
1 Introduction

Quantum mechanics is often presented as an essentially probabilistic theory, where random collapses
of the wavepacket with probabilities governed by the rule conjectured by Max Born (1926) play a
central role. Yet, unitary evolution dictated by the Schrödinger equation is deterministic. This clash
of quantum determinism of the unitary evolutions with the quantum randomness of its everyday
experimental practice is at the heart of the interpretational conundrums.

We will begin with the re-examination of the textbook quantum postulates. We shall conclude that
some of them need not be postulated—that they follow from the other postulates. This simplification
of quantum foundations will provide us with a convenient and solid starting point. The emergence of
the classical from the quantum substrate is based on this foundation of core quantum postulates—on
our quantum credo.

Discussion of the postulates will be accompanied by a brief summary of their implications for
the interpretation of quantum theory. We shall touch on the questions of interpretation throughout
the book, and return to them in more detail only near the end. We do not need to appeal to any
interpretation to arrive at our conclusions. Our results depend solely on the quantum credo, on the
core quantum postulates that are uncontroversial. We assume universal validity of quantum theory.
Our motivations are, however, often best explained in the context of interpretations.

1.1 Core Quantum Postulates: “Quantum Credo”

The difficulty of reconciling quantum determinism with quantum randomness is reflected in the
inconsistency of the postulates that provide textbook summary of quantum mechanics (see, e.g.,
Dirac, 1958). We list them starting with the four uncontroversial core postulates. They constitute
our quantum credo and will serve as four cornerstones of the quantum theory of the classical.

The first two postulates are familiar:

(i) The state of a quantum system S is represented by a vector in its Hilbert spaceHS .
(ii) Evolutions are unitary (i.e., generated by the Schrödinger equation).

They imply, respectively, the quantum superposition principle and the unitarity of evolutions, and
we shall often refer to them by citing their physical consequences. Thus, in accord with (i), the super-
position principle implies that when |r⟩ and |s⟩ are legal quantum states, |v⟩ = α|r⟩ + β|s⟩ (where
α and β are complex numbers) is also an equally legal quantum state. Hilbert spaces are Euclidean:
Pythagoras’ theorem holds for state vectors. Therefore, when |r⟩ and |s⟩ are orthogonal (⟨r |s⟩ = 0)
and normalized, then ⟨v|v⟩ = |α|2 + |β|2.
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4 INTRODUCTION

The Schrödinger equation induces evolution of quantum states: Given a Hamiltonian H, unitary
quantum evolution is generated by the operator Ut = e−iHt/ℏ. Unitarity implies linearity—
superposition evolves into a superposition of evolved ingredients. For example,

Ut |v0⟩ = Ut(α|r0⟩ + β|s0⟩) = αUt |r0⟩ + βUt |s0⟩ = α|rt⟩ + β|st⟩ = |vt⟩.
Unitary evolutions can be thought of as rotations of state vectors that preserve scalar products in the
Hilbert space, ⟨rt |st⟩ = ⟨r0|s0⟩ (that is, angles between state vectors do not change). Unitarity implies
determinism, hence it implies preservation of information.

Postulates (i) and (ii)—quantum principle of superposition and unitarity—provide an almost com-
plete summary of the formal structure of the theory. One more postulate is often added to complete
the mathematical foundation of quantum mechanics:

(o) The quantum state of a composite object is a vector in a tensor product of the Hilbert spaces of
its subsystems.

Entanglement—the most flagrantly quantum feature—depends on the tensor structure of the quan-
tum states of composite systems. Postulate (o) is nevertheless often omitted from textbooks, possibly
because (in the light of postulates (i) and (ii)) it seems so natural.1

Entanglement is central to the Schrödinger cat paradox, and, more generally, for discussion of quan-
tum measurements. Interaction between systems that results in an information flow can be regarded
as a measurement. The quantum measurement problem arises because a quantum state of a collec-
tion of systems can evolve from a Cartesian product (where a definite state of the composite whole
implies definite states of each constituent subsystem) into an entangled state represented with a tensor
product. This entangled state of the whole is still definite and pure, but individual subsystems are no
longer entitled to their own pure states: The cat is neither dead nor alive, or even α|dead⟩ + β|alive⟩.
It simply does not have a pure state of its own. The same goes for the apparatus.2

Thus, even though the entangled state of the whole may be completely known, it is no longer possi-
ble to know equally well the states of the subsystems. By contrast, in the classical setting, completely
known (pure) composite states are always given by Cartesian products of similarly known (pure)
states, so that when the state of the whole is known, the state of each subsystem is also known. This
difference between the nature of the states of the composite quantum systems is responsible for many
of the interpretational difficulties, including the quantum measurement problem.

The existence of subsystems is then really the essence, the only part of postulate (o) that is not
suggested by the superposition principle of (i) and the unitarity of evolutions of (ii). In the absence
of subsystems, the Schrödinger equation leads to deterministic evolution of the state vector in an
indivisible Universe, and the measurement problem disappears (Zurek, 1993, 2003a). In other words,
without at least a measured system and a measuring apparatus, questions about the outcomes cannot
even be posed. Interaction between a system and an apparatus leads, via unitary evolution, to entan-
glement, which is at the heart of the interpretational questions. Eventually we shall need at least one
more ingredient—environment—to address them.

1.1.1 Relating Quantum Mathematics to Quantum Physics
Postulates (o)–(ii) provide a complete summary of the mathematics of quantum theory. They contain
no premonition of either collapse or probabilities. Using them and the obvious additional ingredients
(initial states and Hamiltonians) one can carry out calculations. However, such calculations would be
just a mathematical exercise.

