelled if and only if E is quasi-Baire. Thus
Theorem 1 of [4] applies.

It is obvious that a space E is suprabarrelled if and only if it is quasi-
suprabarrelled and quasi-Baire. It follows from [4] that if E does not contain a
complemented copy of <j> (in particular, if its completion is a Baire space (see [15]),
then the notions of being quasi-suprabarrelled and suprabarrelled are equivalent
for£.

Theorem 4 of [12] suggests the following result, where we change suprabar-
relled by quasi-suprabarrelled, losing the localizatoin property given there. We
suppose E is the convex hull of a family of quasi-suprabarrelled spaces, that
{Fn(rn):n = 1,2,...} is an increasing sequence of rr-spaces, [13], and F :=
(J{Fn: n = 1,2,... } has a locally convex topology coarser than the final topol-
ogy defined by the Fn(rn), n = 1,2,....

THEOREM 1. If f is a linear mapping from E into F with closed graph, then
f is continuous.

PROOF. We can suppose that E is quasi-suprabarrelled. Working with a sub-
sequence if necessary we can also suppose that every space f~1(Fn) is barrelled.
From / we consider the restrictions fn'-f~

1(Fn) —> Fn(Tn) which clearly have
closed graph in f~1(Fn) x Fn(rn). By the closed graph theorem given in [13]
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we have tha t the / „ are continuous and from the continuity of / „ : f~1(Fn) —> F

it follows tha t / is continuous, since E is the inductive limit of the subspaces

f-1(Fn),n = 1 , 2 , . . . .

2. Permanence properties of quasi-suprabarrelled spaces

The quotients and the countable-codimensional subspaces of quasi-supra-
barrelled spaces are quasi-suprabarrelled. This follows immediately from the
analogous permanence properties of barrelled spaces.

PROPOSITION 2. Let Ei andEi be two quasi-suprabarrelled spaces. If Ei is
metrizable, then E\ x Ei is quasi-suprabarrelled.

PROOF. If E — E\ x Ei is not quasi-suprabarrelled there exists an increasing
sequence {Fn: n — 1,2,... } of proper subspaces of E covering E, none of them
barrelled. Let Tn be a barrel in Fn which is not a neighbourhood of the origin
in Fn. If Bp denotes the closure of Tp and Gp := f){(Bn): n > p}, then {Gp:p =
1,2,...} is an increasing sequence of subspaces of E covering E, since Fp is
contained in Gp for p = 1,2, No Gp is barrelled, since Bp n Gp is a barrel in
Gp which is not a neighbourhood of the origin in Gp.

Since E\ and Ei are quasi-suprabarrelled there is a strictly increasing sequence
(p(r))r of positive integers such that Gp(r) f~l E, and Gp(r) D Ei are barrelled for
r = 1,2, By metrizability, E\ is suprabarrelled and so there is a positive
integer q such that Gp(g) D E\ is dense in E\.

If y € Ei there is a sequence (yn)n is the barrelled space Gp(9) n E\ which
converges to y. This sequence is absorbed by the barrels Bn n Gp(«j) D E\ for
each n > p(q). Hence y € (Bn) for each n > p(q). Thus y € Gv(q) and so we
have proved that E\ is contained in Gp(g). Now, from this inclusion it follows
that Gp(g) = Ei x {Gp(q) n E2) is barrelled, a contradiction.

LEMMA 1. Let {En: n — 1 ,2 , . . . } be a sequence of closed absolutely convex

sets in E. If Gp :— f\{{Bn):n > p } , p = 1 , 2 , . . . , and (p(r))r is a strinctly

increasing sequence of positive integers with U ( G p ( r ) -r = 1 , 2 , . . . } — E, there is

a positive integer q such that Gp(g) contains E(q,q + l,q + 2,...).

