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ABSTRACT 

Flow avalanches may be regarded as being composed of 
a granular fluid . When dislodged, the snow masses accelerate 
down a slope until the inclination of its bed tends towards 
the horizontal, at which stage bed friction eventually brings 
the snow to rest. We present a completely new analysis of 
the motion of a finite mass of granular material along an 
inclined base. 

We regard a granular snow mass as an incompressible 
continuum to which a Coulomb-like basal friction law can 
be applied . Depth-averaged equations of motion are 
formulated in terms of a curvilinear coordinate system along 
a curved bed, and incorporate an averaged longitudinal 
velocity and a height distribution . A numerical finite
difference technique is emplo yed to integrate these 
equations. We present numerical results obtained for motion 
along a curved bed and compare this with the solutions of 
the equations with results from labo ratory observations . The 
experiments have been performed in o rder to monitor the 
mo tion of a finite mass of granules, either plastic particles 
or glass beads, along a chute co nsisting of both an inc lined 
and a horizontal zone, the two zones being connected by a 
curved element. The particle spread along the chute and the 
mass distribution of the granules in the run-out zone , as 
obtained from these experiments, are compared with those 
derived from theoretical computations. The results show that 
the model used predicts the moti on of a granular avalanche 
reasonabl y well. 

Finally, it is indicated how th e basal fri c tion law may 
be extended or alte red in orde r to reproduce the dynamic 
processes involved in causin g the abrupt cessation of the 
snow mass- motion charac teri sti c in the run-out zone. 

INTRODUCTION 

The classic computati ona l concepts f or the predict ion 'of 
catastrophic motion of an a va lanche or landslide are 
incorporated in the point-mass or hydraulic models of 
Voellmy (1958), Salm (1968), a nd Perla and others (1980) . 
The y involve one phenomenolog ical relationship, namely the 
postulate for the f o rce that resists the motion which 
otherwise is accelerated by gravity . The fric tional force 
consists of two components: the first component essentially 
obeys a solid, Coulomb-type friction law and is used to 
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model basal drag; the second component accounts for 
turbulent hydrodynamic resistance and shows a classica l 
aerod ynamic drag which is proportional to the square of the 
velocity of the system. The corresponding drag coefficient is 
adjusted according to whether powder or flow avalanches 
are being considered. 

It is probably fa ir to say tha t a proper avalanche 
mode l o ught to descri be the dispersa l of the snow mass as 
it moves down the mountainside, the instantaneous ve loc ity 
field , and the depos itio n a rea of the run-out zone . Our 
model assumes a continuum for a cohesio nless granular 
ma te ria l released from res t o n a rough curved bed . By 
integra ting the bala nce laws of mass a nd momentum across 
the depth of the sno w mass, re ferred to a curv ilinear 
coo rdinate system adjusted to the basal surface, a sys tem of 
equatio ns for the distri bution of snow height , and for the 
ave raged lo ngitudinal vel oc ity, is obtained. The onl y 
phe no menolog ical re lationship entering into these equations is 
a basal fri c tion law which we assume to be of a dry 
Co ulomb-type. Thus, o ur mode l is conceptually sim pler to 
the Voellm y-Salm-Perla models; we include considera tio n of 
the geo me try of the mounta inside as our equations conta in 
its curvature function, and we ex pli c itl y so lve for the evol
ution of snow-mass spread as the ava lanche moves down 
the mounta inside. The pec ulia rit ies of the d yna mic 
behav io ur of the ava la nche whe n it co mes to rest in the 
run-o ut zone can be , a nd a re be in g, inco rporated in the 
spirit of the Voe llm y-Salm-Pe rla approach by the inc lusion 
of additiona l de pe nde nc ies of th e basa l fri ctio n law into our 
model. Our so luti on tec hniqu es do not become more 
co mplica ted because of thi s. 

The equations are so lved nume rically for a prescribed 
initia l distribution of th e mass of the avalanche. Their 
solutio ns yie ld at each in stant the distribution of the he ight , 
and th e averaged lo ng itu d in al ve loc it y. Thus, the motio n of 
the spreading mass ca n be fo llowed in the course of time 
until it comes to rest within th e run- out distance. 

