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Abstract

The present study examines whether self-reported trust in humans and self-reported trust in
[(different) products with built-in] artificial intelligence (AI) are associated with one another
and with brain structure. We sampled 90 healthy participants who provided self-reported trust
in humans and AI and underwent brain structural magnetic resonance imaging assessment.
We found that trust in humans, as measured by the trust facet of the personality inventory
NEO-PI-R, and trust in AI products, as measured by items assessing attitudes toward AI
and by a composite score based on items assessing trust toward products with in-built AI, were
not significantly correlated. We also used a concomitant dimensional neuroimaging approach
employing a data-driven source-based morphometry (SBM) analysis of gray-matter-density to
investigate neurostructural associations with each trust domain.We found that trust in humans
was negatively (and significantly) correlated with an SBM component encompassing striato-
thalamic and prefrontal regions. We did not observe significant brain structural association
with trust in AI. The present findings provide evidence that trust in humans and trust in AI
seem to be dissociable constructs. While the personal disposition to trust in humans might
be “hardwired” to the brain’s neurostructural architecture (at least from an individual
differences perspective), a corresponding significant link for the disposition to trust AI was
not observed. These findings represent an initial step toward elucidating how different forms
of trust might be processed on the behavioral and brain level.

Artificial intelligence (AI) represents a key technology, which is in-built in a growing number
of products people use daily (Lee, 2019). Examples of such products that are critically based on
AI technology are Apple’s Siri or Amazon’s Alexa. There are also many other products, which
will likely be on the mass market in the next few years such as self-driving cars and social robots
such as Pepper that are in need of consideration. At present, numerous definitions for AI exist in
the field (Monett & Lewis, 2018) including computers “mimicking human mental faculties”
(Hopgood, 2005, p. 3), but see also further discussions (Wang, 2019; see comment by
Bach, 2020). This study was designed to elucidate how trust in AI may be differentiated from
interpersonal trust (i.e., trust in other people), on the behavioral and brain level.

Many scientists predict that AI will impact the lives of people around the globe, and the
consequences on the societal level represent a highly debated topic. AI may result in flourishing
economies; however, it may also endanger hundred thousands of jobs (Kile, 2013; Makridakis,
2017). Given the promises and perils which will arise from the “AI revolution” (Harari, 2017), it
is important to understand the way humansmay relate to AI and how these types of attitudes are
formed. In this young but relevant research field, Sindermann et al. (2021) published a psycho-
metric measure assessing acceptance and fear of AI (attitude toward artificial intelligence
[ATAI]) in English, German, and Chinese language. An initial study employing this measure
revealed that the ATAI measure is robustly associated with trusting and using diverse products
with in-built AI. Hence, this measure shows external validity and thus might provide a robust
measure to quantify trust in AI within socio-psychological and neuroscientific contexts.
Sindermann et al. also showed that a Chinese sample displayed a higher acceptance of AI as
compared to German and UK samples (perhaps due, in part, to cultural differences in commu-
nication and planning of AI strategies in China compared to other countries (Demchak, 2019);
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for differences and similarities see the work by Bareis &
Katzenbach (2021)). The finding of the Chinese sample showing
higher acceptance scores for AI than the German sample was also
recently replicated (Sindermann et al. 2022), but more research in
this area is needed, because within country differences likely exist.
This study also demonstrated that fear in AI associated with higher
levels of neuroticism suggesting a potential association with behav-
ioral and emotional tendencies in interpersonal contexts.

Elucidating trust in AI is an important step toward better
understanding how individuals and societies may adapt to the
growing interaction with AI in their lives. Accordingly, a highly
relevant item with respect to the acceptance of AI in the ATAI
assesses trust in AI (making the ATAI scale relevant for the present
study). Trust in humans and in society has received increasing
attention during the last years (Evans & Krueger, 2009; Weiss
et al., 2021), and trust was particularly relevant with respect to good
governance during the COVID pandemic (Devine, Gaskell,
Jennings & Stoker, 2021; Kim & Liu, 2022). Beyond that, there
are further economic reasons for this interest in trust, as higher
trust in society tends to be associated with economic growth
(Dincer & Uslaner, 2010; Zak & Knack, 2001).