PROOF. If the property is not ture we find a sequence {xr)r in E with xT €
E(r, r+1, . . . ) —Gp(r). This sequence converges to zero and is contained in a com-
plete subspace of E since its projection on En is contained in a finite-dimensional
subspace of En, therefore by Tychonoff's Theorem, A = T{xT: r = 1,2,... } is a
compact set and EA is a Banach space which is covered by the Gp(r), r = 1,2,
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Thus, there exists a Gp(g) (~l E A which is of second category in EA- Therefore
Bn n E A is a neighbourhood of the origin in E A for each n > p(q). So we have
tha t A is contained in {Bn) for each n > p(q). This implies t h a t A C G p ( 9 ) ,
contradicting the fact t ha t xq &. G p ( g ) .

PROPOSITION 3. Let {En:n = 1,2,. . .} be a sequence of spaces such that
£(1,2, . . . , n ) is quasi-suprabarrelled for n = 1,2, Then E = \\{En:n =
1,2,...} is quasi-suprabarrelled.

PROOF. If E is not quasi-suprabarrelled there exists an increasing sequence
{Fn:n = 1,2,...) of proper subspaces of E covering E such that no Fn is
barrelled. If Tn is a barrel in Fn which is not a neighbourhood of the origin in
Fn,Bp is the closure of Tp in £ a n d G p := f\{(Bn):n > p}, we saw in the proof of
Proposition 2 that {Gp:p — • 1,2,... } is an increasing sequence of non-barrelled
subspaces of E which covers E.

We determine a subsequence {Gp(r),r = 1,2,.. .} with p(r) < p(r + 1) for
each r such that Gp(r) n E(l,2,...,r) is barrelled. In fact, since E\ = E{1)
is quasi-suprabarrelled, there exists a p(l) such that Gp(x) n E(l) is barrelled.
Withp(l),p(2), . . . , p ( s - l ) determined, we have that {Gn,n = 1,2,.. .} is an in-
creasing sequence of spaces covering the quasi-suprabarrelled space E(l, 2 , . . . , s),
therefore there is a Gp(s), p(s) > p(s — 1), such that Gp(s) C\E(1,2,..., s) is bar-
relled.

Since U{^p(r)>r = 1,1, •••} = £) by Lemma 1 there is a positive integer q
such that Gp(g) D E(q, q + 1,...). Thus Gp(9) is the topological direct sum of
the subspaces Gp(,) D £7(1,2,.. . , q) and .£(<? + 1 , 9 + 2 , . . . ) . Therefore Gp(,), is
barrelled, a contradiction.

EXAMPLE 4. We give now an example of a non-complete quasi-suprabarrelled
space which is not suprabarrelled. In fact, there exists a linear form u denned
on <pN which is not continuous. Setting H := u~1(0), H is a dense hyperplane of
4>N. As <j>n is isomorphic to (f> for every n £ N, then it follows from the last result
that <j>N is quasi-suprabarrelled. This implies that H is quasi-suprabarrelled. If
H is suprabarrelled then its completion <j>N is suprabarrelled, [12], but <j>N fails
to be suprabarrelled since it contains <f> as a factor.

We need the following result given in [15, p. 20] by M. Valdivia.

LEMMA 2. Let {Ei-.i e / } be a family of spaces and let E = Y\{Ei:i € / ) .
/ / {Bn: n = 1,2,... } is a sequence of closed convex sets of E covering E such
that 0 € Bn for every positive integer n, there exists a finite subset J of I and a
positive integer s such that Bs D E(I — J).
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PROPOSITION 4. Let {Ei.i e /} be a family of spaces such that E(H) is
quasi-suprabarrelled for every countable set H C I. Then E := \[{Ei-.i e /} is
quasi-suprabarrelled.

PROOF. If E is not quasi-suprabarrelled there exists an increasing sequence
{Fn: n = 1,2,... } of proper non-barrelled subspaces covering E. Let Tn be a
barrel in Fn which is not a neighbourhood of the origin in Fn and let Bn be
the closure of Tn in E. Since {mBn: m, n = 1,2,...} covers E it follows from
Lemma 2 that there is a pair (m(l),n(l)) of positive integers and a finite subset
Hi of / such that m(l)Bn(1) D E{I - #x) . Thus (BnW) D E{I - # i ) . Now
{mBn: n)n(l),m = 1,2,...} covers E and therefore there is a n(2) > n(l) such
that (Bn(2)) D E(I — #2)- By recurrence we obtain a sequence n(l) < n(2) <
• • • < n(p) < • • • of positive integers and a sequence {Hp:p = 1,2,...} of finite
subsets of / such that (#n(p)) 3 E(I - Hp) for p = 1,2,... .