1 See Carcassi, Maccone, and Aidala (2021), for recent related discussion.
2 Throughout this book we distinguish between entangled states that have tensor product structure (see, e.g., Eq. (1.1))

and Cartesian states that allow each subsystem to have a pure state of its own. As a tensor product state is a weighted
sum of Cartesian states, a Cartesian state is also a (very special) tensor product state with just one such term.
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1.1 Core Quantum Postulates: “Quantum Credo” 5

To relate the mathematics of quantum theory to quantum physics one needs to establish a corre-
spondence between the state vectors in the Hilbert space and experiments—hence, measurements.
This task starts with the repeatability postulate:

(iii) Immediate repetition of a measurement yields the same outcome.

Postulate (iii) is idealized—it is hard to perform non-demolition measurements—but in principle this
can be done. Moreover, as a fundamental postulate, repeatability of (iii) (or some equivalent thereof)
is indispensable. Repeatability is the simplest case of predictability, so the very concept of a “state”
embodies predictability that calls for postulate (iii): The role of states is to enable predictions, and
the most basic prediction is that a state is what it is known to be. The repeatability postulate asserts
that the confirmation of this prediction is in principle possible.

Postulate (iii) is uncontroversial, as repeatability is taken for granted in the classical world, where
it follows from a much stronger assumption than the quantum repeatability postulated above in (iii):
It stems from the objective existence of classical states. They are “ontic”, a property of the system
alone, and exist independently of what an observer knows.

This independence detaches their ontic role—their existence—from their epistemic role, from what
is known about classical systems. In the classical world that knowledge is subjective—it represents
the “state of mind” of the observer. Moreover—and in contrast to quantum states—unknown classical
states can be simply “revealed” and remain unperturbed, unchanged by measurements.

The problems with the emergence of the classical from within a quantum Universe arise because—
by contrast—quantum states are malleable: They are re-prepared by the attempts to find out what
they are. This malleability suggests that they are epistemic—nothing more than a summary of the
observer’s knowledge. (Knowledge is similarly malleable—it is updated as the observer gathers
additional information.) Quantum theory of the classical must therefore explain how the mallea-
ble quantum states can give rise to our perception of solid classical reality that is, in our everyday
experience, independent of the information gathering by the observers.

Quantum repeatability, postulate (iii), signals a significant weakening of the role of states. Repeat-
ability guarantees only that the presence of a known quantum state can be verified, but it no longer
follows from its objective existence. Unlike classical states, an unknown quantum state cannot be
simply found out. When observers measure observables that do not commute, each will redefine the
state of the system and make the data obtained in the preceding measurements obsolete. Therefore,
records of the past measurements will typically no longer determine the current state of the system.

This quantum intertwining of epistemic and ontic function of state is the central quantum feature
and a key source of interpretational problems. One of our goals is to recover existence—states that are
effectively objective, that survive discovery by an initially ignorant observer, so that others can con-
firm their continued presence. Quantum Darwinism discussed in the last part of this book shows how
observers who gather information indirectly, by intercepting (as we do) fragments of the environment
that decohered the system, can reach consensus about its state.

We will show that the essence of the other traditional textbook axioms that concern measurements
(“amendments” we are about to discuss) can be deduced from the above quantum core, from our
quantum credo that includes the three mathematical postulates (o)–(ii) and the repeatability postulate
(iii) that begins to deal with information transfers (e.g., in measurements).

We note that the wording of the repeatability postulate (iii) appeals to “measurements”. We retained
that textbook formulation even though the use of “measurements” would signal a possible inconsist-
ency: We aim to deduce emergence of the classical reality from purely quantum postulates. Thus,
relying on “measurements” should be avoided. Fortunately, as we shall see in the next chapter, the
demand for repeatability can be stated purely in terms of Hilbert spaces and unitary evolutions.3

3 Above we use “measurement” as a shorthand for the evolution that results in a transfer of information between
systems. Thus, a post-measurement state of one of them (apparatus) should reflect the state of the other (the
measured system).
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1.2 The Measurement Amendments

So far we have outlined a consistent set of core quantum postulates, (o)–(iii). They will serve as
a basis for the derivation of the emergence of classical behavior in a quantum Universe. Here we
consider textbook postulates: Collapse axiom (iv) and Born’s rule (v), the traditional “measurement
amendments” that are at odds with the quantum core.

The whole (o)–(v) list is, of course, given by textbooks. The inconsistency is usually “resolved”
through some version of Bohr’s strategy. That is, textbooks assume (sometimes explicitly, but often
tacitly) that quantum theory can be applied only to a part of the Universe. The rest of the Universe—
including observers and measuring devices—must be classical, or at the very least out of the quantum
jurisdiction.

Our aim will be to show that the classical domain need not be postulated, and that the consequences
of the measurement process (the focus of the amendments) follow from the quantum core, postulates
(o)–(iii).

In contrast to classical physics (where an unknown pre-existing state can be found out by an initially
ignorant observer) the very next item on the textbook list explicitly limits predictive attributes of
quantum states:

(iv) Measurement outcome is an eigenvalue and the corresponding eigenstate of the Hermitian
operator representing the measured observable.

Thus, in general, measurement will return something other than the pre-existing state of the system.
This—compared to the classical setting—is a very significant redefinition of what a measurement
does. It implies that the measurement is a multiple choice test, so that the only possible answers are
the eigenvalues and the eigenstates of the measured observable.

The impossibility of determining the pre-existing state of the measured system is an immediate
consequence of (iv). Repeatability postulate (iii) is in a sense an exception to this quantum undermin-
ing of the predictive role of states—it describes the situation when the measurement outcome can be
predicted with certainty.

Amendment (iv) can be subdivided:

(iva) Measurement outcomes are the eigenstates and the associated eigenvalues of an observable—a
Hermitian operator.