Several different types of research strategies have been used to
elucidate the nature of interpersonal trust. For example, twin
studies have shed light on heritability estimates (Cesarini et al.
2008), which showed that individual differences in trust have
genetic and environmental components. Hence, although the
environment has a substantial share in explaining individual
differences in trust, (molecular-)genetic components are also of
relevance (Krueger et al., 2012). Behavioral studies have related
individual differences in trust behavior to personality traits
(i.e., higher extraversion and lower neuroticism; Evans &
Revelle, 2008). Personality traits however are both shaped by genes
and the environment (Montag, Ebstein, Jawinski &Markett, 2020).
Beyond this, endocrinological studies have demonstrated links
between oxytocin and trust (Kosfeld, Heinrichs, Zak,
Fischbacher & Fehr, 2005; Quintana et al., 2021; Xu, Becker &
Kendrick, 2019), however see also the work by Declerck, Boone,
Pauwels, Vogt and Fehr (2020). Recently, several neuroimaging
methods have been used to examine how the function and struc-
ture of the brain correlate with behavioral measures of trust. These
studies show that individual differences in trust are linked to varia-
tions in the structural architecture of the brain (Aimone, Houser &
Weber, 2014; Haas, Ishak, Anderson & Filkowski 2015), whereas
twin studies show that the structural and functional architecture
of the brain is shaped by both genetics and the environment
(Liu et al., 2021; Jansen, Mous, White, Posthuma & Polderman,
2015; Peper, Brouwer, Boomsma, Kahn & Hulshoff Pol, 2007).
For example, Haas et al. (2015) showed that higher self-reported
trust is associated with increased volume in ventromedial
prefrontal cortex areas and the insula. In sum, existing empirical
research shows that trust has a biological basis and has been
studied in a variety of ways. However, the existing body of trust
research is currently limited to the concept of trust as related to
other people (i.e., interpersonal trust toward other humans) and
has not been investigated as a construct as related to AI or
machines. As AI products rapidly permeate in our everyday life,
we consider it as an appropriate time to better understand associ-
ations between trust in humans and trust in AI on both the
behavioral and neurobiological level, which has not been system-
atically examined so far. From our perspective, the investigation of
trusting humans and AI in a single design represents a timely and
highly relevant research endeavor. This approach provides the

opportunity to examine associations between both domains on
the behavioral and brain structural level.

In detail, we ask if humans with higher tendencies toward
trusting other humans also exhibit higher levels of trust in
machines with in-built AI. This may imply that the same biological
pathways may underlie trusting behavior across different contexts.
This may not necessarily be the case, because the so-called concept
of the “uncanny valley” proposes a non-linear function when
describing the patterns of trust in machines that are human like
(for a critical review, see Wang, Lilienfeld & Rochat, 2015). In
detail, the concept posits that with increasing human-like charac-
teristics of AI the familiarity, likeability, and trust ratings of a
machine can only increase up to a certain level. At some point,
a small plateau is reached and the ratings then switch into a nega-
tive evaluation. This is the case when the machine is very human
like but remains distinguishable from a human (Mathur &
Reichling, 2016). Therefore, trust formation to different product
groups which are different in terms of human-alikeness might
argue against the fact that trusting machines might in every case
be associated with the same neural pathways as trusting humans.
Given the lack of empirical studies in this field, we decided to assess
the general trust toward AI (as part of the ATAI measure) sepa-
rately from the individual trust toward a range of specific products
where AI is in-built. These products range from widely used Siri by
Apple to human-like androids. Moreover, given that trust in other
humans is associated with variation in brain structure (Haas et al.,
2015), but trust toward humans might have distinct neural under-
pinnings compared to trusting AI, we examined in the present
study if trust in humans and trust in AI share an overlapping brain
structural basis. To this end, we combined magnetic resonance
imaging (MRI) brain structural assessments with source-based
morphometry (SBM) as a data-driven multivariate approach to
brain structural analyses as this demonstrates advantages over
the conventional univariate analysis techniques such as voxel-
based morphometry (VBM), including higher sensitivity (Gupta,
Turner & Calhoun, 2019; Zhou et al., 2022).

