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Abstract

Background. Internet addiction (IA) refers to excessive internet use that causes cognitive
impairment or distress. Understanding the neurophysiological mechanisms underpinning IA
is crucial for enabling an accurate diagnosis and informing treatment and prevention strategies.
Despite the recent increase in studies examining the neurophysiological traits of IA, their
findings often vary. To enhance the accuracy of identifying key neurophysiological character-
istics of IA, this study used the phase lag index (PLI) and weighted PLI (WPLI) methods, which
minimize volume conduction effects, to analyze the resting-state electroencephalography (EEG)
functional connectivity. We further evaluated the reliability of the identified features for IA
classification using various machine learning methods.
Methods.Ninety-two participants (42 with IA and 50 healthy controls (HCs)) were included. PLI
andWPLI values for each participant were computed, and values exhibiting significant differences
between the two groups were selected as features for the subsequent classification task.
Results. Support vector machine (SVM) achieved an 83% accuracy rate using PLI features and
an improved 86% accuracy rate using WPLI features. t-test results showed analogous topo-
graphical patterns for both theWPLI and PLI. Numerous connections were identified within the
delta and gamma frequency bands that exhibited significant differences between the two groups,
with the IA group manifesting an elevated level of phase synchronization.
Conclusions. Functional connectivity analysis and machine learning algorithms can jointly
distinguish participants with IA from HCs based on EEG data. PLI and WPLI have substantial
potential as biomarkers for identifying the neurophysiological traits of IA.

Introduction

In recent years, the field of computer science has undergone considerable expansion, leading to a
rapid increase in Internet utilization, particularly among teenagers and college students(Chou,
Condron, & Belland, 2005; Widyanto & Griffiths, 2006). Despite the numerous benefits it has
brought to our lives, excessive Internet use is considered an emerging psychiatric disorder (Meng
et al., 2022; Olson et al., 2022). Internet addiction (IA), which refers to extended and excessive
Internet usage, can give rise to addictive tendencies toward Internet use, exerting a considerable
impact on various aspects of young adults’ lives, such as their interpersonal relationships,
academic performance, and overall physical andmental well-being. Although there is still debate
regarding whether IA should be included as a distinct disorder in the Diagnostic and Statistical
Manual of Mental Disorders Fifth Edition (American Psychiatric Association, 2013), IA clearly
appears to be a growing global issue. Pending further research and evidence, IA remains a
significant problem.

Common signs of IA include prolonged online engagement, an inability to curb the urge to go
online despite recognizing its negative consequences, and discomfort when disconnected from
the Internet (Chou, Condron, & Belland, 2005; Widyanto & Griffiths, 2006). Studies have also
linked IA to co-occurring conditions such as attention deficit hyperactivity disorder (Ko et al.,
2008; Yoo et al., 2004), depression (Ha et al., 2007; Kim et al., 2006; Morrison & Gore, 2010),
anxiety (Bernardi & Pallanti, 2009), and obsessive-compulsive disorder (Zhang, Amos, &
McDowell, 2008). Some researchers view IA as akin to an addictive behavior (Hall & Parsons,
2001; Holden, 2001), sharing clinical parallels with pathological gambling (Lee et al., 2012) and
substance use disorders (Sharifat, Rashid, & Suppiah, 2018). These parallels involve challenges in
impulse control (Grant et al., 2010) and a lack of self-control regarding substance, alcohol, or
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Internet usage. Although many recent studies using frequency
power analysis have examined the neurophysiological traits of IA,
their findings often vary, with biomarkers appearing in different
bands. Furthermore, this approach does not account for inter-
actions between brain regions, highlighting the need for further
research to identify reliable biomarkers, particularly those exam-
ining brain region interactions, to enhance clinical diagnosis and
support early treatment of IA (Park et al., 2018).

The diagnosis of IA often relies on self-assessment question-
naires, such as Young’s IA Test (Young, 1996) or the Chen IA Scale
(CIAS) (Chen et al., 2003). While these questionnaires provide
valuable subjective insights, resting-state electroencephalography
(EEG) offers an objective approach to measuring brain activity,
enabling a deeper understanding of the neural mechanisms under-
lying IA. Resting-state EEG, a noninvasive method, measures the
collective electrical potential generated by neuronal activity in a
relaxed, awake state. Given that EEG comprises various frequen-
cies, each linked to specific cognitive functions (Patil et al., 2022), it
is increasingly recognized as a powerful tool for studying the neural
correlates of cognition and behavior. Furthermore, EEG provides
neurophysiological markers thatmay not be captured by self-report
measures alone (Patil et al., 2022).

Research has linked specific EEG frequency bands to various
cognitive and emotional states: delta activity (1–4 Hz) is associ-
ated with sensory afferent inhibition (Harmony, 2013); theta
activity (4–8 Hz) with nervousness (Wang et al., 2015); alpha
activity (8–12 Hz) with relaxation (Klimesch, 1999); beta activity
(12–30 Hz) with attention (Huster et al., 2013); and gamma
activity (30–60 Hz) with inhibitory control (Modolo et al.,
2020). The utility of resting EEG has been demonstrated in
diagnosing and studying clinical conditions such as epilepsy
(Huster et al., 2013), brain tumors (Liu et al., 2020), and sleep
disorders (Peter-Derex et al., 2021). Resting-state EEG has been
employed to identify IA (Choi et al., 2013; Kim et al., 2017; Lee
et al., 2014). For instance, Choi et al. (2013) utilized absolute and
relative power analysis to study individuals with IA, revealing
reduced absolute beta power and increased absolute gamma
power across the scalp. These EEG band activities were signifi-
cantly correlated with IA severity and impulse control. However,
other studies have reported variations in delta and theta power
among IA participants (Kim et al., 2017; Lee et al., 2014). Such
discrepancies in frequency power analysis results may arise from
differences in EEG features and algorithms used across studies.
While power analysis reveals neural oscillation activity in differ-
ent frequency bands, it does not capture the direction of signal
phases or interregional connections, which could provide critical
cognitive insights related to addiction symptoms.