(ivb) One outcome is seen in each run.

This splitting may seem pedantic, but it is useful. Textbooks often separate our (iv) into two such
axioms.

We emphasize that already (iva) limits predictive attributes of quantum states: When the measured
observable does not have, as one of its eigenstates, a pre-existing state of the system, the post-
measurement state of the system cannot be predicted with certainty even when the pre-existing state
is perfectly known (pure). Thus, in contrast to the classical setting, perfect information about a state
does not imply certainty about the measurement outcome—(iva) tells us that the state of a quantum
system per se is not accessible.

Repeatability of postulate (iii) is an exception—it specifies when complete information guarantees
certainty, at least in principle. Repeatability anticipates the essence of the collapse: The pre-existing
pure state will give an unpredictable result that can, however, be confirmed and reconfirmed. What
was detected (in the first measurement) will be detected again and again (thanks to repeatability).

An unknown quantum state will yield an (unpredictable) outcome that can be repeatedly re-
confirmed, creating an (unwarranted) impression that also a measurement on a quantum system is
just revealing a pre-existing state. Therefore, once amendment (iva) is accounted for via the uncon-
troversial core postulates (which we shall do in Chapter 2), then, in combination with the repeatability
of (iii), the key symptom of the collapse—discreteness of quantum jumps implied by (ivb)—can be
also recovered.
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The textbook list is completed by Born’s rule that assigns probabilities to different “legal” outcomes
specified by axiom (iv):

(v) Probability pk of finding an outcome |sk⟩ in a measurement of a quantum system that was
previously prepared in the state |ψ⟩ is given by |⟨sk |ψ⟩|2.

Born’s rule is obviously crucial for establishing testable quantitative connection between quantum
theory and experiments. We shall see that (v) does not need to be postulated: It will be derived from
the core quantum postulates in Chapter 3.

1.2.1 Collapse of the Wavepacket
The collapse axiom is the first truly controversial axiom in the textbook list. In its literal form it is
inconsistent with the first two postulates: Starting from a general state |ψS⟩ in the Hilbert space of the
system (postulate (i)), an initial state |A0⟩ of the apparatus A, and assuming (postulate (ii)) a unitary
measurement-like evolution by an apparatus tested on the eigenstates of the measured observable:

|σk⟩|A0⟩ ⇒ |σk⟩|Ak⟩,
one is led to a superposition of outcomes:

|ψS⟩|A0⟩ =
(∑

k
ak |σk⟩

)
|A0⟩ ⇒

∑
k

ak |σk⟩|Ak⟩. (1.1)

This is a superposition—not a single outcome. Hence, Eq. (1.1) is in an apparent contradiction with
the “one outcome” posited by (iv).

The impossibility to account—starting with the core quantum postulates (o) to (ii)—for the lit-
eral collapse to a single state posited by axiom (ivb) has been appreciated since Bohr (1928) and
von Neumann (1932). It was—and often still is—regarded as an indication of the insolubility of the
measurement problem. It is straightforward to extend such insolubility demonstrations to various
more realistic situations, e.g., by allowing the state of the apparatus to be initially unknown (i.e.,
mixed). As long as superposition and unitarity postulates (i) and (ii) hold, one is forced to admit that
the quantum state of SA after the measurement corresponds to a superposition of many alternative
outcomes—all the outcomes consistent with the initial state—rather than just one of them (as the lit-
eral reading of the collapse axiom and our immediate experience would have it). In particular, when
the initial states of the system and the apparatus are pure, that state of SA, Eq. (1.1), is entangled.

Given this clash between the mathematical structure of quantum theory and the literal collapse
(that captures the subjective impressions of what happens in real-world measurements), one may be
tempted to accept the primacy of our immediate experience, and blame the inconsistency of (iv) with
the core of quantum formalism—superposition principle and unitarity, (i) and (ii)—on the nature of
the apparatus: The Copenhagen Interpretation at least in its oversimplified textbook version (but see
Camilleri and Schlosshauer (2015) for a more nuanced account) regards apparatus, observer, and,
generally, macroscopic objects as ab initio classical. They do not abide by the quantum principle of
superposition, and their evolutions do not need to be unitary. Therefore, according to the textbook
version of the Copenhagen Interpretation, measurements are exempt from the unitarity postulate (ii).
The collapse can happen on the lawless border of quantum and classical.

1.2.2 Information or Existence: Epiontic Quantum States?
Uneasy coexistence of the quantum and the classical is a challenge to the unification instinct of
physicists. Yet, what many regard as Bohr’s ad hoc solution has proven to be surprisingly durable.

At the heart of many approaches to the measurement problem is the desire to reduce the rela-
tion between existence and information to what it was when the fundamental theory was Newtonian
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physics. There, classical systems had real ontic states that existed independently of what was known
about them. They could be found out by a measurement. Many initially ignorant observers could
measure the same system without perturbing it. Their records would agree, reflecting reality of the
underlying state and confirming its objective existence.

Immunity of classical states to measurements suggested that, in a classical Universe, the infor-
mation was unphysical. It was a mere immaterial shadow of the real physical state, irrelevant for
physics. This dismissive view of information ran into problems already when Newtonian classical
physics confronted classical thermodynamics. The clash of these two classical theories led to Max-
well’s demon, and is implicated in the origins of the arrow of time. The specter of information was
haunting classical physics. The seemingly unphysical shadowy record state was beginning to play,
already in statistical physics, the role reserved for the “real” classical state.

Attempts to solve the measurement problem often follow the strategy (which can be traced to Bohr,
although he should not be held responsible for specific implementations) where the underlying state
of some quantum system somehow becomes classical. This transformation usually involves modifi-
cations of quantum theory (e.g., spontaneous collapse or hidden variables that enforce protoclassical
features such as localization).