It is an o bvio us fac t th at direc t observa tio n of the 
d ynamics of ava lanches is ex treme ly difficult to ma ke, and 
probab ly onl y poss ible by re mote-se ns ing techniques. Gubler 
(198 7), us ing rada r Dopple r tec hniques, has been successful 
in fo ll owing a few a rtifi c ially re leased flo w ava la nches, but 
we know o f no measure ments o f the dyna mics o f large 
masses with rocks or soi l. This indi ca tes that labo rato ry 
simulations are impo rta nt , espec iall y if theore tical mode ls are 
to be tested aga inst obse rva tions. 

Until ve r y rece ntl y, th e experime nts of Hube r ( 1980) 
were probabl y the onl y sys te ma tic labo ra to ry tes ts pe rfo rmed 
to monitor th e motio n of a finite mass o f la rge-pa rticle, 
solid material down an inc lined chute. Huber used gravel of 
approximatel y 25 mm mean diameter and an inclined 
pl ywood board alo ng which the spreading mass was ca used 
to move. Hutter and co-worke rs (Pluss, 1987; Hutter and 
others, 1988) performed furth er experiments using plastic 
particles and glass beads moving in a curved chute . These 
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Fig. I. A finite mass of gravel moving down a curved bed. 
Definitions of curvilinear coordinates (en), angle of 
inclination, ~, and depth distribution, h(~,n). 

experiments were used to check and calibrate the theoretical 
models. It is recognized that laboratory experiments 
construct artificial situations not likely to occur in Nature; 
they are performed with materials exhibiting considerable 
elasticity in collisional encounters, and lacking cohesion, and 
the masses of the materials with which they are performed 
are small. However, despite this, reliable inferences can be 
drawn from such situations which help in establishing the 
confidence which is necessary if theories are to be applied 
for larger masses and especially when the conclusions 
reached from theory are. then put into practice. 

MODEL EQUATIONS 

Consider free surface flow of a granular fluid along a 
slowly varying bottom profile (Fig. I). Assume that the 
granular material can be treated as a continuum; this 
requires that the thickness of the sliding and deforming 
body extends over several particle diameters. Ignore 
variations in density due to changes in void ratio, this 
being justified because fluidization has been seen to occur 
primarily in a thin basal boundary layer. It may then be 
shown that there is a one- to-one correspondence between 
our Equations (2) and (3) and corresponding ones that may 
be deduced without imposing an incompressibility 
assumption. We shall also integrate the longitudinal 
momentum equation over depth, and only work with the 
mean velocity as an independent field. This implies that the 
exact distribution of the velocity field remains undetermined 
in our model, although we do not restrict our considerations 
to plug flow. We present our equations in the curvilinear 
coordinate system (en) shown in Figure I, and all 
quantities are made dimension less. The corresponding scales 
are: L for ~, L I ).. for the radius of curvature, If for depth, 
(gL)! for time, and glf cos ~o for the stresses where ~o is a 
representative slope angle for the bed. The 
parameter = If I L is a typical aspect ratio of the moving 
gravel mass and is assumed to be small. We have chosen to 
introduce k, a curvature-ordering parameter, in order to 
generate various sets of the equations of motion 
corresponding to different characteristic scales for the radius 
of curvature. For the present paper, we choose ).. = Er, 
o < r < '" corresponding to a radius of curvature scale 
larger than the length scale, L, for C and in this way we 
recover a set of equations which includes the lowest order 
effects of bed curvature. 

The physical laws on which our mathematical model is 
based are the balance laws of mass and momentum. In 
addition, the upper avalanche surface is assumed to be 
stress free and a sliding law is applied at the avalanche 
base. One may postulate a functional relationship in which 
the basal shear stress, TB' depends in a general way on 
local variables such as a local bed-friction angle, sliding 
velocity, pressure, and curvature. We assume the shear stress 
acting at the base to result from two contributions: TB = 

T C + T F' Of these, the first contribution, T c' is due to 
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Coulomb friction, and the second, T F' is a viscous contri
bution. The following representation is popular 

(I) 

in which 6 is the basal angle of friction; P.1. is the pressure 
exerted normal to the base; c is a fluidization drag 
coefficient; and Us is the slip velocity at the base. The signs 
in Equation (I) indicate the direction of movement of the 
snow mass. We have set T F = 0 for our initial analysis. 