1. Methods

1.1. Participants

Ninety male participants (age= 22.82, SD = 2.25) without a
current or a history of a diagnosed psychiatric or neurological
disorder were enrolled in the present study. Thus, participants
reaching cutoff values for disorders such as depression were not
included in the analysis. The sample was part of a neuroimaging
project examining associations between individual variations in
problematic internet gaming and brain structure (see previous
publication by Zhou et al. (2020) using the same sample; see also
the replication approach in Klugah-Brown et al., 2022). Within the
previous study, we used a dimensional approach to investigate
Gaming Disorder and did not investigate patients with a diagnosed
Gaming Disorder vs. healthy controls. Participants underwent
MRI (T1-weighted imaging) to assess brain structure. Within
the context of the present study, participants were asked to
complete several questionnaires designed to assess self-reported
trust in humans, attitudes toward AI, and trust in several products
with in-built AI. The items were presented together with Likert
format answers as described below. For further details on the
sampling and data acquisition, see the work by Zhou et al.
(2020). The study and its procedures had full approval by the local
ethics committee at the University of Electronic Science and
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Technology of China and adhered to the most recent version of
the Declaration of Helsinki. All participants provided informed
consent.

1.2. Attitude toward artificial intelligence

All participants completed the ATAI (Sindermann et al., 2021).
The scale consists in total of five items. Two items form the
subscale “acceptance of AI” (α = .76 in this sample) and three
items assess the subscale “fear of AI” (α = .65 in this sample).
All items are answered via options ranging between 0 = “strongly
disagree” and 10 = “strongly agree.” Higher scores correspond to
higher acceptance or higher fear of AI. Note that for the present
analysis focusing on trust, item 2 of the ATAI (“I trust
artificial intelligence”) is of particular interest. Item 2 belongs to
the acceptance scale of the ATAI.

1.3. Trusting diverse products where AI is in-built (TDP-AI)

All participants completed items assessing trust toward diverse
products where AI is in-built (TDP-AI; Sindermann et al.,
2021). Products assessed were Google’s self-driving car, Apple’s
Siri, the Chinese Alexa (Amazon), the social robot Pepper, and four
human-like android products (Erica, Geminoid HI-1, Sophia,
Geminoid DK). For the first four products, participants were asked
if they would be willing to use them (subscale “willingness to use”)
and if they are currently using them (yes/no) but also how much
they trust these products. Hence, each product was investigated
with three items. For the four human-like androids, it was asked
if one would accept them as companions (subscale “interact”)
and howmuch one would trust these androids. Here, each product
was investigated with two items.

The trust items as well as the willingness to use/interact items
were administered on a scale ranging from 0 = “strongly disagree”
to 10 = “strongly agree.” Higher scores indicate more trust toward
the product or more willingness to use/interact with the product.
Internal consistencies for all items assessing trust toward

the respective AI product were (alpha) .93. In the following inves-
tigations, we mainly focused on a composite score of all items
assessing trust toward product with in-built AI, but also see more
fine-grained analysis in the supplementary material.

1.4. Trust facet of the personality dimension agreeableness
from the NEO-PI-R

Participants also completed the trust (A1) facet of agreeableness
within the NEO-PI-R (Costa & McCrae, 2008) in line with how
Haas et al. (2015) assessed interpersonal trust in their MRI work.
The trust facet is comprised of eight items that are answered on a
five-point Likert scale ranging from 0 = “strongly disagree” to
4= “strongly agree.”A sum score was created (α= .71) with higher
scores representing higher interpersonal trust. The Chinese version
of the trust facet was conducted via forth- and back-translation by
two bilingual speaking scientists from our work groups.

1.5. Statistical analysis of self-reported trust data

Associations between the self-reported trust data of the NEO-PI-R
trust facet, the ATAI, and the TDP-AI were examined by means of
correlational analysis. Note that we used a five-point Likert scale to
assess individual differences in trust and an eleven point Likert
scale in the context of the ATAI and trust in AI product variables.
The different scaling use might result in different fine-granular
variance levels. Therefore, future studies should also investigate
these research questions using the same Likert scales.