EEG functional connectivity examines interactions between
neurons across brain regions, providing insights into the neural
networks underlying IA. Research has identified deficits in func-
tional connectivity in individuals with IA, particularly in brain
networks critical for cognitive functioning (Park et al., 2018). A
study on individuals with Internet gaming disorder (IGD) has
reported increased connectivity within the default mode network
(DMN; theta, alpha, and beta bands) and the reward-salience
network (RSN; alpha and beta bands) (Lee et al., 2022), highlighting
the involvement of these networks in impaired cognitive and
reward processing associated with IGD. Additionally, altered con-
nectivity patterns have been linked to gaming behaviors, suggesting
potential neurophysiological markers for IGD. The relationship
between IA and brain network topology during working memory
tasks has been explored using EEG and graph theory analysis

(Wang et al., 2020). Individuals with IA exhibited higher global
efficiency and network hierarchicality. They also showed stronger
functional connectivity integration, particularly in prefrontal and
limbic regions, which may support enhanced working memory
performance. Other studies have reported increased intrahemi-
spheric coherence in the beta and gamma bands among IA parti-
cipants (Park et al., 2017, 2018), implicating the brain’s reward
system, cognitive functions, and impulse control mechanisms
(Ding et al., 2014). Synchronization measures, however, are sus-
ceptible to volume conduction and reference effects, leading to the
adoption of metrics like the phase lag index (PLI) for more reliable
connectivity estimates (Stam, Nolte, & Daffertshofer, 2007). For
instance, a study using PLI to investigate intrabrain connectivity
during a ‘Stop’ signal task revealed significantly greater connectivity
in multiple brain regions among individuals with IA compared to
healthy controls (HCs) (Su et al., 2023). These findings highlight
notable differences in brain interconnections, further emphasizing
the importance of altered connectivity patterns in IA.

Recently, machine learning has become increasingly promin-
ent in IA research, supporting the classification and prediction of
IA using EEG. For example, Gross, Baumgartl, and Buettner
(2020) employed random forest algorithms to identify frequency
bands significantly associated with IA, using power values as
features to classify individuals as IA or non-IA. Similarly, Wang
et al. (2021) applied support vector regression to analyze changes
in functional connectivity, predicting behavioral score variations
and assessing the effectiveness of cognitive behavioral therapy for
IA. Deep learning methods, such as convolutional neural net-
works, have also been utilized to distinguish individuals with IA
from controls, leveraging EEG for advanced pattern recognition
(Sun et al., 2022). These studies highlight the potential of inte-
grating EEG markers with machine learning to enhance IA diag-
nosis and treatment evaluation.

The current study aimed to implement the PLI andweighted PLI
(WPLI) to examine functional connectivity in individuals with IA
and HCs. Phase synchronization has been proposed as a vital
mechanism for establishing communication networks among dif-
ferent brain regions (Engel, Fries, & Singer, 2001; Fries, 2005). The
PLI andWPLI serve to quantify the extent of phase synchronization
among various brain regions, rendering them unaffected by inter-
individual variations in power intensity. Compared with alternative
metrics of phase synchronization, such as the phase locking value
(Lachaux et al., 1999) or the imaginary component of coherence
(Nolte et al., 2004), the PLI andWPLI display heightened resilience
against the impact of volume conduction (Stam, Nolte, & Daffert-
shofer, 2007). This phenomenon arises when a dominant source in
the brain inaccurately triggers phase synchrony. Through the util-
ization of the PLI and WPLI, our objective was to pinpoint the key
characteristics of IA and evaluate the reliability of these attributes as
potential biomarkers for classification across various machine-
learning methods.

Methods

Participants

This study recruited 96 participants, consisting of 47 males and
49 females, all within the age range of 18 to 25. All participants
provided written informed consent prior to their participation, and
the study was approved by the Human Subject Ethics Committee of
the City University of Hong Kong. The authors assert that all
procedures contributing to this work comply with the ethical
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standards of the relevant national and institutional committees
on human experimentation and with the Helsinki Declaration of
1975, as revised in 2008. IA severity was assessed using the CIAS
(Chen et al., 2003), which consists of 26 questions. The participants
assessed each question’s alignment with their personal circum-
stances,with responses ratedon a scale from1 to 4,where 4 indicated
the highest degree of concordance. These questions encompassed
diverse facets such as Internet usage patterns and the influence of
the Internet on daily life and its repercussions on health. The CIAS
has demonstrated excellent reliability (Cronbach’s α = 0.94) and
strong correlations with IA-related behaviors, such as time spent
online, supporting its clinical and research applications (Ko et al.,
2005, 2005). Cronbach’s α (ranging from 0 to 1) measures internal
consistency, with values ≥0.9 indicating high reliability.

Following the criteria outlined by Ko et al. (2005), participants
were divided into two groups: the IA group, comprising individuals
with a CIAS score of 64 or higher, and the HC group, with scores
below 64. This threshold was selected based on findings demon-
strating a robust Cohen’s Kappa value of 0.61, indicating substantial
agreement between the CIAS score and clinical diagnoses and
underscoring its reliability as a diagnostic tool. Additionally, a score
of 64 achieved the highest diagnostic accuracy (87.6%) and strong
specificity (92.6%). The diagnostic odds ratio (DOR) of 26.17
further highlights the strong discriminatory power of this thresh-
old, reinforcing its value in both research and clinical applications.
Finally, the CIAS threshold was validated in college students
(Ko et al., 2009), further supporting its relevance to this study.
After the exclusion of four subjects due to data quality issues, the
study ultimately included 42 subjects (20 females) in the IA group
(CIAS mean score 75.9) and 50 subjects (27 females) in the HC
group (CIAS mean score 54.1). Importantly, no significant differ-
ences were found between the two groups in gender, age, or
handedness. Statistical analyses showed comparable gender distri-
bution (HC: 23males/27 females; IA: 21males/21 females, χ2= 0.03,
p = 0.863), handedness distribution (HC: 47 right-handed/3 left-
handed; IA: 41 right-handed/1 left-handed, χ2 = 0.112, p = 0.738),
and age (HC: 20.56 ± 1.57; IA: 20.71 ± 1.50, t = 0.48, p = 0.633)
across groups. Notably, all participants were well-controlled uni-
versity students from the same population, ensuring consistency in
sample characteristics and minimizing external variability. A sum-
mary of these comparisons is provided in Table 1.