It is conceivable that, one day, we may find discrepancies between quantum theory and exper-
iments. However, evidence to date supports the view that our Universe is really quantum to
the core, and we have to learn how to reconcile quantum superposition principle, unitarity,
and their consequences—illustrated, e.g., by the violation of Bell’s inequality—with our per-
ceptions. Modifications that lead to explicit collapse are testable, and the past proposals
(Białynicki-Birula and Mycielski, 1976; Leggett, 1980; Ghirardi, Rimini, and Weber, 1986; Penrose,
1986; Weinberg, 1989, 2012) have been severely constrained by the experimental data (see, e.g.,
Gähler, Klein, and Zeilinger, 1981; Pearle and Squires, 1994) that confirm the validity of quantum
theory and extend its applicability to increasingly large systems.

The non-locality of quantum states and other experimental manifestations of their quantumness
that stem from the combination of the quantum principle of superposition and the unitarity of evolu-
tions, postulates (i) and (ii), are here to stay. They clash with the intuition based on our everyday
experience that invites idealization of pre-existing solid classical reality, and of localized states.
However, we shall see that—when it is recognized that quantum systems we encounter in our
everyday experience are not isolated (so that literal applicability of the superposition principle and the
unitarity of evolutions should be at least re-examined)—classical physics emerges as an
approximation.

1.3 Let Quantum Be Quantum: Interpreting Everett’s Relative
States Interpretation

The strategy we shall follow to account for the definiteness of our perceptions is to start with the core
quantum postulates (o)–(iii). They have a simplicity that rivals the postulates of special relativity.
This “let quantum be quantum” starting point will allow us to show how (and to what extent) both of
the attributes of the familiar classical world—objective existence and information about it—emerge
from the quantum substrate.

The alternative to Bohr’s Copenhagen Interpretation and a new approach to the measurement prob-
lem was proposed by Hugh Everett III, student of John Archibald Wheeler, well over half a century
ago (Everett, 1957a,b; Wheeler, 1957). The basic idea was to abandon the literal view of the collapse
and recognize that a measurement (including the appearance of the collapse) is already implicit in the
evolution represented by Eq. (1.1). Everett claims that one just needs to include an observer in the
wavefunction, and consistently interpret consequences of this step.

The obvious problem raised by the conflict with the literal view of the collapse axiom (ivb) is then
answered by asserting that while the right-hand side of Eq. (1.1) contains all the possible outcomes,
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the observer who recorded outcome #17 will (from then on) perceive “branch #17”. In other words,
when the global state of the Universe is |ϒ⟩, and my state is |I17⟩, for me the state of the rest of the
Universe collapses to |ϒ17⟩ = ⟨I17|ϒ⟩. Since this is the only state I (actually, |I17⟩!) am aware of
following the interaction that led to my recording of the outcome #17, I should renormalize the state
vector |ϒ17⟩ = ⟨I17|ϒ⟩ of the Universe to reflect my certainty about my branch—this is now my
only Universe.

This is the Relative States Interpretation of the measurement: The state of the rest of the Universe
is defined with respect to my state—to the state of my records.

Much confusion and a heated debate has been sparked by the question of what happens to observers
|I1⟩…|I16⟩ and |I18⟩…|I∞⟩ and their “branches” of the universal state vector. If the quantum state
of the whole Universe were classical—so that we could attribute real existence to the universal state
vector—there would indeed be Many Worlds, each inhabited by a different |In⟩ (see, e.g., DeWitt,
1970, 1971; Deutsch, 1985, 1997; Wallace, 2012a,b).

However, the precise status of states in quantum theory is elusive—they can be confirmed (repeat-
ability), but an unknown state cannot be found out. This inability to find out an unknown state signals
the absence of “objective existence” of quantum states, and suggests a less radical possibility closer
in spirit to the Relative States Interpretation.

After all, a patch in classical phase space also represents a state. When this patch collapses into a
point upon measurement, this does not mean that there are other observers who from then on live in
Universes with different outcomes, and have records consistent with these other outcomes.

The key difference between these two (Relative States and Many Worlds) attitudes is the extent
to which a quantum state is thought to be epistemic (i.e., a carrier of information, as is a patch in
phase space, representing ignorance of the observer) or ontic (as is the classical system represented
by a phase space point, which can be not only confirmed, but found out by others, even when they
are ignorant of its location beforehand). Only an effectively classical—ontic—view of the universal
state vector would make literal Many Worlds (with all the branches equally real) inevitable.

Quantum states are not ontic—they cannot be revealed by a measurement, as axiom (iva)
recognizes—so in this sense the Many Worlds Interpretation (in contrast to the Relative States view)
is just too classical: It endows quantum states with objective existence to which they (unlike their
classical counterparts) are not entitled. We have no stake in this debate, but we shall comment on
these matters in due course, after Quantum Darwinism is introduced and after the discussion of the
quantum version of objective existence and of the Existential Interpretation.

The aspect of Everett’s views we shall, however, wholeheartedly embrace is the general appli-
cability of quantum theory. It is indeed the principal guide and the main tool in the search for its
interpretation. This “let quantum be quantum” view of the collapse is consistent with the repeata-
bility postulate (iii); upon immediate re-measurement of the same observable, the same state will be
found. Everett’s (1957a) assertion: “The discontinuous jump into an eigenstate is thus only a relative
proposition, dependent on the mode of decomposition of the total wave function into the superposi-
tion, and relative to a particularly chosen apparatus-coordinate value . . .” is consistent with quantum
formalism: In the superposition of Eq. (1.1) record state |A17⟩ can indeed imply detection of the
corresponding state of the system, |s17⟩.