Let H := \J{Hp:p = 1,2,... } and Gp := n{(£ n ( r ) : r > p}. Then {Gp:p =
1,2,...} is an increasing sequence of subspaces of E covering E with Gp D
E{I — H) for p = 1,2, — Since H is countable we have that E(H) is quasi-
suprabarrelled, therefore there is a positive integer q such that Gq n E(H) is
barrelled. Now Gq is the topological direct sum of Gq n E{H) and E(I - H), so
Gq is barrelled, a contradiction.

THEOREM 2. Let {Ei:i € /} be a family of spaces such that for every finite
subset H of IE(H) is quasi-suprabarrelled. Then E = \[{Ei.i G 1} is quasi-
suprabarrelled.

PROOF. It is a direct consequence of Propositions 3 and 4.

EXAMPLE 5. From Example 3 and from the last theorem it follows that
I~I{<̂ d:<i € fi}, where Q is an arbitrary family of cardinals numbers, is a quasi-
suprabarrelled space which is not suprabarrelled. In particular, if / is an index
set, (j)1 is quasi-suprabarrelled and it is not suprabarrelled.

REMARK 1 A space E satisfies condition (G), [5], if given a sequence of
subspaces of E covering E there is one of them which is barrelled. A space
E is said to be totally barrelled, [16], if given a sequence of subspaces of E
covering E there is one of them which is Baire-like (see Proposition 1 of [5]).
In [16] it is proved that /§° ®jr I2 is a suprabarrelled space which is not totally
barrelled. Now, it is known that if E satisfies condition (G) and E does not
contain a copy of <j> then E is totally barrelled. As Z§° ®w I2 is metrizable, this
space does not contain a copy of <j>. We must conclude then that ZQ° ®TT I2 is a
quasi-suprabarrelled space which does not satisfy condition (G).
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3. Proof of the necessity of a condition in a theorem of
S. A. Saxon and P. P. Narayanaswami

We consider in the product space w " the sequence {En, n = 1,2,... } of non-
barrelled subspaces of the form En = w x • •'") • x u x 0W x <j>u x • • • , where <f>u

denotes <j> with the topology induced by w, and the subspaces E := [){En:n —
1,2,...} and F :— <j>%. Clearly the space E is dense in UJN and it is not quasi-
suprabarrelled since none of the spaces En, n = 1,2,... is barrelled.

Let E(6) be the barrelled space which is the inductive limit of the quasi-
suprabarrelled spaces En{6n) = w X • •(") -xuxcfrxfix---. Prom the next
result it follows that E is barrelled.

PROPOSITION 5. E and E{6) are isomorphic.

PROOF. If u e E(6)' we have that u/En G En(6n)' = (A©--(n)-©0©u;©w©- • •.
Analogously, u/En+i G </>©-- ( n + 1)-©^©wS- • •. Since (u/En+i)/En = u/En,
it follows that u/En+\ £ <f>@- •(**) • © 0 © u; © w © •• •. Proceeding by recurrence
we obtain that u/En is an element of <j> © <p © <j> ® • • • independent of n. This
element defines a linear form on u)N and, therefore, on E. Hence, u € £". As
E' C E(6)', we conclude that E and E{8) are isomorphic since they are two
Mackey spaces with the same dual.

PROPOSITION 6. If T is a locally convex topology strictly stronger than that
of E, then E(T) is not an (LF)-space.

PROOF. If E(T) is an (LF)-space, then the identity i: E —> E(T) is continuous
as a consequence of the Theorem 1. Thus r must coincide with the topology of
E.

The next result can be viewed either as a special case of Lemma 2, due to M.
Valdiva, [15, page 20] or as a special case of A. Todd and S. Saxon's Lemma 4.5
of [10]. We provide a concise proof.