Data acquisition

Resting-state EEG was recorded for 5 minutes (with eyes open)
using a cap with 32 Ag/AgCl electrodes (QuikCap, Compumedics
Neuroscan). The signals were amplified using a NuAmps amplifier
(Compumedics Neuroscan) with a band-pass filter of 0.1–100 Hz
and digitized at a rate of 1000 Hz. The data were referenced to the

average signals of the left and right mastoids. Horizontal eye
movement artifacts were tracked using two electrodes positioned
at the outer canthi of both eyes, while vertical eye movement was
monitored using two electrodes placed above and below the left eye.
The impedance of all electrodes was carefully maintained below
5 kΩ to ensure the acquisition of high-quality data. The participants
were explicitly instructed to remain awake and relaxed throughout
the recording session.

EEG preprocessing

The raw data underwent several processing steps to enhance its
quality. Initially, a finite impulse response (FIR) band-pass filter in
the range of 1 to 60 Hz was applied to exclude noise outside the
target frequency range. Subsequently, a 49–51-Hz FIR band-stop
filter was used to mitigate the influence of power line interference.
Thereafter, a manual examination was conducted to detect any
segments of data contaminated by significant artifacts, including
body movements, eye blinks, and environmental factors. These
contaminated data segments were then systematically removed
from the time series. Participants with data segments shorter
than 10 seconds were excluded during this stage. To further refine
the data, we employed independent component analysis (ICA) (Bell
& Sejnowski, 1995) as a blind source separation technique to
distinguish brain signals from various artifacts. ICA proved par-
ticularly effective in eliminating artifacts that could not be directly
addressed in the prior steps, such as long-lasting muscle or heart
signals. We used the IC label (Delorme &Makeig, 2004) to identify
artifact components and then exclude them from the dataset. All of
these preprocessing procedures were executed using MATLAB
R2020a (MathWorks) and EEGLABv2020.1 (Delorme & Makeig,
2004) to ensure the integrity and quality of the data.

Phase lag index

To calculate the PLI, first, the analytical signal xa tð Þ must be
constructed from the preprocessed EEG data series x tð Þ (Bruns,
2004):

xa tð Þ= x tð Þþ jx̂ tð Þ, (1)

where x̂ tð Þ= 1
πt × x tð Þ is the Hilbert transform of x tð Þ , and the

symbol × denotes the convolution operator. Equation (1) shows
that the analytical signal comprises both the real component of the
original signal and its corresponding Hilbert transform within the
imaginary component. The instantaneous phase ϕ tð Þ of x tð Þcan
then be determined using the following equation:

ϕ tð Þ = arctan
x̂ tð Þ
x tð Þ (2)

Using Equation (2), the PLI between any two EEG channels can be
computed as follows:

PLI =
1
N

XN

t = 1
sign img v tð Þð Þf g

���
���: (3)

Here, v tð Þ is defined as v tð Þ= ej ϕa tð Þ�ϕb tð ÞÞð Þ, where ϕa tð Þ and ϕb tð Þ
represent the instantaneous phases of channels a and b, respect-
ively. Further notations are as follows: sign �ð Þ signifies the sign
function, img �ð Þ indicates the projection of v tð Þonto the imaginary
axis, and N corresponds to the length of the time series. Figure 1
illustrates the distribution of an example v tð Þ . Notably, we can
observe a higher concentration of v tð Þin the range of -π to 0 degrees

Table 1. Demographic and clinical characteristics of the HC and IA groups

HC IA Statistics p-value

N = 50 N = 42

Age 20.56 ± 1.57 20.71 ± 1.50 t = 0.48 0.633

Gender (male/female) 23/27 21/21 χ2 = 0.03 0.863

Handedness (right/left) 47/3 41/1 χ2 = 0.112 0.738

CIAS 53.52 ± 7.14 76.14 ± 7.35 t = 14.94 0.000***

*** p < .001
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than in the range of 0 to π degrees, indicating the presence of a phase
delay at specific degrees. The PLI value falls within the range of 0 to
1. PLI values are elevated when the instantaneous phase differences
between two channels consistently exhibit a persistent alignment in
the same direction over time, indicating a substantial phase lead or
delay.

Weighted phase lag index (WPLI)

The WPLI (Vinck et al., 2011) extends the PLI by considering the
magnitude of the imaginary component of v tð Þ. It assigns weights
to the contributions of observed phase leads and lags and can be
calculated using the following formula:

WPLI =
1
N

PN
t = 1 img v tð Þf gj jsign img v tð Þf gð Þf g�� ��

1
N

PN
t = 1 img v tð Þf gj j , (4)

where the denominator in the equation functions to normalize the
magnitude of theweighted imaginary component in the numerator.
This normalization process ensures that the resulting value falls
within the range of 0 to 1.