Governing equations 
Integrating the mass and momentum balances over 

depth in the n-direction (Fig. I), and incorporating both 
the stress-free boundary conditions of the free surface and 
the sliding condition at the bed, yields the following 
evolution equations for the dimensionless height, h, and 
depth averaged velocity, u, in the stream-wise direction: 

du 

dt 

au au 
+ -u at a~ 

ah ahu 
+ at a~ 

0, (2) 

sin C - sgn(u) (cos C + kKu2)tan 6 -

(3) 

Here, sgn(u) = ± I, the sign depending upon whether u is 
positive or negative; C is the local inclination angle (Fig. I); 
K is the dimensionless curvature of the base; k is the 
curvature-ordering parameter; E is the aspect ratio; K.ctpass 

is the earth-pressure coefficient, such that the normal stress 
components P~ ~ and Pnn are related by 

le: actpas8 
[

Kact 1 
Kpa88 

(4) 

_2_ {I f (I - (I + tan2 6)COS2 1j))} -I, 
cos2 1j) 

au 
for ~ ~ 0, (5) 

where 41 is the internal angle of friction. 
This assumed constitutive behaviour is shown in terms 

of the standard Mohr diagram in Figure 2. We assume that 
an active or a passive state of stress is developed by noting 
whether an element of granular material is being elongated 
or compressed in the direction parallel to the bed. Thus, 

Shear 
Stress 

I 

I I 
I I 
I1 

1 . -.... 
I Po . 

(p T)OClive 
~ ~ I bed 

• Passive (au <0) 
Stress state a ~ 

Normal 
Stress 

( T 1 paSSive 

p!; ~' bed 

• Active (ilu >0) 
Stress state il~ 

Fig. 2. Mohr's circle in the coordinate system (normal 
stress, shear stress). Shown are internal angle of friction, 
41, basal friction angle, 6, and two possible states of 
stress - active and passive. 
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normal and longitudinal stresses may be related through an 
earth-pressu re coefficient, Kactpass' defined b y Equations (4) 
and (5). 

Equation (2) is the integ rated mass-balance equation, 
and has the familiar form of the kinematic wave equation. 
Equation (3) is the integrated longitudinal momentum 
equation. The first te rm on the ri ght of the equation is the 
driving stress, which is due to grav it y, and the seco nd term 
is composed of two co ntributio ns, of whic h o ne is the 
ordinary Coulomb bed res is tance and also arises on a flat 
bed, and the o the r quantifi es the increase in bed press ure 
due to the centrifugal forces in d uced by bed curvature. 
Such centrifugal forc es lead to a corresponding increase in 
drag force. The third term in Eq ua tion (3) is an averaged 
longitudinal stress gradient. F o r ex te ns ional flow, stress must 
occur in its active f o rm ; fo r co ntraction flow, a pass ive 
state of stress is established. Equation (2) is accurate to all 
orders of E, Equation (3) is accurate to order E (recall E is 
the aspect ratio HI L) if tan 5 - O(E) and}" < 0(1). These 
or stronger ass umpti ons w ill be imposed in th e seq ue l. 

Bo undary and initial co nditions are 

h 

h 

h 

hR(; 0), at 

hF(; 0), at 

at ~R ~ ~ ~ ~F and t ; 0 

where Rand F des ignate th e rea r a nd front ends of a pile. 
A d etailed derivatio n of th ese eq uat ions is given by Savage 
and Hutter (in press), and a justification for the adequacy 
of the s imple model represen ted in Equation ( I) is g ive n by 
Hutter and others in a forth coming paper. 

Procedure for obtaining numerical solutions 
The governing d epth -ave ra ged Equations , (2) and (3) , 

for the conservation o f mass and momentum were solved 
numerically by mea ns of a Lagrang ian finite - difference 
method. Computation of the temporal development o f an 
avalanche in vo lves the determinatio n of the posi tion of the 
air-gravel interface, this giving a va lue for the depth of 
the granular material. A Lagrangian scheme is the natural 
choice for such a problem because it follows the motion of 
the deforming gravel mass . 

