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Abstract

A volume-area scaling relation is commonly used to estimate glacier volume or its future changes
on a global scale. The presence of an insulating supraglacial debris cover alters the mass-balance
profile of a glacier, potentially modifying the scaling relation. Here, the nature of scaling relations
for extensively debris-covered glaciers is investigated. Theoretical arguments suggest that the
volume-area scaling exponent for these glaciers is ∼7% smaller than that for clean glaciers.
This is consistent with the results from flowline-model simulations of idealised glaciers, and
the available data from the Himalaya. The best-fit scale factor for debris-covered Himalayan
glaciers is ∼60% larger compared to that for the clean ones, implying a significantly larger stored
ice volume in a debris-covered glacier compared to a clean one having the same area. These
results may help improve scaling-based estimates of glacier volume and future glacier changes
in regions where debris-covered glaciers are abundant.

Introduction

A volume-area scaling relation (Bahr and others, 1997, 2015) has been used extensively to
estimate the total volume of glaciers on a regional to global scale (e.g. Grinsted, 2013), or
to develop zero-dimensional models of glacier evolution (e.g. Radić and others, 2007).
These scaling-based models are often used for numerically-efficient representation of glacier
dynamics within hydrological (e.g. Zhang and others, 2015) or climate models (e.g. Kumar
and others, 2019).

The volume-area scaling relation,

V = cAg, (1)

relates the volume of a glacier V to its area A via a dimensionless exponent γ and a scale factor
c (Bahr and others, 1997, 2015). For a large set of glaciers, the glacier area typically spans
several orders of magnitude. In comparison, the corresponding variation in glacier-specific
c is much weaker. Therefore, a single best-fit c, along with a fixed γ, provides a reasonable
statistical description of a set of glaciers (Bahr and others, 2015). In this letter, the scaling
relation is interpreted in this statistical sense where all the glaciers in a given set are described
with the same values of the parameters c and γ.

Equation (1) was first established empirically (e.g. Chen and Ohmura, 1990). Subsequently,
Bahr and others (1997, 2015) derived it using dimensional analysis, and proved that,

g = 1+ m+ 1
(n+ 2)(q+ 1)

. (2)

Here, n is the Glen’s law exponent which is usually taken to be 3 (e.g. Oerlemans, 2001). m and
q are the exponents describing the scaling of ablation rate (b) and glacier width (w) with length
(L). That is,

b = cmL
m, (3)

w = cqL
q. (4)

Here, cm and cq are the corresponding best-fit scale-factors. For clean mountain glaciers,
typical values of m = 2 and q = 3/5, obtain γ = 1.375 which is consistent with observation
(Bahr and others, 1997). The dependence of the scale factor c on cq, cm and glacier slope
are known, but there is no existing analytical prescription to estimate c (Bahr and others,
2015).

On debris-covered glaciers, the insulating effect of a thickening debris layer reduces melt-
ing, and leads to a decline in ablation downglacier (e.g. Dobhal and others, 2013). This may
lead to a different m for debris-covered glaciers; if so, then Eqn (2) would lead to a different
characteristic γ for this type of glacier. Similarly, a possibly different characteristic q for debris-
covered glaciers compared to the assumed empirical global value of 3/5 (Bahr and others,
2015) may also alter the value of γ. On the other hand, any systematic difference in the char-
acteristic cq or slope for these two types of glaciers may induce a corresponding change in the
characteristic c value (Bahr and others, 2015). Despite the above possibilities, the nature of
volume-area scaling for debris-covered glaciers has not been discussed in the literature as
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yet. Given the abundance of supraglacial debris in High Mountain
Asia (e.g. Kraaijenbrink and others, 2017), as well as in several
other glacierised regions in the world, an answer to the above
problem is of interest. Establishing the appropriate scaling relation
for debris-covered glaciers may help in correcting possible biases
in the scaling-based estimates of global to regional-scale glacial ice
volume, and the scaling model predictions of future ice-loss and
global sea-level rise.

With the above motivation, I consider the following questions
here.

(1) How does ablation rate scale with length on debris-covered
glaciers?