PLI is prone to noise-induced fluctuations, particularly when
phase differences approach 0 or π. It is also vulnerable to volume
conduction, which can produce spurious correlations from shared
sources rather than genuine neural connectivity (Vinck et al.,
2011). To address these challenges, WPLI incorporates an
amplitude-weighting mechanism that reduces noise sensitivity
and minimizes volume conduction effects by assigning lower
weights to phase interactions with minimal imaginary compo-
nents. Comparative studies have validated WPLI’s advantages
over PLI (Yoshinaga et al., 2020; Yu, 2020). They benchmarked
functional connectivity metrics in simulated and real EEG/MEG
data, demonstrating WPLI’s superiority in handling noise, par-
ticularly at lower levels, and achieving higher test–retest reliabil-
ity. Hardmeier et al. (2014) further showed that WPLI more
effectively differentiates frequency-specific connectivity patterns
across multiple bands and reduces false-positive connectivity
from near-zero phase lags. These findings highlight WPLI’s

robustness, sensitivity to synchronization transitions, and reli-
ability in real-world conditions.

Machine learning methods

(1) Support vector machine (SVM)

The SVM (Cortes & Vapnik, 1995) is a supervised learning algo-
rithm renowned for its effectiveness in tackling complex classifica-
tion problems. Its primary objective is to discern a hyperplane
within the nf -dimensional feature space (where nf represents
the number of features) that adeptly separates distinct classes. This
hyperplane functions as the decisive boundary, with the closest
samples to it being termed support vectors. Notably, the SVM
leverages the kernel method, allowing it to project data into a
higher-dimensional feature space. This capability empowers the
SVM to identify an even more optimal hyperplane for the effective
separation of data from diverse classes. In our study, we employed
the widely utilized radial basis function (Orr, 1996) as the kernel
function.(2) Random Forest (RF)

RF is another potent supervised learning algorithm that employs the
concept of bootstrap aggregation (Breiman, 1996), commonly
referred to as an ensemble learning technique. This method entails
the independent training of multiple decision tree models. In the case
of each decision tree, the original dataset undergoes random sampling
to form subsets for training.When performing classification tasks, the
ultimate outcome is determined by amalgamating the individual
decisions made by each decision tree via a voting mechanism. This
ensemble approach equips the RF with the ability to adeptly handle
noisy and high-dimensional data with intricate interrelationships.
Furthermore, it showcases reduced vulnerability to overfitting when
compared with the utilization of a single decision tree.

(3) k-Nearest Neighbor (kNN)

The kNN (Altman, 1992) represents a straightforward supervised
learning algorithm that stands apart from the intricacies of the
previously discussed methods. In classification tasks, the class of a
new sample is established by assessing the predominant class

Figure 1. The entire procedure of data preprocessing and classification. (a) The distribution of an example v(t) suggesting the presence of a phase delay at certain degrees. In this
example, the uneven length of v1 and v2 indicates the asymmetry in phase differences, and the PLI value is 0.3.
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among its k closest neighbors, with k representing the number of
neighboring samples considered. Diverse techniques exist for quan-
tifying the distance between samples in the kNN. In this study, we
employed the Euclidean distance, a widely used and straightfor-
ward method. This distance metric computes the straight-line
distance between two samples within the feature space.

Implementation details

We computed PLI and WPLI values for each participant, encom-
passing all channel pairs across eight frequency bands: delta (1–
4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta1 (12–21 Hz), beta2
(21–30Hz), gamma1 (30–40Hz), gamma2 (40–50Hz), and gamma3
(50–60 Hz). Next, we employed the two-sample t-test to identify
connections characterized by the participants’ mean PLI or WPLI
values that exhibited a statistically significant difference between the
IA and HC groups, with a significance threshold set at p < 0.05. The
PLI andWPLI values exhibiting statistical significance were selected
as features for the subsequent classification task. To standardize the
scale of each feature, we utilized the z-score transformation (Cheadle
et al., 2003), which centers each feature around a mean of zero and
scales it to have a standard deviation of 1. We then applied principal
component analysis (PCA) (Jolliffe & Cadima, 2016) for dimension-
ality reduction. This step aimed to retain informative components in
the selected features while eliminating noise and redundant infor-
mation. By implementing PCA, we simultaneously reduced the
training time and enhanced the performance. The decision regarding
the number of principal components to retain in the PCA was
determined based on the cumulative explained variance ratio, which
was set at 99%.

We conducted model training and evaluation using a five-fold
cross-validation approach (Kohavi, 1995). The dataset was ran-
domly divided into five subsets, with efforts made to maintain a
roughly equal class distribution in each subset. During each trial,
four of these subsets were employed as training sets, while one
subset served as the testing set. This process was repeated five times,
with each subset taking on the role of the testing set once. Subse-
quently, the outcomes from the five testing sets were averaged to
derive the final result. For the classification task, we employed three
machine learning algorithms, as discussed previously. All method-
ologies were implemented using Python 3.6 and the Keras 2.1 API,
ensuring a robust and standardized environment for experimenta-
tion and analysis. The entire procedure is illustrated in Figure 1.

Results

Statistically significant connections

We employed the t-test to identify connection differences between
the IA and HC groups, using a lenient significance threshold
(p< 0.05)without adjusting formultiple comparisons. This approach
allowed us to include most of the connections based on their PLI
values. Figure 2a shows that the IA group had stronger connections
than the HC group in numerous regions (illustrated in orange).
Notably, a significant proportion of these connections were consist-
ently observed in both the delta and gamma frequency bands. In the
delta band, we detected numerous connections originating from
electrodes placed on the frontal region (Figure 2b). The gamma band
analysis revealed a significant number of connections originating
from electrodes distributed across the entire scalp, with many of
them placed on the occipital area (Figure 2b).

In the context of the WPLI analysis, our findings in Figure 3
closely echoed the patterns depicted in Figure 2, emphasizing a
preponderance of significant connections within the delta and
gamma frequency bands. Furthermore, both the PLI and WPLI
showed elevated values in the IA group, indicating the potential
presence of increased neuronal synchronization within this group.