We divide the granular mass of a n avalanche into a 
number of cells, as shown in the d epth profile of Figure 3. 
The mesh cell boundaries are advec ted with the particles. 
The cell boundary points are defined at times, t ; n - I , 
and are designa ted as (~'J -1); the ve locities of the cell 
boundary points are defined at half time-step points, and 
are written as u~" - 1/ 2). After some manipulation, 
integration of the depth-a ve raged mass conservation 
Equation (2) between ~ j and ~ j + 1 yields 

where 

o I 2 3 

I
~ j + 1 

hde 

~ . 
) 

mesh cell cenlers 
;-1 ; r.1 

j-I j j+1 

mesh boundory poinls 

n 

Fig . 3. The finite - difference net: granular pile is 
into cells whose boundar ies are denoted 
(j ; 0, I, ... , 11). Velocities are made discrete both 
boundaries and at he ights midway between 
boundaries, point i being to the right of j . 

(6) 

(7) 

(8) 

x 

divided 
b y .i 
at ce ll 

these 
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Let us ass ume th at we know u .(11 - 1/2) and hll - 1. At 
{ ; 0, we identify th ese wi th the {nit ia l va lues, a'nd thus 
obtain the new positions for the ce ll boundaries, ~'J, a fter a 
time inte rva l 61. Thus, 

,I! ; ,I! - 1 + utll - 1) /261 (9) 
' J 'J ) . 

We then determine the de pth at the ce ll centres, i, us ing 
Equations (6) a nd (7), so th at 

h" - I 
{ 

(~I!- I - e !-I ) 
./+ 1 J 

[ ~I ! - e!) 
)+ I J 

(10) 

Finally, we so lve th e dep th -averaged momentum Equation 
(3), for th e velocities at the ce ll bou nda ries 

utll + 1)/ 2 IItn - 1)/ 2 + 
) ) 

+ [Sin ~ j - [COS ~ .i + kK j [U(II - 1/2» )2J ta n 5 sgn (u(1l - 1/2») -

E cos ~ ). ---'----{ _- _1_ K 6t 
(h'j hll) 1 
(~'J ~;I _ 1) actpass 

(11 ) 

where 

e' 1- (~ '! + ~ '! ) I ) J + 1 
(12) 

and 

K actp.ss ; (: :::J au 
for ~ O. 

a~ 
( 13 ) 

This num erica l sc heme is onl y conditionall y stable. It 
is, however, a considerable improvement upon the other 
E ulerian sche me which we have already tri ed. For the 
calculation of po ints other than the leading and trailing 
ed ge end po ints we ha ve added a n artificial viscos ity term, 
jJ.(a2u/ a~2), to the right-hand s ide in Equatio n ( 11 ) and this 
will dampen the numerica l ripples wh ic h some conditio ns 
have a te nde ncy to genera te. Values for the artificial 
viscosity, jJ. , of betwee n 0.01 a nd 0.03 proved to be 
adequate for our purposes, and using these values for J1 is 
a s tanda rd procedure for manipulating parabolic equations 
in volving advection and diffusion . 

COMPUTATIONAL R ESULTS 

We now present a compariso n between the experimental 
results for a se lec tion o f ou r experim ents and the nume rical 
predic tio ns for these exper imen ts, a nd then discuss some 
interesting fea tures of the spreading of a pile of granular 
material along the c urved bed of an ava lanche pa th. 

Inclined curved-chute experiments 
The experiments were performed us ing a 100 mm wide 

chute which consisted of two straig ht sec tions, one inclined 
and the other horizonta l, which had been connected by a 
curved, replaceable seg me nt w hi ch allowed us to adjust the 
angle of inclination of the chute between 45° and 60 °, as 
shown in Figure 4 (Pliiss, 1987; Hutter and others, 1988). A 
known mass of gra nula r material was placed in the filling 
area at the upper e nd of the c hute a nd was released by 
opening a shutter. The released material started to move, 
and while mo ving along th e chute it was video-filmed and 
photographed. Usually six photographs were taken every 
second, and by prope r se ttin g of the time of initiation of 
motion , the ph otog raphs made possible o ur goal of 
determining the evolution of th e geo me try of the mov ing 
grave l mass thro ugh tim e, wit h pa rti c ular reference to its 
form and to its d eg ree of exte nsio n into the run-out zo ne. 