1.3.1 Basis Ambiguity: What Happens?
Two questions immediately arise. The first one concerns the (iva) part of the collapse: What constrains
the set of the preferred states of the apparatus or the observer (or, indeed, of any object that entangles
with another quantum system).

By the principle of superposition (implied by postulate (i)) the state of the system or of the appa-
ratus after the measurement can be written in infinitely many ways, each corresponding to one of the
unitarily equivalent bases in the Hilbert space of the pointer of the apparatus (or memory cell of the
observer) and the corresponding (usually not orthogonal) states of the system:
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∑
k

ak |σk⟩|Ak⟩ =
∑

k
a′k |σ ′k⟩|A′k⟩ =

∑
k

a′′k |σ ′′k ⟩|A′′k⟩ = · · · . (1.2)

This basis ambiguity is not limited to the pointers of measuring devices (or cats, which in the example
considered by Schrödinger (1935a,b) play a role of the apparatus). One can show that also very large
systems (such as satellites of planets) could evolve into very non-classical superpositions on sur-
prisingly short timescales if they followed the Schrödinger equation (Zurek and Paz, 1995a; Zurek,
1998a). In reality, this does not seem to happen. So, there is something that (in spite of the egalitarian
superposition principle enshrined in (i)) picks out certain preferred quantum states, and makes them
effectively classical.

Postulate (iva) anticipates this need for preferred states—destinations for quantum jumps. Before
there is a collapse (as in (ivb)), a set of preferred states (one of which is selected by the collapse) must
be somehow chosen. Indeed, the discontinuity of quantum jumps that Everett emphasized in the quote
above would be impossible without some underlying discontinuity in the set of the possible choices.
Yet, there is nothing in Everett’s writings that would provide a criterion for such preferred outcome
states, and nothing to even hint that he was aware of this question. We shall show in Chapter 2 how
such discontinuities arise in the framework defined by the core quantum postulates (o)–(iii).

1.3.2 Probabilities: How Likely Is It to Happen?
The second question concerns probabilities: How likely it is that I will become |I17⟩ after I, the
observer, measure S? Everett was very aware of its significance.

Pointer basis and its origin are discussed in Part II of this book devoted to decoherence. However,
the theory of decoherence, as it is usually practiced, employs reduced density matrices and partial
trace. Their physical significance derives from averaging (Landau, 1927; Nielsen and Chuang, 2000;
Zurek, 2003b) and is thus based on probabilities—on Born’s rule.

Born’s rule (1926), axiom (v), completes standard textbook discussions of the foundations of quan-
tum theory. In contrast to the collapse axiom (iv), axiom (v) is not in obvious contradiction with
postulates (o)–(iii), so one can adopt the attitude that Born’s rule completes the core postulates (o)–(iii)
and thus justify preferred basis and symptoms of collapse via decoherence. This is the usual practice
of decoherence (Zurek, 1991, 1998b, 2003a; Paz and Zurek, 2001; Joos et al., 2003; Schlosshauer,
2007, 2019).

Nevertheless, as Everett and others argued, Born’s rule is inconsistent with the spirit of the “let
quantum be quantum” approach. Therefore, as we seek fundamental understanding of the relation
between quantum theory and everyday classical reality (or, for that matter, of what happens in the
laboratory experiments involving quantum systems—real quantum measurements), we shall not be
satisfied with the usual approach to decoherence based on reduced density matrices. Indeed, Ever-
ett attempted to derive Born’s rule from purely quantum postulates. We shall soon follow his lead,
although not his strategy, which—as is now acknowledged—was flawed (DeWitt, 1971; Kent, 1990;
Squires, 1990).

1.4 Decoherence and Einselection: a Primer

Decoherence and the environment-induced superselection or einselection will be explored at length
later on in this book. However, before we get there, we shall focus in the next two sections on issues
that are more fundamental and therefore more naturally discussed early on. It is nevertheless easier to
proceed when some of the big picture in which decoherence plays a central role is at least sketched.

The overarching question we consider is how does the classical world—classical states that are
responsible for the objective reality of our everyday experience—emerge from within the Universe
that is, as we know from compelling experimental evidence, made out of quantum stuff. The short
answer to this question is that, in the process of einselection, decoherence selects—from the vast
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number of quantum superpositions that populate Hilbert space—the few states that are (in contrast to
all the other alternatives) stable in spite of their immersion in the environment.

All the systems we encounter are immersed in the environments such as air or photons. Decoher-
ence is a consequence of the interaction between a quantum system S and its environment E . As a
result of that interaction the initially pure states of S and E entangle:

|ψS (0)⟩|ε(0)⟩ HSE=⇒ |9SE (t)⟩. (1.3)

The unitary evolution from the initial product state |ψS (0)⟩|ε(0)⟩ to the entangled |9SE (t)⟩ is
generated by the interaction Hamiltonian HSE .

The environment plays the role similar to that of the apparatus in Eq. (1.1). Consequently, one is
faced with the basis ambiguity problem, analogous to Eq. (1.2), as |9SE (t)⟩ can be expressed in a
variety of bases at each instant t.

When one is interested only in the states of the systems, one can trace out the environment to get
the density matrix of S:

ρS (t) = TrE |9SE (t)⟩⟨9SE (t)|. (1.4)

The density matrix is a Hermitian operator, so one can always diagonalize it. This yields:

ρS (t) =
∑

k
pk(t)|ςk(t)⟩⟨ςk(t)|. (1.5)

One can also trace out the system to obtain the density matrix of the environment:

ρE (t) = TrS |9SE (t)⟩⟨9SE (t)| =
∑

k
pk(t)|ek(t)⟩⟨ek(t)|. (1.6)

The eigenstates of ρS and ρE come in pairs. Each such pair corresponds to the same eigenvalue
pk(t)—to the same probability. The entangled state can be written as a Schmidt decomposition:

|9SE (t)⟩ =
∑

k
αk(t)|ςk(t)⟩|ek(t)⟩. (1.7)

Every pure state of two systems can be expressed as such a Schmidt decomposition with a single sum
over the pairs of orthonormal Schmidt states |ςk(t)⟩ and |ek(t)⟩: The number of terms in the sum is
no larger than the dimensionality of the smaller of the two Hilbert spaces. Moreover, absolute values
of the Schmidt coefficients are directly related to the probabilities—to the eigenvalues of the density
matrices, |αk(t)| = √pk(t).