Classification results

We used three performance metrics, namely accuracy, sensitivity,
and specificity, to evaluate the performance of the three classifica-
tion models (SVM, RF, and kNN). Definitions for each of these
metrics are presented below.

Accuracy =
TNþTP

TPþFNþFPþFN
, (5)

Sensitivity =
TP

TPþFN
, (6)

Specificity =
TN

TNþFP
, (7)

where TN represents ‘True Negative,’TP represents ‘True Positive,’
FN represents ‘False Negative,’ and FP represents ‘False Positive.’
‘True Positive’ is defined as the accurate classification of an IA
subject into the IA group. Accuracy measures the probability of
accurate predictions across all samples; sensitivity quantifies the

Figure 2. (a) Significant connections identified based on the PLI values between the IA and HC groups. Orange lines indicate the connections that were stronger in the IA group than
in the HC group, while blue lines indicate the connections that were weaker in the IA group than in the HC group. (b) Electrode engagement map showing the number of significant
connections calculated for each electrode.
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probability of accurate predictions within the IA group; and speci-
ficity quantifies the probability of accurate predictions within the
HC group.

Table 2 presents the means and standard deviations of the evalu-
ation results obtained from five datasets using PLI values as features.
Among the three models, the SVM model demonstrated superior
performance, achieving an accuracy rate of 83%. The SVM model
also had higher sensitivity values than the kNN and RF models,
suggesting that the SVM model was more efficient than the other
models in identifying the IA group. Moreover, the SVM model
showed similar performance to the other models in classifying the
IA (sensitivity measure) and HC (specificity measure) groups. In
contrast, the kNN and RF models showed better performance in
classifying the HC group than in classifying the IA group.

Table 3 presents the outcomes obtained when utilizing WPLI
values as the feature set. Upon integrating the WPLI into the SVM
model, we observed an improvement in performance, resulting in
an average accuracy of 86%. Nevertheless, we continued to observe
lower sensitivity values for both the kNN and RF models than for
the SVM model, as previously noted. This means that the SVM
model performed better than the kNN and RFmodels in classifying
the IA group. One possible factor contributing to this sensitivity
difference is the use of the kernel function in the SVMmodel. This
kernel function transforms features into a higher-dimensional

space, potentially enhancing the model’s capacity to distinguish
between the two data groups.

Discussion

In this study, we employed the PLI and WPLI to investigate phase
synchronization in the EEG patterns of individuals with and without
IA. Notably, we observed analogous topographical patterns in the
results of the t-test for both theWPLI and PLI.Of special significance
was the identification of numerous connections within the delta and
gamma frequency bands that exhibited significant differences
between the IA and HC groups, with the IA group manifesting an
elevated level of phase synchronization. These findings align with
emerging evidence that disruptions in neural connectivity and
neurotransmitter systems in IA affect both the inhibitory and reward
pathways (Chen, Dong, & Li, 2023), providing valuable insight into
the neural mechanisms driving addictive behaviors.

Neural mechanisms of IA

In the frontal area, notable connections were observed in the delta
band, and these results are consistent with previous neurophysio-
logical studies that examined IA (Y.J. Kim et al., 2017; J. Lee et al.,
2014). Delta oscillations in the frontal regions are thought to reflect

Figure 3. (a) Significant connections identified based on the WPLI values between the IA and HC groups. Orange lines indicate the connections that were stronger in the IA group
than in the HC group, while blue lines indicate the connections that were weaker in the IA group than in the HC group. (b) Electrode engagement map showing the number of
significant connections calculated for each electrode.

Table 2. The results of classification performed using PLI values as the feature
set

SVM kNN RF

Accuracy 0.83 ± 0.12 0.78 ± 0.15 0.79 ± 0.16

Sensitivity 0.80 ± 0.11 0.71 ± 0.1 0.67 ± 0.12

Specificity 0.83 ± 0.07 0.84 ± 0.08 0.90 ± 0.08

TN 8.6 ± 1.04 8.40 ± 1.02 9.00 ± 1.2

FP 1.40 ± 1.04 1.60 ± 1.02 1.00 ± 1.2

FN 1.80 ± 1.3 2.40 ± 1.25 2.80 ± 1.4

TP 6.60 ± 1.14 6.00 ± 1.25 5.60 ± 1.33

Table 3. The results of classification performed using WPLI values as the
feature set

SVM kNN RF

Accuracy 0.86 ± 0.05 0.81 ± 0.11 0.80 ± 0.06

Sensitivity 0.88 ± 0.11 0.80 ± 0.17 0.71 ± 0.16

Specificity 0.84 ± 0.05 0.82 ± 0.10 0.88 ± 0.10

TN 8.40 ± 0.49 8.20 ± 0.98 8.80 ± 0.98

FP 1.60 ± 0.49 1.80 ± 0.98 1.20 ± 0.98

FN 1.00 ± 0.89 1.60 ± 1.36 2.40 ± 1.20

TP 7.40 ± 1.36 6.80 ± 1.72 6.00 ± 1.67
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underlying neural mechanisms involved in signal detection and the
maintenance of attentional focus, often activated during cognitively
demanding or self-regulatory processes (Başar et al., 2001; Knyazev,
2007). Increased frontal delta activity has been observed in condi-
tions that require enhanced internal cognitive processing and a
reduced response to external distractions. This function is crucial in
executive processes and impulse control, as it may help filter out
irrelevant sensory information, allowing for greater focus on goal-
directed behavior (Harmony, 2013; Knyazev, 2007). Elevated delta
activity during rest among individuals with IA may signal the
impaired initiation of their inhibitory control mechanism. This
also aligns with a recent electrophysiological study which found
that IA individuals showed stronger neural responses to irrelevant
information in a Stroop task than the normal control (Lin et al.,
2023).