(2) How does glacier width scale with length for debris-covered
glaciers?

(3) What are the appropriate volume-area scaling exponent (γ),
and scale factor (c) for debris-covered glaciers?

The first question is investigated theoretically. Debris-ice
coupled flowline model simulations of idealised steady-state
glaciers are used to validate the theoretical results obtained.
Available data/estimates of volume and area of Himalayan glaciers
are then utilised to obtain empirical width–length scaling relations
for clean and extensively debris-covered glaciers (question 2). The
answers to the first two questions would lead to the appropriate
scaling relation for debris-covered glaciers (question 3) via
Eqn (2). The consistency among the theoretical predictions,
numerical results and empirical scaling relations for the
Himalayan glaciers is checked for.

Methods

In this section, I first describe the theoretical models of idealised
clean and debris-covered glaciers. These models are then utilised
to establish the scaling of ablation rate with length for debris-
covered glaciers. Subsequently, details about the numerical experi-
ments performed with the idealised models, and the data analysis
done for Himalayan clean and debris-covered glaciers are
described.

Model for clean and debris-covered glaciers

The dynamics of clean glaciers, within a shallow-ice approxima-
tion, is described by the following equations (e.g. Oerlemans,
2001):

∂th = − 1
w
∂x(wuh)+ b(zs), (5)

u = fD|∂xzs|nhn+1, (6)
where h and u are local ice thickness and depth-averaged flow vel-
ocity, respectively, at a distance x along the central flowline. The
mass balance b depends on surface elevation zs. |∂xzs| is the abso-
lute surface slope, and fD is a constant controlling deformation of
ice (Oerlemans, 2001). I did not consider any sliding for
simplicity.

For debris-covered glaciers, the conservation of debris mass is
imposed as,

∂td = − 1
w
∂x(wusd)+ a|bd(zs, d)|. (7)

Here, d is the local supraglacial debris thickness, us = ((n + 2)/(n +
1)) u is the surface ice-flow speed, and bd is the sub-debris abla-
tion (hereinafter, subscript d is used to denote variables associated

with debris-covered glaciers). The parameter α ≡ ν/(1 − ϕ) mea-
sures englacial debris content (Anderson and Anderson, 2016),
with uniform englacial debris volume fraction ν, and supraglacial
debris-layer porosity ϕ. α is assumed to be constant for a given
glacier. Melt-out of englacial debris is the only source of supragla-
cial debris here, with sub-debris ablation taken to be (Anderson
and Anderson, 2016),

bd(zs, d) = b(zs)
1+ d/d0

. (8)

Here, d0 is a characteristic length scale (∼0.1 m) that is a material
property (Anderson and Anderson, 2016).

Please note that this type of model has routinely been used to
study steady-state and transient properties of debris-covered gla-
ciers (Vacco and others, 2010; Anderson and Anderson, 2016;
Banerjee and Wani, 2018). The limitations of the model are dis-
cussed later in the text.

Derivation of the ablation rate scaling exponent

Let us assume the following linear (i.e. m = 1) clean-glacier mass-
balance profile:

b(zs) = b(zs − E), (9)

where β is the balance gradient, and E is the equilibrium-line alti-
tude (ELA). The following arguments can easily be generalised to
other possible choices of b(zs) (see Appendix A).

On an extensively debris-covered glacier, the ablation zone can
be partitioned into an upper reach with thin debris cover (d(x) <
d0), and a lower reach with a thick debris cover (d(x) > d0). Let the
boundary between the two zones be at x = x∗ so that d(x∗) = d0.
If L∗ is the length of the thin-debris zone, Eqns (8) and (9) imply,

b∗d =
1
2
b(zs − E) ≈ − 1

2
bsL∗, (10)

where b∗d ; bd(x∗), and s is the bedrock slope. Here, I have used
that (1+ d(x∗)/d0) = 2, and assumed the ice surface to be
approximately parallel to the bedrock near ELA.