One may be tempted to regard the eigenstates of ρS (t) as candidates for the classical states of S
(see, e.g., Zeh, 1990; Albrecht, 1992). There are at least two problems with this. To begin with, ρS (t)
(hence, its eigenstates) are time-dependent, so the stability one would hope for in the classical states
is in question. Moreover, Schmidt decomposition is no longer unique when the eigenvalues pk(t)
associated with the pairs |ςk(t)⟩|ek(t)⟩ are degenerate. In that case any orthogonal basis that spans
the Hilbert subspace corresponding to the degenerate eigenvalue is “Schmidt”, and could aspire to be
regarded as “preferred”, as it can appear on the diagonal of the reduced density matrix.

The lack of uniqueness when the eigenvalues pk(t) become equal implies a dangerous ambiguity
incompatible with the intuitive criteria for classicality: What states are classical should not depend
on how likely they are.4 Moreover, when some of the eigenvalues are nearly equal—the state is
nearly degenerate—very small changes in the initial states ofSE can dramatically change the Schmidt

4 This lack of uniqueness would suggest, for example, that half-way through the Schrödinger cat experiment when the
probabilities of the two obvious options corresponding to the two states we can euphemistically denote as |↑⟩ and
|↓⟩ are equal, the two orthogonal superpositions formed from these states |↑⟩ ± |↓⟩ are equally valid classical
alternatives.
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decomposition. This hypersensitivity of Schmidt states to the initial state of SE disqualifies them as
candidates for classicality.

A basis that is a far better candidate for classicality is the pointer basis (Zurek, 1981). It is selected
by the Hamiltonian of interaction between the system and its environment. Let us assume that (as
is often the case) the interaction Hamiltonian depends on a certain observable 3 of S , and, hence,
commutes with it:

HSE = HSE (3); [3,HSE ] = 0. (1.8)

Observable 3 is Hermitian, so it has (possibly degenerate) eigenstates |sk⟩. When the system starts
in one of them, it will remain unperturbed by the environment. When it starts in their superposition,
it will evolve into an entangled state with E . The same entangled state we have expressed before as a
Schmidt decomposition can be now written in the pointer basis:

|9SE (t)⟩ =
∑

k
ak |sk⟩|εk(t)⟩. (1.9)

The eigenstates |sk⟩ of 3 are obviously orthogonal, and (unlike the Schmidt states of S) they do
not depend on time. Thus, |sk⟩ are stable in spite of decoherence. The density matrix ρS (t) we have
encountered before can be expressed in the pointer basis of the stable states |sk⟩:

ρS (t) =
∑

k
|ak |2|sk⟩⟨sk | +

∑
k,l

a∗kal⟨εk(t)|εl(t)⟩|sl⟩⟨sk |. (1.10)

This is the same ρS (t) as before, but it is now expressed in a different basis. Its diagonal part is time-
independent (thus, the states on the diagonal are stable). However, there is also a complication—the
off-diagonal terms.

Stability of |sk⟩ favors pointer states as candidates for classicality. When an agent detects the
system before or during decoherence in one of these states, that record will remain valid—the sys-
tem will continue to be in that same pointer state later on, interaction of S with the environment
notwithstanding.

Such states unaffected by E are known as pointer states precisely because the apparatus pointer
will retain information about the measurement outcome when it is stored in one of its pointer states.
Perfect pointer states are “decoherence-proof”—they are perfectly stable, and do not entangle with the
decohering E . We shall also eventually discuss approximate pointer states that are only “decoherence-
resistant”.

So what about the Schmidt states? Are they irrelevant for classicality? After all, the eigenval-
ues of ρS (t) are probabilities of the corresponding eigenstates, and probabilities of Schmidt states
are measured (as relative frequencies) in experiments. That same statement cannot be made about
pointer states: When the overlap of the associated environment states ⟨εk(t)|εl(t)⟩ is large, measure-
ments of the observable associated with the pointer states |sk⟩ will be influenced by interference, so
the coefficients |ak |2 will not be additive. Hence, they cannot be regarded as probabilities. Never-
theless, an observer who has detected one of the pointer states can count on its presence in spite of
decoherence. Stability is the more important criterion, and by now there is consensus that pointer
states are by far the best candidates for the classical realm.

Fortunately, this need to choose between the Schmidt states and pointer states turns out to be a
false dilemma: In most circumstances, and especially when the environment is large compared to the
system and decoherence is efficient, the overlap of the states of the environment correlated with the
pointer states becomes vanishingly small, ⟨εk(t)|εl(t)⟩ → 0, and the off-diagonal terms in the density
matrix expressed in the stable pointer basis, Eq. (1.10), nearly disappear. Thus:
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ρS (t) =
∑

k
pk(t)|ςk(t)⟩⟨ςk(t)| ⟨εk (t)|εl (t)⟩→0=⇒ · · · =⇒

∑
k
|ak |2|sk⟩⟨sk | = ρ̃S , (1.11)

and the two density matrices nearly coincide. In that case the eigenvalues of the approximate ρ̃S (t)
diagonal in the einselected pointer basis can be safely used as probabilities of the associated pointer
states. This happens when the environment correlates with the stable pointer states of S , as in the
case of perfect correlation ⟨εk(t)|εl(t)⟩ = 0, so the time-dependent Schmidt states come to coincide
with pointer states. When this occurs, decoherence is complete.