Two types of mater ia ls were used in ou r experiments. 
The first type was a co llection of lens-shaped plastic 
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Fig. 4. Seri es of snapshots of a finite mass of 2000 g Vestolen particles moving down a chute. Inclir. ed 
and hor izo ntal parts are each 1.70 m lon g, radiu s of curvature of curved secti on is 0.245 m and 
generates an angle of inclination of ex = 50°. Black lines on frontal Plexiglass wall mark increments 
of 50 mm , and long hand of the clock performs one revolution S-1 (experiment No. 88, Plli ss, 1987). 

particles, Vestolen , with a mean diameter of 3.5 mm, bulk 
density of 540 kg m-3, and so lid density of 950 kg m-3. The 
second type was composed of glass beads of 3 mm diameter , 
1730 kg m-3 bulk density, and 2860 kg m-3 solid density. A 
detailed desc ription of more than 20 of the experiments 
performed , and including a comparison of experimental 
results with those predicted from theory is given in Hutter 
and others (in press). 

The pattern of evolution of the motion of an avalanche 
in one specific experiment is shown in Figure 5. For this 
experiment the inclined part of the chute was set at an 
angle of 50 °. The distribution of the height of avalanche 
and, in particular, the front and rear ends of the avalanche 
body were photograp hed at a predetermined sequence of 
times. At I = 0, th e avalanche front is observed to 
accelerate quickly whereas th e rear end remains almost at 
rest for about half a seco nd. The front travels a significant 
distance into the hori zon ta l part of the chute before 
substantial decele ration is observed to se t in. In contrast, the 
rear end co mes quick ly to rest once it has entered the 
hori zontal part of the chute; the duration of the entire 
experiment is 1.4 s. Such data permit the determination of 
the development of avalanche spreading; for example, the 
positions of the leading and the trailing edges can be 
monitored over time , and th e differences at various times 
will give the pattern of development of the length of the 
avalanche. 

11 2 

COMPARISON OF EXPERIMENTAL RESULTS WITH 
COMPUT A TIONS 

In an experiment prior to the release of granular 
material, the gate retatntng th e granules was positioned 
perpendicular to the bed of the chute channel. During the 
opening operation the material often remained in contact 
with the gate, so that formation of initial conditions were 
somewhat variable. We chose an initial profile that was close 
to the form of the mass at rest and avoided kinks and the 
ge neration of an overhang reg ion. For our computations the 
parameters listed in Table were se lected. Comparison 
between ex perim ental results and those predicted by 
computation are shown in Figure 5a-d. In these the changes 
in the positions of the lead in g and the trailing edges 
(Fig. 5a and c) and the corresponding changes in the 
simulated avalanche length (Fig. 5b and d) can be seen. At 
I = 0, the avalanche front accelerates quickly whereas the 
rear end remains nearl y at res t for almost half a second. 
The front region trave ls a considerable distance into the 
horizontal part of the chute before substantial deceleration 
se ts in; the rear end, however, comes quickly to rest once 
it has entered the horizo ntal part of the chute. Interestingly, 
the avalanche length goes through a maximum and then 
decreases again until it reaches its final value in the 
run-out zone. 

Velocities of the avalanche front, d~f/dt, and rear, 
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Fig. 5. a, c. Front and rear end position (dimensionless coordinates) for experiments No. 87 and 28 
plotted against dimensionless time. Circles show experimental results with error bars, solid lin es are 
for computational results. b, d. Corresponding dimensionless avalanche length plotted against a sca led 
time for the same experiments. 

TABLE I. CONDITIONS AND CHARACTERISTIC CONSTANTS FOR TWO EXPERIMENTS 
DESCRIBED IN FIGURE 5 

Experiment Material Total mass 
number simulating 

gravel 
(basal surface) 

(g) 

87 Vestolen 1500 
(drawi ng paper) 

28 Vestolen 500 
(PVC) 

d~r/dt, can also be calculated from our photographs, but in 
this case our deductions are less accurate, although 
agreement between experiment and theory is convincing to 
the same extent as that for the data used in Figure 5. 

SIMILARITY SOLUTIONS 

For small bed friction angles and small values of the 
curvature parameter, it turns out that similarity solutions to 

L H 

(mm) (mm) 

300 150 0.5 

210 81.25 0.387 

the governing equations are possible (Savage and Nohguchi, 
1988; Savage and Hutter, 1989; Hutter and Nohguchi, in 
press; Nohguchi and o th ers, in press). In such cases the 
avalanche-depth profiles have the form of a parabolic cap 
and the difference ve loci ty, obtained from the 
depth-averaged velocity minus the centre-of-mass of the 
moving pile varies linearly with distance from the centre of 
mass of the moving pile . The half -spread of the parabolic 
pile, g(t), the centre-of -mass position, ~ = x O' and the 
horizontal and vertical (downward) coordinates, X and Y, 
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+------x 

y 

Mass of 
gronular 

material 

Fig. 6. Definition ske tch for cons truction of similarity 
solutions. 