The gamma band also exhibited numerous connections across
the entire scalp, notably concentrated in the occipital region.
Gamma oscillations are critical for high-level cognitive functions,
including attention, memory integration, and impulse control,
which are often compromised in IA. The abnormal gamma coher-
ence observed in IA may signify an imbalance in dopaminergic
systems related to reward processing and impulsive behaviors
(Buzsáki & Wang, 2012). Specifically, disruptions in dopamine
neurotransmission, which have been associated with heightened
gamma band activity, could impair the neural circuits involved in
self-control and impulse regulation (Yordanova et al., 2002). The
dopamine system plays a key role in reward anticipation and
reinforcement, and an imbalance in this system may reinforce
maladaptive behaviors and reduce the brain’s capacity to inhibit
addictive actions, thereby contributing to the compulsive tenden-
cies characteristic of IA. Furthermore, Crick and Koch (1990)
proposed that sustained visual input, such as that experienced by
individuals with IA, could lead to structural reorganization in visual
processing areas and contribute to heightened gamma activity, thus
increasing the brain’s predisposition toward sensory sensitivity and
potentially reinforcing habitual internet use.

Overall, the findings of aberrant neural dynamics in both delta
and gamma bands observed in this study may reflect dysfunctions
in inhibitory control and impulse regulation networks. Heightened
delta and gamma coherence patterns suggest a maladaptive neural
connectivity profile that likely contributes to the cognitive and
behavioral challenges seen in IA. Excessive visual stimulation due
to prolonged computer and/or internet usemay potentially reshape
neural network structures in resting states.

Contributions of the classification methods in identifying IA

In the realm of the classification task, the SVMmethod consistently
outperformed the other two classification methods (RF and kNN),
reaching a classification rate of 86% when utilizing WPLI values as
features. Even though the t-test indicated fewer connections in the
theta, alpha, and beta bands, it was evident that incorporating
features from these bands remained beneficial for the classification
process. This finding highlights that these bands contain valuable
information that can enhance the classification task.

To further validate our findings, we conducted additional clas-
sification experiments using features derived from individual fre-
quency bands (theta, alpha, beta, gamma, and delta), focusing on
the significant connections identified through statistical testing.
The results, presented in Tables 4 and 5, showed that while features
from individual bands contributed to classification performance,

their accuracy was consistently lower compared to the combined
feature set, as shown in Tables 2 and 3. Specifically, the combined
feature set, incorporating significant connections from all fre-
quency bands, achieved higher classification accuracy than any
single band. This improvement was likely due to the complemen-
tary nature of information across frequency bands, where each
band captured distinct neural dynamics. Integrating these features
allowed themodel to leverage the strengths of each band, consistent
with prior research demonstrating the benefits of feature combin-
ation in enhancing predictive performance (Hou et al., 2011).
Additionally, combining features reduced the risk of overfitting
to band-specific noise, improving the model’s robustness and gen-
eralization. These findings underscore the advantage of integrating
features across multiple frequency bands.

To provide context for our findings, we compared our results
with recent studies that employed machine learning approaches to
classify IA or related conditions, as summarized in Table 6. For
instance, Sun et al. (2022) used convolutional neural networks to
classify IA based on EEG spectral power data, achieving accuracies
of 87.59% with full spectral power and 81.1% with raw EEG data.
Wang et al. (2021) utilized fMRI-based functional connectivity
density (FCD) features, achieving 82.5% accuracy with the SVM
classifier. Similarly, Hsieh et al., (2019) developed an ensemble

Table 4. Classification results for each frequency band using PLI values as the
feature set