The importance of the stability of the pointer basis is best illustrated “in action”, when the apparatus
A that has already established correlation with the measured system is subject to decoherence:(∑

k
ak |σk⟩|Ak⟩

)
|ε(0)⟩ HAE=⇒

∑
k

ak |σk⟩|Ak⟩|εk(t)⟩. (1.12)

In measurements it is imperative that the record survives decoherence (which is inevitable in macro-
scopic measuring devices). Above, decoherence is induced by the interaction of the apparatus with
its environment, but the pointer states |Ak⟩ are time-independent, immune to decoherence. Thus, the
correlation established by the interaction of the measured system with the apparatus (see Eq. (1.1))
will survive intact even as the environment suppresses manifestations of quantumness between the
pointer states of A.

Our introduction to decoherence and einselection does not exhaust the subject. Moreover, it
assumes much of the textbook lore (including, in particular, Born’s rule) that we would like to
deduce from the quantum core postulates. However, it sets the stage for the next two sections, where
amendments to the core postulates will be deduced from our quantum credo—from that core.

1.5 Summary

In this section we have separated the textbook postulates of quantum theory into quantum core
postulates and “amendments”—textbook measurement axioms. The quantum core includes three
mathematical postulates (o)–(ii) dealing, respectively, with (o) composite systems, (i) the Hilbert
space nature of quantum states and the quantum principle of superposition, and (ii) the unitarity of
quantum evolutions.

These three postulates are included in our quantum credo. They summarize the mathematics of
quantum theory. To connect mathematics with physics we will use repeatability postulate (iii). It
posits that the presence of a known quantum state can be confirmed. Repeatability is then really a
rudimentary version of predictability.

Postulates (o)–(iii) comprise our “quantum credo”. They are uncontroversial, simple, and natural.
They are consistent with all the known experiments. As we shall see, they can be used to deduce
the essence of the axiom (iva)—the textbook demand that the observables should be Hermitian—
and to show the discreteness of the outcomes (suggesting quantum jumps, i.e., why a single result is
perceived by the observer, as in the axiom (ivb)).

Moreover, the quantum credo will allow for a derivation of Born’s rule, pk = |⟨sk |ψ⟩|2, axiom (v).
Thus, the essence of the controversial quantum axioms can be deduced from the simple and natural
cornerstones of quantum theory, postulates (o)–(iii).

We have also touched on the interpretational difficulties. They are the reason for the controversies.
We shall abstain from summing them up here: This would be premature, as we shall delve into the
issues of interpretation throughout this book, and discuss them in more detail only near the end of
this volume.

We ended this introductory section with a decoherence and einselection primer. Decoherence and
einselection will be discussed at length in the body of this book.
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1.6 Frequently Asked Questions

FAQ#1: In spite of the promise not to invoke interpretations, Bohr’s and Everett’s interpretations
played a prominent role in this chapter. Why?

The role of various quantum postulates and the problems that arise in relating quantum mechanics
to our everyday experience are easiest to elucidate by pointing out the difficulties of the existing
and widely known interpretations. This is why we have invoked Bohr’s “Copenhagen” and Everett’s
“Relative States”. However, we did not take sides. Indeed, our aim in this part of the book is to show
how much of the standard textbook lore that includes the “measurement amendments” one can recover
from the non-controversial interpretation-independent core quantum postulates—our quantum credo.

We shall come back to interpretations once we have seen how much light can be shed on the
emergence of the classical without prematurely jumping to interpretational conclusions. Our aim
is to investigate information transfer that is obviously crucial for the understanding of quantum
measurements and of our perception of the quantum Universe we inhabit.

FAQ#2:Feynman has famously said “nobody understands quantummechanics”. Would a quantum
derivation of the classical realm contradict Feynman?

My goal is to understand how classical reality emerges from quantum mechanics. This is different
than “understanding quantum mechanics”—we shall not present, e.g., a model of entanglement that
“you can explain . . . to a barmaid”, to quote Rutherford’s famous criterion for a successful explanation
(that he gave up on after quantum tunneling was explained to him by Gamow). So, I doubt I am at
odds with Feynman.

I also think that Feynman’s dictum was “tongue in cheek”. By contrast, I think Bohr, who said
“. . . those who are not shocked when they first come across quan tum the ory can not pos si bly have
un der stood it . . .”, can be taken at face value.

FAQ#3: Why not start with a different set of postulates where instead “collapse axiom” is a part
of the foundations, and derive what was assumed here?

A derivation of quantum theory from the “collapse” does not exist at present. Moreover, there are
at least two reasons to be wary of starting with “collapse”, or indeed, with the measurement as a
foundation.

The first one: One should be able, at least in principle, to describe the measurer (be it an animated
agent or an inanimate apparatus) using quantum theory, even if quantum theory emerges from the
derivation that involves measurements. But quantum theory includes the superposition principle and
the unitarity of evolutions. Therefore, such proposals eventually have to point to some reason that
makes quantum theory inapplicable to agents or measuring devices. Bohr was keenly aware of this,
as were others, including von Neumann (1932), London and Bauer (1939), Heisenberg (1955, 1989),
and Wigner (1961), who all grappled with this issue early on (and invoked ab initio classicality,
self-awareness, etc.). No compelling resolution has been found until decoherence.