Now, in a steady state Eqn (7) implies,

∂x(wusd) = wa|bd(zs, d)|, (11)

At x = x∗, the left-hand side can be approximated by w∗u∗s d0/L
∗,

and the right-hand side is given by aw∗b∗d, where u
∗
s ; �us(x∗) and

w∗ ; w(x∗). Thus,

w∗u∗s d0 ≈ aw∗L∗b∗d (12)

The above relation simply states that to maintain a steady state the
supraglacial debris flux at x∗ must equal the rate of total melt-out
debris production over the stretch L∗ at the top of the ablation
zone.

Combining Eqns (10) and (12), one obtains,

b∗d ≈
��������
sbd0
2a

u∗s

√
. (13)

Now, using u∗s � hn+1 (from Eqn (6)), and h = V/A ∼
L(md+1)/(n+2) (from Eqns. (2 and 4)), one obtains that
b∗d � L((n+1)(md+1))/2(n+2). Or equivalently, md = ((n + 1)(md + 1))/
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2(n + 2). This equation is solved for md to obtain,

md = n+ 1
n+ 3

= 2
3
, (14)

where the second equation is for n = 3. Apart from its dependence
on u∗s , b

∗
d also scales with slope as s1/2. This slope dependence gets

absorbed into the corresponding scale factor cm (Bahr and others,
2015). The above discussions also imply that L∗ � L2/3.

Please note that the above relations are valid only in the limit
of a uniform englacial debris concentration, a linear clean-glacier
mass-balance profile (i.e. m = 1), and a steady glacier.

Repeating the above arguments for a quadratic (m = 2) clean-
glacier mass-balance profile (see Appendix A) obtains,

md = 2n+ 3
n+ 3

= 3
2
, (15)

where the second equality assumes n = 3.

Numerical methods

Numerical flowline-model simulations of idealised glaciers having
a constant width (i.e. q = 0) and a linear bedrock, were used to
verify the theoretical results derived above.

The clean glaciers were simulated with an explicit finite-
difference implementation (Oerlemans, 2001) of Eqns (5 and
6), with the mass-balance profile as given by Eqn (9). The spatial
and temporal discretisation steps were 25 m and 0.01 year,
respectively. A linear bedrock with a maximum elevation of
6000 m and bedrock slope in the range 0.1–0.4 was used. β was
taken to be 0.007 a−1. These values were chosen to mimic typical
Himalayan conditions (Laha and others, 2017). Each simulation
was run with a fixed ELA over 4000 years to produce the corre-
sponding steady-state. The length of the modelled steady-state
clean glaciers for ELA values of 5400, 5500,…, 5900 and 5950
m, was in the range of 3–17 km.

The numerical model for debris-covered glaciers was the same
as above, except that the sub-debris ablation was computed using
Eqn (8) with d0 = 0.1 m, and that the supraglacial debris-thickness
profile was evolved by solving Eqn (7) with an upwind finite-
difference scheme. α was varied between 0.0002 and 0.0012
such that the maximum modelled debris thickness was in the
range of 0.1–3 m. This is comparable to Himalayan conditions
(Kraaijenbrink and others, 2017; Banerjee and Wani, 2018).

The length of the modelled steady-state debris-covered glaciers
was in the range of 3–28 km, which is again typical of
Himalayan debris-covered glaciers (Banerjee and Wani, 2018).

Empirical analysis of data from the Himalaya

For all the clean and debris-covered glaciers in the Himalaya that
are larger than 1 km2, area (RGI, 2017) and estimated volume
(Kraaijenbrink and others, 2017) were fitted to Eqn (1) to obtain
the corresponding volume-area scaling relation. The volume esti-
mates used here (Kraaijenbrink and others, 2017) were obtained
from a variant of plastic-ice approximation (Frey and others,
2014). Available debris-cover extents (Kraaijenbrink and others,
2017) were utilised to select the clean (<5% debris-cover), and
extensively debris-covered (> 50% debris cover) Himalayan
glaciers. Similarly, the data of length and area (RGI, 2017) of
these two types of glaciers were used to obtain the corresponding
width-scaling relation (Eqn (4)).