It was not controlled for age, as age was not significantly
associated with the self-report variables NEO-PI-R, ATAI, or
composite score of the TDP-AI. Parametric correlation analysis
(Pearson) was performed (although the data mostly resembled
normal distributions after visual inspections, for reasons of trans-
parency in Figure 1 also Spearman correlations are presented for
comparison showing no meaningful differences in terms of
differing effect sizes, which were not further tested though). One
could question to run linear correlational analysis against the

Figure 1. Correlation patterns between the relevant ATAI/trust variables. Upper right half depicts Pearson correlations. Lower left half depicts Spearman correlations. Results
indicate that trust in humans (NEO-PI-R) is not associated with trust toward AI or trust in products with in-built AI. Significance is presented on a two-tailed test level.
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background of the uncanny valley theory. As becomes apparent in
Table 1, our data do not support the uncanny valley and we also ran
brain–trust correlations on item level. Finally, Bayesian factor
correlation analyses were computed to determine the robustness
of non-significant associations.

1.6. Acquisition of brain structure (T1-weigthed MRI
acquisition)

Brain structural data were acquired on a 3.0 T GE MR750 system
(General Electric Medical Systems, Milwaukee, WI, USA).
T1-weighted high-resolution anatomical images were acquired
with a spoiled gradient echo pulse sequence, repetition time
(TR) = 6 ms, echo time (TE)= 2 ms, flip angle= 9 degree, field
of view (FOV)= 256 × 256 mm, acquisition matrix = 256 × 256,
thickness= 1 mm, and number of slices = 156.

1.7. MRI data preprocessing

Structural MRI data were preprocessed with CAT12 implementing
a computational anatomy approach (http://dbm.neuro.uni-jena.
de/cat). Data processing involved the following steps: firstly,
T1-weighted images were bias-corrected, segmented into gray
matter (GM), white matter (WM), and cerebrospinal fluid, and
spatially normalized to the standard Montreal Neurological
Institute space. Secondly, GM images were smoothed with a
Gaussian kernel of 8 mm full-width at half maximum for
subsequent statistical analysis, and the total intracranial volume
was estimated to correct for individual differences in brain size.

1.8. SBM and statistical analysis regarding MRI data

Gray matter density (GMD) was analyzed by employing SBM
as implemented in the GIFT toolbox (http://mialab.mrn.org/
software/gift/) (Xu, Groth, Pearlson, Schretlen & Calhoun,
2009). SBM uses independent component analysis (ICA) to extract
features reflecting multivariate relationships among GMD
regions. Using the minimum description length, the number of
components was estimated, and then through ICASSO and

further visual inspection, intrinsic components (ICs) were
selected to ensure the removal of artifactual components mostly
those exhibiting high values in ventricles, WM, and or showing
less stability across runs. Associations between brain structural
variations and variations in interpersonal trust (human level)
and trust in AI were examined by means of multiple linear regres-
sion models including the “loading coefficients” of the selected
ICs as dependent variable, and ATAI, TDP-AI, and trust toward
humans (NEO-PI-R) as independent variables for each model.
For reasons of simplicity we focus in the result section in
particular on the association between trust in humans and
component 1 (and do so with presenting a correlation coeffi-
cient). Age did not have a relevant effect on this association
and therefore was not controlled for. Significance tests were
thresholded at p < .05.

2. Results

The descriptive statistics indicate that on average participants
showed “neutral to slight positive” level of trust toward products
with AI (see Table 1).

2.1. Associations between trust in AI and trust in
humans–correlation patterns

The pattern of correlation among variables indicates that trust
ratings toward the diverse AI products (here a combined sum
score) were highly intercorrelated (see supplementary material)
and the composite score “Trust toward AI products” from the
TDP-AI also correlated with the single trust item of the ATAI
(“I trust AI,” item 2). The overall pattern of correlation regarding
ATAI and TDP-AI measures is consistent with the results of
Sindermann et al. (2021). Beyond that, we found that trust toward
AI and trust toward humans were not significantly associated
(nearly null associations), suggesting unrelated domains (note that
some android products show some positive association trends in
mild correlation areas, namely those androids, which are designed
as Asian-looking like androids; these correlations are presented in

Table 1. Descriptive statistics of the self-reported trust/ATAI variables

Trust variables Mean Standard deviation Actual range
History of usage

(for four products only)

Trust toward self-driving car 5.94 2.41 0–10 No = 88 (97.8%)

Trust toward Siri 5.87 2.58 0–10 No = 47 (52.2%)

Trust toward Chinese Alexa 5.64 2.34 0–10 No = 77 (85.6%)

Trust toward social robot Pepper 5.67 2.21 0–10 No = 83 (92.2%)