whose origin corresponds to the initial centre-of -mass of the 
pile at time, I = 0 (Fig. 6), obey the following six 
first-order ordinary differential equations: 

d 2g df 

dl 2 dt 

dg 

dl 
f, 

E ~~ ] k.ctpass cos ~(xo) a~ 
+ fu<xo)gCOS ~(xo) ' 

dX 

dl 
Uo cos ~ (xo)' 

dY 

dt 
uosin ~(xo)' 

(14) 

(15) 

(16) 

( 17) 

( 18) 

(19) 

in which Uo is the longitudinal ve loci ty of the centre-of
mass of the pile, and curvatures have been assumed to be 
small (Savage and Nohguchi, 1988). 

The six differential Equations (14)-(19) were integrated 
in a straightforward man ner using a fourth-order 
Runge-Kutta technique. It is found that: 

For cases in which the bed inclination angle monotonically 
decreases with distance down- stream, the pile of granular 
material starts from rest, initially accelerates, and then 
decelerates, finally coming to rest as a result of bed friction 
and of the gradually decreasing bed slope. It is found that 
the variation of the total len gt h with time can exhibit 
differing patterns, depending upon frictional parameters, the 
shape of the bed, and the initial depth to length ratio of 
the pile. Amongst the possibilities are that the pile can 
grow monotonicall y, that it can asymptote to a constant 
length , that it can grow to a ma ximum and then decrease, 
or that it can decrease to a minimum and thereafter 
increase with time. Furthermore, there are regions in 
parameter space for which the pile moves as a rigid body 
either for the whole time of travel or for parts of it . 
Figure 7 shows some typical results for the half-spread of 
the pile, g(I), plotted agai nst the centre-of -mass position, 
~ = xo' and time, I, for a bed having the form of a 
circular arc. The bed inclin ation angle is given by 
~ = ~0(1 - aO, where ~o is the initial bed slope, and a is 
a constant. Results show n in th e figure are for various 
initia l values of E, and for eo 40 0, a = 0.1, a bed 
friction angle, 0 = 10 °, and an internal friction angle , 
~ = 25°. 

114 

~o 1.,0° 

a 0.1 

5 10° 

<!> 25° 
uo= 0 

3 

2 

O+--------r--------.--------r------~ 

o 10 

Xo 
15 20 

Fig. 7. Evolution behaviour of g(l) for a circular arc bed 
profile; ~o = 40 °, a = 0.1, 0 = 10°, cp = 25°. Effect of 
varying initial depth to len gth ratio, E, is shown. Rigid 
regions are cross-hatched. 

V ARIA TION IN BASAL FRICTION 

The above results were obtai ned by application of the 
simple Coulomb-type sliding law. Several more realistic 
forms can be introduced and surprising results sometimes 
emerge when this is done. We are presently studying various 
extensions (Hutter and Nohguchi, in press; Nohguchi and 
others, in press); here some of the results are briefly 
disc ussed. 

Consider the case that the friction angle, tan 0 = /.I, 
varies along the avalanche bed, is largest at the front, and 
is smallest at the rear end. For a linear variation of /.I, such 
a dependence may be expressed as 

(20) 

where the subscripts, F and R , refer to the front and rear 
ends of the avalanche, respec ti ve ly. Such a basal friction 
law accounts for the fact that an avalanche may deposit 
snow along its track and thus smooth it. Alternatively, the 
law expressed in Equation (20) may be interpreted to make 
it possible to account for some of the observed ploughing 
effects . 

We have already analysed equations corresponding to 
Equations (14)-( 19) in an earlier paper (Nohguchi and 
others, in press), with the sliding law, Equation (20), 
incorporated. Here we discuss results for the case of a 
planar surface . Figure 8 displays phase space orbits g 
against g, in panel (a) for 6 = constant, and in panel (b), 
when Equation (20) was used . To obtain these plots, we 
integrate Equations (14)-(19) for specified initial conditions , 
g(O) = go' g(O) = 0, and thus compute g(t) and g(l) . For 
each initial condition a particular curve in phase space is 
obtained. Data chosen for our treatment are as follows: 
~o = 40 °, E = 0.1, OF = 150, OR = 10°, cp = 25° . 