SVM classifier

Band Delta Theta Alpha Beta Gamma

Accuracy 0.67 ± 0.05 0.65 ± 0.09 0.72 ± 0.14 0.68 ± 0.09 0.70 ± 0.08

Sensitivity 0.52 ± 0.16 0.51 ± 0.21 0.72 ± 0.16 0.59 ± 0.14 0.62 ± 0.19

Specificity 0.80 ± 0.14 0.78 ± 0.20 0.72 ± 0.17 0.76 ± 0.14 0.76 ± 0.05

TN 8.00 ± 1.41 7.80 ± 2.04 7.20 ± 1.72 7.60 ± 1.36 7.60 ± 0.49

FP 2.00 ± 1.41 2.20 ± 2.04 2.80 ± 1.72 2.40 ± 1.36 2.40 ± 0.49

FN 4.00 ± 1.26 4.20 ± 2.04 2.40 ± 1.36 3.40 ± 1.02 3.20 ± 1.60

TP 4.40 ± 1.36 4.20 ± 1.60 6.00 ± 1.26 5.00 ± 1.41 5.20 ± 1.60

kNN classifier

Accuracy 0.67 ± 0.09 0.71 ± 0.09 0.74 ± 0.07 0.67 ± 0.08 0.68 ± 0.11

Sensitivity 0.53 ± 0.29 0.62 ± 0.19 0.72 ± 0.11 0.57 ± 0.18 0.60 ± 0.20

Specificity 0.80 ± 0.13 0.78 ± 0.15 0.76 ± 0.12 0.76 ± 0.05 0.76 ± 0.08

TN 8.00 ± 1.26 7.80 ± 1.47 7.60 ± 1.20 7.60 ± 0.49 7.60 ± 0.80

FP 2.00 ± 1.26 2.20 ± 1.47 2.40 ± 1.20 2.40 ± 0.49 2.40 ± 0.80

FN 4.00 ± 2.45 3.20 ± 1.60 2.40 ± 1.02 3.60 ± 1.36 3.40 ± 1.74

TP 4.40 ± 2.33 5.20 ± 1.47 6.00 ± 0.89 4.80 ± 1.60 5.00 ± 1.67

RF classifier

Accuracy 0.61 ± 0.06 0.61 ± 0.15 0.73 ± 0.11 0.60 ± 0.07 0.69 ± 0.05

Sensitivity 0.38 ± 0.13 0.50 ± 0.19 0.71 ± 0.10 0.57 ± 0.11 0.53 ± 0.14

Specificity 0.80 ± 0.00 0.70 ± 0.13 0.74 ± 0.14 0.62 ± 0.15 0.82 ± 0.12

TN 8.00 ± 0.00 7.00 ± 1.26 7.40 ± 1.36 6.20 ± 1.47 8.20 ± 1.17

FP 2.00 ± 0.00 3.00 ± 1.26 2.60 ± 1.36 3.80 ± 1.47 1.80 ± 1.17

FN 5.20 ± 1.17 4.20 ± 1.72 2.40 ± 0.80 3.60 ± 0.80 4.00 ± 1.41

TP 3.20 ± 1.17 4.20 ± 1.60 6.00 ± 0.89 4.80 ± 1.17 4.40 ± 1.02
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classifier combined with case-based reasoning (CBR) to categorize
IA severity levels, exploring Internet usage patterns in temporary
internet files (TIF) from personal computers and achieving an
accuracy of 89.9%. While these studies offered valuable insights,
they primarily focused on spectral power, fMRI connectivity dens-
ity, or behavioral metrics, without emphasizing phase synchron-
ization and its neurophysiological significance.

Compared to previous studies, our research achieved a classifi-
cation accuracy of 0.86 using EEG functional connectivity features

and machine learning techniques, offering several notable contri-
butions. We employed PLI and WPLI for robust phase synchron-
ization analysis, minimizing volume conduction effects and setting
our work apart from studies focused on spectral power or fMRI
connectivity density. Our approach leverages cost-effective, non-
invasive EEG data combined with machine learning, making it
practical for real-time and large-scale IA assessments. Additionally,
our lower-complexity machine learning model enhances resource
efficiency and applicability. By examining functional connectivity
across multiple frequency bands, particularly delta and gamma, we
uncover richer insights into IA-related neural dynamics. The use of
SVM with WPLI features further highlights the effectiveness of
combining advanced phase synchronization metrics with machine
learning. Overall, our study provides a practical, efficient, and
insightful framework for improving IA classification and under-
standing its neural basis.

To date, few studies have explored phase information in the
investigation of IA. As mentioned, we utilized the PLI andWPLI as
metrics to assess the degree of phase synchronization in this study.
Phase synchronization has previously been acknowledged as piv-
otal in the investigation of conditions such as dyslexia (Fraga
González et al., 2018) and Alzheimer’s disease (Knyazeva et al.,
2010). Through rigorous statistical analysis and the application of
machine learning techniques, we demonstrated the pivotal role of
phase synchronization in individuals with IA. The PLI and WPLI
values obtained in our study indicate that the phase information of
delta and gamma bands may serve as potential biomarkers for
identifying IA.

Notably, phase synchronization biomarkers have also gained
recognition in diverse clinical applications. For instance, they
have been used to distinguish responders to vagus nerve stimula-
tion in pediatric epilepsy using SVM classifiers (Ma et al., 2022)
and identify unipolar and bipolar depression through feature
fusion of PLV, PLI, and WPLI (Duan et al., 2021). Additionally,
WPLI has been utilized as an EEG functional connectivity feature
in mild stroke patients, achieving high accuracy with SVM-RFE
(support vector machine recursive feature elimination) (Xu et al.,
2023). These advancements highlight the potential of combining
phase synchronization metrics with machine learning, paving the
way for future research to integrate these approaches in IA studies
and further expand on the promising findings presented here.

Although IA has been extensively explored by numerous
scholars, it is crucial to note that not all facets of Internet use have
detrimental effects. Chou and Hsiao (2000) conducted a survey
among Taiwanese students, revealing that the majority of the
participants perceived the positive impacts of Internet use on their
peer relationships. Social media, in particular, served as an add-
itional means of communication, facilitating the sharing of

Table 5. Classification results for each frequency band using WPLI values as
the feature set