Trust toward Erica 5.83 2.26 0–10

Trust toward Geminoid HI-1 5.40 2.41 0–10

Trust toward Sophia 5.47 2.40 0–10

Trust toward Geminoid DK 5.63 2.47 0–10

Trust toward all AI products (sum score) 45.46 15.70 3–79

“I trust AI” (from the ATAI; ATAI Trust in AI) 6.08 2.46 0–10

ATAI fear 12.23 5.99 0–30

ATAI acceptance 13.52 3.97 2–20

Trust toward humans (NEO-PI-R) 19.90 3.98 6–29
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the Supplementary Figure S1). Note that aside from Caucasian-
looking androids Asian-looking androids were presented, because
it has been reported that different level of mere exposure to faces
from different ethnic groups can influence likeability (Zebrowitz,
White & Wieneke, 2008).

Note that age was not associated with any of the variables in
Figure 1 and therefore is not presented within the correlation
pattern. We also computed Bayesian factor correlation analyses,
which confirmed the lack of associations for trust in humans
and trust in AI (Supplementary Table S1).

From the SBM analysis, four ICs were estimated by the ICA. On
inspection, all four components estimated from the ICA presented
a high quality (i.e., most voxels were located in GM and the ICs
presented low spatial overlap). The loading coefficients were
extracted from these four ICs and subjected to linear regression
analyses which revealed that of the four ICs, only one component
(Component 1, as shown in Supplementary Table S3) showed
a significant association with trust toward humans. The other
ICs were not significantly associated with trust toward humans.
Examining associations between the ICs and individual variations
in attitude toward AI (ATAI acceptance; ATAI fear), the item “I
trust artificial intelligence” (ATAI single trust item) or the
composite trust score combining trust across the eight AI products
(trust toward AI products) did not yield significant results. Higher
trust in humans was negatively associated with lower GMD in the
bilateral thalamus and dorsal striatum, as well as a right (middle)
frontal region of component 1 (Figure 2A; 2B). The component
map in Figure 2A was obtained on the whole brain level, and
we initially applied a p-value computation on the voxel level with
a subsequent application of an FDR = 0.05 approach for multiple
comparisons correction at the voxel level. In addition, given that
our previous study encompassed only n= 82 subjects because of
stricter inclusion criteria (Zhou et al., 2020) we considered it
mandatory to repeat the present analysis with the identical sample.
To this end, we recalculated the ICA with the 82 subjects and
compared their loading coefficient values. We found no significant
differences in the values or in the spatial components
(Supplementary Figure 2, Table S2).

3. Discussion

The present work examined the relationship between trust toward
humans and the general trust toward AI as well as trust in products
with in-built AI on a behavioral and brain structural level. In line
with Sindermann et al. (2021), general trust in AI as assessed by the
ATAI scale is robustly linked to trusting products with in-built AI,
indicating a high external validity of the construct. Although
previous observations suggest that the ATAI scales are associated
with individual variations in behavioral tendencies such as neuroti-
cism (Sindermann et al., 2022), the present study did not observe a
relationship between trust in humans and trust in AI in general or
trust in AI products, respectively. Further examination of struc-
tural brain data revealed that variations in trust in AI were not
significantly associated with individual variations in brain struc-
ture. But we observed that higher trust in humans was negatively
(and significantly) associated with an SBM GMD component
spanning bilateral thalamic-striatal regions and the right middle
frontal cortex. Summarizing, the present findings suggest that trust
in humans and trust in AI are not associated on the self-report
level. But variations in interpersonal trust are associated with
GMD variations, while no corresponding significant observation
was made for trust in AI.

The lack of significant associations between the scales assessing
individual variations in trust in AI and trust in humans provides
initial tentative support that these trust domains are not related with
each other. Whereas trust in other humans facilitates cooperation
and exchange in social groups and may represent an evolutionary
evolved survival advantage, exposure to and experiences with AI
represent a very recent phenomenon. We hypothesized that varia-
tions in the two domains might be associated, possibly reflecting a
common trust factor. But we did not observe such an association.
This might, however, change in the near future, when new products
are developed, which get more and more human like. At least we
observed a small, but not significant trend that higher trust toward
humans is associatedwith higher trust toward androids belonging to
the same ethnicity of the study participants, hence human like
appearing products of the same ethnic group. However, a

Figure 2. Higher trust in humans is accompanied by lower gray matter density in the bilateral thalamus and dorsal striatum, as well as a right (middle) frontal region of compo-
nent 1 as shown in (A). The scatter plot (B) shows the association between the significant component and trust in humans. Note that in (B) the Pearson correlation is depicted (of
note: Spearman's Rho is −.238, p = .024). R-Square for the regression is rounded 0.06 (hence about 6% explained shared variance).
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corresponding dip in trust toward human-like androids (hence the
uncanny valley), which are getting very close to a human being, was
not mirrored in the descriptive statistics of the present study and
could also not be really investigated as we did not ask for trust
toward a specific human person.