To interpret the plots which are presented, consider a 
granular avalanche starting from rest , that is at point C in 
Figure 8a. As the avalanche moves down the chute the 
co rresponding point in phase space moves along an orbit to 
the right (point D) . It can be seen that the granular pile is 
always monotonically extending for all choices of points C, 
so that g is growing to the right. 
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Fig. 8. Phase space o rbits g aga inst iJ, fo r a n avala nche slidin g down a n inc lined p la ne: (a) wit h 
co nsta nt basa l fri ction , (b ) with va ri ab le fri c ti on acco rdin g to Equation (20). C rep rese nts the 
ava la nche at res t, D a re po ints gene rated whe n it is mov ing. AB represents th e seg me nt of sta tes fo r 
ri gid- bod y motion. 

In Figure 8b the qu alitati ve be haviour represe nted is 
quite diffe rent. If the sta rtin g po int C is below A , then the 
ava lanche will be ex tendin g with time, until its o rbit in 
phase space aga in co incides wit h the g - ax is. If this po int of 
the o rbita l traj ec tory is above po int B in Fi gure 8b. the n 
the motio n will co ntinue a lo ng the trajec tory to the le ft , 
with g < 0; thus g w ill no w dec rease until the pos iti o n of 
the ax is g = 0 is aga in reached . If the inte rsectio n between 
the orbita l traj ectory a nd the ax is iJ = 0 lies between A 
and B, the n the a va la nche length re mains constant for all 
time, tha t is g = O. Thi s ca n be show n by a careful 
an alys is of Equ ati ons ( 14)-(1 9), a nd it is seen tha t for a ll 
initia l co nditions fo r the ch o ice o f po int C on the axis 
g = 0 the traj ec tory of the motio n will eventu all y li e 
be tween A and B. 

The ph ysical inte rpretati on o f th e nature of the 
segment AB is important in this desc ription; it represents all 
those sta tes, (g , g) = (g, 0), fo r whic h the a vala nche moves 
as a rig id bod y. The ex iste nce o f this ri gid - bod y state fo r 
the mo tio n a lo ng a n inclin ed pla ne is d ue bo th to the 
variability o f the basa l fri c tio n coeffi cient a nd to the fac t 
that Kaet / Kpass ~ I . As Kac t beco mes cl oser to Kpass the 
points A and B will coalesce, but as IlF te nds towards IlR 
the distance AB w ill move to in f inity along the g - axis. In 
this latter case the situa ti on show n in Fi gure 8a is 
re - es ta blished . 

In clos ing, we sho uld me ntion that even though the 
motion of a gra nula r pile a long a n inc lin ed plane te rminates 
as a rig id - bod y motion the ce ntre of mass motio n of the 
pile is still accele rating . Hutte r a nd Nohguc hi (in press) 
show that in o rder fo r a g ra nula r pile to be able to reach 
both a ri g id-bod y state a nd a finite stead y velocit y, a 
viscous sliding te rm of th e form shown in Equation (I ) 
must be included in the theo re ti ca l model. 

CONCLUDING REMARKS 

The present pape r has made use of the depth-averaged 
equations of motion of Savage and Hutter (1989, in press) 
and has o btained numerica l solutions to describe the motion 
of a finite mass of gravel down an inclined chute . In view 
of the s implicity of the ph ys ical model, which treated the 
granula r materia l as an inco mpress ible continuum with 
uniform density and applied depth - ave raging to the velocity 
field , the correlatio n bet ween pred ictions and the laboratory 

expe rime nts is surprisin gly good . Incorporation of more 
complex basa l fri c tio n laws has de monstrated that a 
significa nt influ ence on th e g rave l motion is exerted by 
spec ific res istance properti es of the basal surface . Ma ny 
mo re ex pe rime nta l res ult s ha ve bee n ob ta ined , and will be 
repo rted by HUlle r a nd o the rs ( in p ress). Further analytica l 
work is in ha nd , in which ef fec ts o f de nsit y c hanges as a 
result of fluidi za ti on , a nd h ig her- orde r effects of bed 
curva ture are cons ide red , as well as poss ible ex te nsio ns to 
the three- d ime ns iona l p rocesses to be inco rporated (Lang 
a nd o the rs, 1989). 
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