The second (and more important) reason is that the overwhelming majority of the consequences of
quantum theory have nothing to do with measurements. Thus, atomic spectra, condensed matter phys-
ics including superfluidity, the physical basis for chemistry, nuclear, and particle physics, and many
other manifestations of quantum theory are flagrantly quantum, but their quantumness has nothing
to do with measurements. There is no reason to think that such quantum phenomena (or quantum
exotica such as entanglement) are a consequence of rare events involving observers, especially since
the essence of what is puzzling about measurements can be understood starting with our “credo”.

FAQ#4: In spite of the aversion to “measurements”, postulate (iii) asserts repeatability of
measurement results. Is this an inconsistency?

It would be an inconsistency if “measurement” was indeed a “primitive”—a fundamental ingre-
dient that does not require an explanation. We shall see (starting in Chapter 2) how this is avoided
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by treating apparatus as a quantum system. Above, we have attempted to stay close to the textbook
formulations of the “credo”. Hence, we have retained the language that appeals to “measurements”.
Repeatability can be formulated without bringing measurements in as primitive ingredients, just by
considering the effect of interactions and unitary evolutions.

FAQ#5: Can one derive “core postulates” from something else, something more palatable than
the “quantum credo”?

There were attempts at derivations of quantum postulates from other postulates. The motivation
is usually to make quantum foundations more classical (and therefore, more “natural”). However,
“naturalness is in the eye of the beholder”.

Such derivations fall, broadly speaking, into two categories: Some (e.g., Hardy, 2001) are “oper-
ational”, start with the measurement as a “primitive” in some guise, and, hence, have to accept
pre-existence of measuring devices that are exempt from the quantum laws. These strategies face
the problem of the “shifty split” (Bell, 1990) between quantum and classical (or between measured
quantum systems and measuring devices that are exempt from the quantum superposition principle).
Therefore, the measurement problem is left unresolved, much like in the Copenhagen Interpretation.

There are also derivations (Chiribella, D’Ariano, and Perinotti, 2011; Masanes, Galley, and Müller,
2019) that in addition to taking measurement as a “primitive” include an explicitly quantum element
(like entanglement in some guise) in the fundamental assumptions. It is difficult to see the advan-
tage of using such alternative axiomatics instead of the “quantum credo” in identifying the classical
realm, especially as decoherence provides a unified view of the quantum Universe with the emergent
classicality. This is acknowledged by some of the authors of the attempts that take measurement as a
“primitive” (see, e.g., Section 6.8.2 of Galley (2018), quoted in part in the footnote).5

While—in the opinion of this author—none of the approaches cited above as well as in the
references below is sufficiently successful and complete to compete with the quantum postulates
presented, e.g., in Dirac (1958) and distilled into the the quantum credo discussed here, such efforts
shed valuable light on the nature and, above all, on the uniqueness of quantum theory.

1.7 Further Reading

An exhaustive summary of the relevant literature would likely be longer than this chapter. Moreover,
we shall return to the subject of interpretation later in this book. Here we add only a few positions
to the items already cited. A summary of the interpretational effort in the first half-century after the
birth of quantum physics can be found in the book of Jammer (1974). Many of the relevant papers
have been collected in Wheeler and Zurek (1983). Schlosshauer’s papers (2004, 2006, 2019) and his
book (2007) are mainly devoted to decoherence, but they set the stage for a more general discussion
of the transition from quantum to classical, and include numerous references. The voluminous work
of Auletta (2000) contains even more references, and touches on a broad range of subjects, as does

5 “. . . A derivation of the Born rule which starts from similar assumptions to [Masanes, Galley, and Müller, 2019] is
the envariance based derivation . . . [It] begins by assuming the dynamical structure of quantum theory and
[assumes] that quantum theory is universal, which is to say that all the phenomena we observe can be explained in
terms of quantum systems interacting. Specifically the classical worlds of devices can be modeled quantum
mechanically, including the measurement process. . . . [T]his is philosophically very different to the operational
approach . . . [of Galley, 2018] which takes the classical world as a primitive. By assuming the dynamical structure
of quantum theory . . . Zurek shows that measurements are associated to orthonormal bases, and that outcome
probabilities are given by the Born rule. . . . We observe that the purification postulate [of Chiribella, D’Ariano, and
Perinotti, 2011; Galley, 2018; Masanes, Galley, and Müller, 2019] seems linked to the notion that quantum theory is
universal, in the sense that any classical uncertainty can be explained as originating from some pure global quantum
state. This shows an interesting link to [envariant] derivation, since . . . the concept of purification is linked to the
idea that quantum theory is universal” (Galley, 2018).
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the followup (Auletta, 2019). The collection of John Bell’s papers (Bell, 1987) as well as the book
by Asher Peres (1993) are much more focused and highly recommended.

Other useful resources include the bibliographic guide to the foundations of quantum mechanics
and quantum information (Cabello, 2004) as well as the classic book by Nielsen and Chuang (2000)
on quantum information and quantum computation. There are also several more philosophically
oriented books by d’Espagnat (1995, 2013) and a collection of debates on the foundations of quan-
tum theory (d’Espagnat and Zwirn, 2017). Cabello (2016) provides a brief and amusing summary of
various interpretations.

Everett’s interpretation has been a subject of numerous publications. We have already cited several
in the text. Let us add semi-popular books by Deutsch (1997), Byrne (2010), Kurizki and Gordon
(2020), as well as a monograph by Wallace (2012b) and the collection of contributions edited by
Saunders et al. (2010).

Other approaches that either aim at derivation of the essence of quantum theory from the principles
that rely on measurements or attempt to dispose of the measurement problem in some other way
include influential work of Wootters (1981, 2016), papers of Auffeves and Grangier (2016), and the
Bayesian approach that has evolved (Fuchs and Peres, 2000) into QBism (Fuchs and Schack, 2013).

https://doi.org/10.1017/9781009552868.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009552868.002