The lack of an association between trust in humans and trust in
AI products was additionally mirrored on the structural brain level.
While higher levels of trust in humans as assessed by the NEO-
PI-R trust scale were significantly related to reduced GMD in a
component spanning the bilateral thalamus and dorsal striatum
as well as some middle prefrontal regions, no significant associa-
tions with scales assessing individual variations in trust toward AI
or AI products were observed. In line with the present findings,
previous studies reported associations between individual varia-
tions in self-reported trust toward humans or interpersonal trust
behavior and the structural architecture of the brain (Feng et al.,
2021; Haas et al., 2015). In particular, Haas et al. (2015) employed
the identical human trust measure as in our study and by means of
a univariate VBM analysis observed positive associations between
higher trust in humans and higher GM volume in medial frontal
and insular regions. In contrast, the present study observed that
increased trust was associatedwith reduced GM density of the bilat-
eral thalamus and dorsal striatum, while Haas et al. (2015) found
increased trust was associated with increased GM volume of the
ventromedial prefrontal cortex. The difference in results may
be accounted for by methodological differences across studies
and/or cultural differences across samples. For example, the
current study employed a multivariate data-driven SBM approach
assessing GMD while the previous study by Haas et al. (2015)
employed a conventional univariate VBM analytic approach
assessing GM volume. Variations in the analysis and even the
preprocessing of structural brain data have increasingly been asso-
ciated with variations in the identified brain regions and may
contribute to replicability issues with respect to associations
between personality or behavioral domains with indices
of regional brain structure (e.g., Valk et al., 2020; however, see also
Becker et al., 2015; Liu et al., 2021; Zhou et al. 2022). Furthermore,
in the current study we examined a sample of Chinese participants,
while the study by Haas et al. (2015) investigated a sample of
American participants. A large body of evidence demonstrates that
Chinese and Americans differ in terms of interpersonal relation-
ships (Wei, Carrera, Su, Lin & Yi, 2013) and several aspects of trust
(Huang & Rau, 2019; Huff & Kelley, 2003; Klein et al., 2019; Özer,
Zheng & Ren, 2014). Taken together, the way people construe trust
as a generalized construct or specifically within interpersonal rela-
tionships is likely influenced bymany factors including the cultural
context but also contextual and social factors within a culture. The
general tendency to trust may however represent an underlying
behavioral tendency which influences trust across contexts.
Finally, we mention that the present discussion could also benefit
by including findings from neurostructural investigations of
empathy, as empathy (in particular empathic concern) is related
to trust (Kamas & Preston, 2021). In a work on empathy and
the structure of the human brain (Banissy et al., 2012), it has been
observed that more empathic concern was associated with lower
GM volume of the precuneus and anterior cingulate (region of
interest analysis). The whole brain analysis also revealed a negative
association between empathic concern and the left inferior frontal
gyrus. The latter finding is interesting in the context of our findings
where we observed such a negative association between higher
trust and lower GM volumes of the right (middle) frontal regions.
Clearly bringing in together the constructs of empathy, trust

toward humans and AI in one single research design will be of
interest to better understand similarities and differences in the
constructs (also on brain structural level) soon.

How can the present brain-interpersonal-trust associations be
explained in terms of their functional relevance for trust? The brain
structures being associated in the present work with interpersonal
trust are part of established thalamo-striato-cortical loops which
have been strongly involved in cognitive control and impulsive
behavior (den Heuvel et al., 2010; Robbins, Gillan, Smith, de
Wit & Ersche, 2012). Of note, an intriguing psychological theory
(Murray et al., 2011) distinguishes between the existence of more
impulsive and more deliberate trust, with the present brain struc-
tural associations suggesting that the NEO-PI-R trust scale may
stronger touch upon the impulsive nature of trust. Although the
NEO-PI-R’s trust facet has not been constructed to disentangle
more impulsive and more deliberate trust, it might be the case that
the more impulsive – hence low cognitive and high automatic –
trust behavior might go along with lower brain density within
the thalamo-striato-cortical loops whereas more deliberate – hence
high self-control – trusting behavior (see also Evans, Dillon, Goldin
& Krueger (2011)) might be linked to higher regional density in
other circuits supporting deliberate decisions to trust.