LEMMA 3 . / / the product L = Yl{Ln:n = 1,2,. . .} is covered by an in-
creasing sequence {Fn: r = 1,2,... } of closed subspaces, then there is a positive
integer m such that Fm D {0} x • • • x {0} x L m + i x Lm+2 x • • •.

PROOF. If the property is not true, there is some xn € {0} x •• • x {0} x Ln+1 x
Ln+2 x • • • — Fn for every n € N. Now the compact A := T{xn- n = 1,2,... }
generates a Banach space EA which is covered by the sequence {Fn D E^-.n —
1,2, . . .} . One of these subspaces, Fp n EA, is of second category in EA and,
therefore, coincides with EA since it is closed in EA- It follows that A c Fp.
But xp & Fp. Contradiction.
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PROPOSITION 7. E is not an (LF)-space.

PROOF. Suppose that E is the inductive limit of the increasing sequence
{Fn(pn): n = 1,2,. . .} of Frechet spaces covering E.

Working with a subsequence if necessary we can suppose, since F(6) = 4>N is
quasi-suprabarrelled (see Example 4), that Ff)Fn is a barrelled subspace of F(6),
n = 1,2,. . . , which we are going to show is closed. Now the injections i\ and 12
from FC\Fn and Fn(pn) into uiN respectively, are continuous. So the injection i
from Ff~)Fn into Fn(pn) has closed graph, hence it is continuous. If {z{-. i e / , >}
is a net in F n Fn which converges to z in F(6) we have from the continuity of i
that {zi~. i e 7, >} converges to v in Fn(pn) and from the continuity of i\ and i%
that z = v. Therefore { F n F n : n = l, 2 , . . . } is an increasing sequence of closed
subspaces covering <j>N. The previous lemma implies that there is a positive
integer m such that F n Fm D {0} x •m • x {0} x <f> x <f> x • • •.

The Frechet space Fm(pm) is covered by {EnC\Fm: n > m}, hence there exists
an s > m such that Eaf]Fm is a Baire subspace dense in Fm(pm). The injections
ji and ji from Ea P\Fm and E3(6S) into wN respectively, are continuous. So the
injection j from Ea D Fm into Ea(6a) is continuous since j has a closed graph,
Ea n Fm is a Baire space and Ea(Sa) is a webbed space. We prove just as before
that Es fl Fm is a closed subspace of Fm(pm). And from density we conclude
that EaDFm.

Setting Ha := {0} x • -W • x {0} x <j>x <j>x • • •, we have that Ha C Fm C Ea. Now,
endowing Ha with the topology induced by Ea(6s) it follows that the injections
k and / from Ha into F m (p m ) and from Fm(pm) into ^S(5S) respectively, are
continuous since they have closed graph, Ha is barrelled, Fm(pm) is a Frechet
space and Ea(6a) is a webbed space. We must conclude that the topology of
the non-metrizable space Hs coincides with the topology induced by the Frechet
space Fm(pm). Contradiction.

In brief, the space E has the following properties: (1) E is dense in w. (2) E
is Baire-like. (3) E is not quasi-suprabarrelled. (4) E(T) is not an (LF)-space
under any locally convex topology r stronger that the topology induced by w.
(5) E is an inductive limit of a sequence of quasi-suprabarrelled spaces. (6) E is
a webbed space.

REMARK 2. If s is the subspace of w of the rapidly decreasing sequences, s is
a Frechet space under the topology defined by the sequence of seminorms of the
form ||z||p = £ { n p | a ; n | : n = 1,2,... }, p = 0 ,1 ,2 , . . . . In [17] it is proved that
if Gn := ui x • •(") • x w x s x s x • • • and G := {Gn: n= 1 ,2 , . . .} , then G is a
proper dense subspace of w which is an (LF)-space. Our space E is a subspace
of this space G. Having in mind this fact it also follows from the quoted theorem
of S. A. Saxon and P. P. Narayanaswami that E is not suprabarrelled.
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