SVM classifier

Band Delta Theta Alpha Beta Gamma

Accuracy 0.73 ± 0.06 0.63 ± 0.10 0.63 ± 0.08 0.65 ± 0.10 0.76 ± 0.08

Sensitivity 0.76 ± 0.12 0.71 ± 0.11 0.52 ± 0.16 0.62 ± 0.07 0.75 ± 0.18

Specificity 0.70 ± 0.11 0.56 ± 0.12 0.72 ± 0.12 0.68 ± 0.22 0.76 ± 0.19

TN 7.00 ± 1.10 5.60 ± 1.20 7.20 ± 1.17 6.80 ± 2.23 7.60 ± 1.85

FP 3.00 ± 1.10 4.40 ± 1.20 2.80 ± 1.17 3.20 ± 2.23 2.40 ± 1.85

FN 2.00 ± 1.10 2.40 ± 0.80 4.00 ± 1.41 3.20 ± 0.75 2.00 ± 1.41

TP 6.40 ± 1.02 6.00 ± 1.10 4.40 ± 1.50 5.20 ± 0.40 6.40 ± 1.85

kNN classifier

Accuracy 0.70 ± 0.12 0.57 ± 0.06 0.65 ± 0.10 0.60 ± 0.08 0.68 ± 0.11

Sensitivity 0.75 ± 0.18 0.57 ± 0.10 0.52 ± 0.20 0.50 ± 0.09 0.47 ± 0.24

Specificity 0.66 ± 0.12 0.58 ± 0.07 0.76 ± 0.05 0.68 ± 0.17 0.86 ± 0.10

TN 6.60 ± 1.20 5.80 ± 0.75 7.60 ± 0.49 6.80 ± 1.72 8.60 ± 1.02

FP 3.40 ± 1.20 4.20 ± 0.75 2.40 ± 0.49 3.20 ± 1.72 1.40 ± 1.02

FN 2.20 ± 1.60 3.60 ± 0.80 4.00 ± 1.67 4.20 ± 0.75 4.40 ± 1.85

TP 6.20 ± 1.17 4.80 ± 0.98 4.40 ± 1.74 4.20 ± 0.75 4.00 ± 2.10

RF classifier

Accuracy 0.72 ± 0.09 0.62 ± 0.10 0.64 ± 0.03 0.76 ± 0.09 0.68 ± 0.04

Sensitivity 0.65 ± 0.11 0.54 ± 0.06 0.59 ± 0.15 0.77 ± 0.12 0.54 ± 0.10

Specificity 0.78 ± 0.15 0.68 ± 0.15 0.68 ± 0.15 0.76 ± 0.19 0.80 ± 0.06

TN 7.80 ± 1.47 6.80 ± 1.47 6.80 ± 1.47 0.76 ± 0.19 8.00 ± 0.63

FP 2.20 ± 1.47 3.20 ± 1.47 3.20 ± 1.47 2.40 ± 1.85 2.00 ± 0.63

FN 3.00 ± 1.10 3.80 ± 0.40 3.40 ± 1.20 2.00 ± 1.10 3.80 ± 0.75

TP 5.40 ± 0.80 4.60 ± 0.80 5.00 ± 1.41 6.40 ± 0.80 4.60 ± 1.02

Table 6. Comparison of classification methods and feature sets in various IA studies

Reference Participants Data Models Features Accuracy

Our study 42 IA individuals, 50 Healthy
controls

RS-EEG SVM, kNN, RF PLI, wPLI 86%

Sun et al. (2022) 24 IA individuals, 25 Healthy
controls

RS-EEG CNN Raw data, spectrum power 87.59%

Wang et al. (2021) 27 IA individuals, 30 Healthy
controls

RS-fMRI SVM FCD 82.5%

Hsieh, Shih, Shih,
and Lin (2019)

114 mild level, 91 moderate
level, 12 severe level

Temporary
Internet Files
(TIF)

EMBAR Dataset clustered by SOM Mild: 86.3% Moderate:
84.9% Severe: 98.6%
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experiences and collaborative online gaming, which fostered com-
mon interests and topics among peers. The Internet offers users a
temporary escape from real-life stressors, providing a sense of
enjoyment in the virtual realm. Moreover, the platform allows for
anonymity, enabling individuals to freely express their thoughts
without inhibition. These positive dimensions of the Internet con-
tribute to its multifaceted influence on individuals’ lives. Therefore,
the question of whether IA should be classified as a disease remains
a topic worthy of discussion. Understanding the underlying factors
contributing to IA and promoting a healthy attitude toward Inter-
net use among adolescents could be pivotal in preventing and
addressing this issue.

Limitation and conclusion

Even though EEG provides the advantage of high temporal
resolution, its spatial resolution is constrained, posing chal-
lenges in pinpointing the exact brain regions involved in
IA. To address this limitation, future research could integrate
additional structural or functional imaging techniques, such as
functional magnetic resonance imaging (fMRI) or magnetoen-
cephalography (MEG). Combining these modalities may enable
a more comprehensive understanding of the neural mechanisms
underlying IA, ultimately enhancing clinical diagnosis and treat-
ment strategies.

Furthermore, the criteria for defining IA must be taken into
consideration. Although the CIAS score of 64 is empirically valid-
ated as a diagnostic threshold for IA and demonstrates high diag-
nostic accuracy, specificity, and reliability, its limitations should be
acknowledged. This threshold may not fully capture the heterogen-
eity of IA across diverse populations and contexts, as it was pri-
marily validated in adolescent and college student populations
(Ko et al., 2009). Consequently, the generalizability of this threshold
to other demographic groups, such as older adults or individuals
from different cultural backgrounds, remains uncertain, under-
scoring the need for further validation to ensure applicability across
diverse subpopulations. Moreover, IA is a complex condition
shaped by psychological, behavioral, and environmental factors,
and relying solely on this thresholdmay oversimplify the diagnostic
process, overlooking individuals exhibiting IA-related behaviors
below the threshold. Incorporating complementary assessments,
such as clinician-administered interviews or additional psychomet-
ric tools, could provide a more nuanced evaluation. Additionally,
the current threshold does not account for variations in symptom
severity or their effects on neural and behavioral outcomes. Future
research should explore dynamic and flexible diagnostic criteria
that integrate symptom severity and contextual factors to improve
diagnostic accuracy and comprehensiveness.

Another important consideration is the role of Internet use
patterns—such as duration, frequency, device type, and content—
in understanding IA and its relationship with EEG changes. Hsieh
et al. (2019) categorized IA severity using temporary Internet files,
achieving 89.9% accuracy. These files, which store cached data,
reflect key usage patterns tied to IA. In contrast, our study exam-
ined EEG functional connectivity using PLI and WPLI, achieving
86% accuracy in distinguishing IA from non-IA subjects. While
Internet use patterns were not analyzed here, their potential link
to EEG changes and used for distinguishing between IA and non-
IA subjects remains an interesting topic for future research.
Further studies could also help control confounding variables
more effectively.

Finally, we acknowledge that the observed EEG differences
could be influenced not only by Internet use itself but also by
secondary effects such as sleep deprivation, reduced physical activ-
ity, or changes in social interactions.While beyond the scope of this
study, disentangling these direct and indirect effects warrants fur-
ther investigation. Addressing these limitations through advanced
imaging modalities, refined diagnostic frameworks, and broader
assessments of lifestyle factors could strengthen future research and
contribute to more effective prevention, diagnosis, and treatment
strategies for this increasingly prevalent condition.
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