In contrast to interpersonal trust, individual variations in AI
trust were not significantly associated with variations in brain
structure. The absence of significant structural brain correlations
with the attitude toward AI scale (including trust in AI) may be
explained in terms of learning experience or a hard-wired architec-
ture of the brain. Although speculative, it is for instance conceiv-
able that repeated experience during social interactions – in
interactions with our genetic make-up (see the aforementioned
twin study (Cesarini et al., 2008) and several discussions about
gene by environment effects in the introduction) – forms trust
in humans and concomitantly shapes the underlying brain struc-
ture. Alternatively, it is conceivable that trust in other humans in
terms of an evolutionary adaptive function may be related to
individual variation in genetics and brain structure per se. Both
(highly speculative) explanations can also account for the lack of
significant brain structural associations with trust in AI, such
that AI represents a very new phenomenon and corresponding
experiences are not sufficient to strongly imprint brain structure.
Moreover, acceptance or fear of AI might be diffuse and as an
attitude too easily be changed to be robustly (here meaning
significantly) linked to brain structure differences.

The present study represents an initial and highly exploratory
approach tomap associations between trust in humans and trust in
AI on the self-report and structural brain level. The findings should
be cautiously interpreted in terms of the following limitations of
the study. First, the present study was conducted only with male
participants; therefore, future studies should investigate whether
the results generalize to females. Second, the trust variables were
assessed via self-report, which comes with the usual potential prob-
lems such as answering in a socially desirable way or lacking
insights into one’s own person. Trust can be for instance more
objectively assessed with the trust game (Civai & Hawes, 2016).
In every case, we would favor objective trust data in future studies.
Third, this field is very new, and we do not know how stable atti-
tudes toward AI are. We know that personality traits are rather
stable (for a more balanced view beyond this simplification, see
the work by Wagner, Orth, Bleidorn, Hopwood & Kandler,
2020), for attitudes toward AI or trusting AI this is not clear,
and changes in the ATAI would be also of interest to be investi-
gated in the context of brain data. The study is further limited
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by only having assessed product usage (if possible), but not the
degree of familiarity, which could impact trust levels via mere
exposure levels. Furthermore, the effect size representing the asso-
ciation between NEO-PI-R’s trust scale
and the brain structural data was small and therefore warrants
replication. In particular such a replication is also needed against
the background of several constructs being investigated in the
present brain structural study. Finally, the present study has been
conducted in a Chinese sample.We already know from two former
works that acceptance of AI seems to be higher in Chinese samples
compared to samples from other countries (i.e., Germany).
Therefore, investigating the present research question in samples
from other countries and cultures might result in different insights.
Moreover, future studiesmight want to also achieve a larger sample
size, although theMRI part makes such an endeavor more difficult.
Finally, our findings might be biased by individuals showing
different familiarity levels with AI and therefore future studies
should also assess such a familiarity with AI variables.

In sum, to our knowledge this work is one of the first of its kind
to investigate both trust in humans and trust in AI in one study
design also relying on brain imaging. Both trust constructs appear
not to be related to each other and while a significant brain-trust
association with trust toward humans could be observed, this was
not the case for trust toward AI. Against the background of the
raised limitations, the present findings should be considered as
preliminary. Replication studies demonstrating the replicability
of the findings in independent samples and across different brain
structural analyses methods (Zhou et al. 2022) are key to establish
the robustness of the present findings. We would be happy to see
other scientists joining this timely research area, which likely will
gain rapidly in relevance in an age where AI is more and more in-
built in evermore products. Insights from research endeavors
such as the present one help to improve our understanding of
interacting with AI, and this may ultimately be relevant knowl-
edge to improve human–machine interaction, being of growing
relevance in digital connected societies.

Supplementary materials. For supplementary material for this article, please
visit https://doi.org/10.1017/pen.2022.5
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