Results and discussions

In this section, I first discuss some general features of the simu-
lated steady-state glaciers. Then, the simulation results are used
to validate the theoretical predictions for scaling of ablation rate
with length, and that of volume with area for the idealised glaciers
with uniform width. Subsequently, the empirical width and vol-
ume scaling relations for Himalayan glaciers are presented. In
the end, I discuss the implications of the differences between
the scaling relations for debris-covered and clean glaciers.

The steady-state simulated glaciers

As shown in Figure 1, the simulations reproduced various well-
known characteristics of debris-covered glaciers, e.g. a down-
glacier increase in debris-thickness, a non-monotonic mass-
balance profile with low melt rate near the terminus, a relatively
longer ablation zone, and a smaller accumulation-area ratio com-
pared to the corresponding clean glaciers (Banerjee and Shankar,
2013). Glacier length, ice thickness, typical ablation rate and
debris-thickness of the modelled glaciers were in the reasonable
range as well (Kraaijenbrink and others, 2017; Laha and others,
2017; Banerjee and Wani, 2018). I confirm that the debris-flux
increased monotonically down-glacier, and that divergence of
the debris flux matched the melt-out rates of debris at all sites.

Fig. 1. (a) Ice-thickness profiles of the simulated debris-covered/clean glaciers are plotted with thick/thin solid lines. Line colours represent the ELA. Bedrock slope
is 0.1, and englacial debris volume fraction α =0.0008. (b) The corresponding mass-balance and debris-thickness (inset) profiles of simulated debris-covered glaciers
are shown.
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It can be seen in Figure 1 that the maxima of the
debris-thickness profiles were located somewhat upstream of the
terminus. This non-monotonicity of the modelled debris-thick-
ness profile may be an artefact of the simple boundary condition
used at the terminus, where the debris flux out of the last site is
assumed to leave the system. For real debris-covered glaciers or
for model glaciers with different boundary conditions (e.g.
Anderson and Anderson, 2016) such a feature may or may not
be present. The present boundary condition also led to some grid-
size dependence of the steady state.

Scaling of ablation rate for the simulated glaciers

Figure 2 shows that for the modelled constant-width idealised gla-
ciers, the characteristic sub-debris ablation rate b∗d scales as ∼ L0.65
±0.00, i.e. md≈ 2/3. This is just as predicted by Eqn (14) for a linear
clean glacier mass-balance profile (Eqn (9)). The same figure also
shows that the mean ablation rate on clean glaciers scales with L
almost linearly with m = 0.90 ± 0.00. The small departure from
linearity may be related to the corrections due to the ice-elevation
feedback effects.

As shown in Appendix Figure A1, the simulation results cor-
responding to a quadratic clean-glacier mass-balance profile pro-
duced relatively smaller values of m = 1.5 and md = 1.2 as
compared to the expected/predicted values of m = 2 and md = 3/2.

Volume-area scaling for the simulated glaciers

For the simulated constant-width clean glaciers with linear mass-
balance profile (q = 0 and m = 1), and corresponding debris-
covered glaciers (q = 0 and md = 2/3), Eqn (2) predicts γ = 1.4
and γd = 1.33, respectively. Simulation results (Fig. 3) confirmed
that these theoretically predicted exponents provided accurate
descriptions of the variation of V with A for the constant-width
clean and debris-covered glaciers. A similar match between the
simulated and predicted γ and γd values was obtained for the
quadratic clean-glacier mass-balance profile as well (Fig. A1).

For debris-covered glaciers, the scale factor increased weakly
with increasing α (Fig. 3), and decreased with increasing bedrock
slope (Fig. 3, inset). For the smallest englacial debris concentra-
tion used, namely, α = 0.0002, there were systematic deviations
from the predicted power-law scaling, particularly for smaller gla-
ciers with a relatively low debris-covered fraction (Fig. 3). This

suggested a smooth transition from the clean glacier value of γ
= 1.4 to γd = 1.33 as α and/or debris-covered fraction increased.

Empirical width-scaling exponents for Himalayan glaciers

An empirical analysis of the data for clean and extensively debris-
covered Himalayan glaciers obtained w = (0.43 ± 0.02) L0.60±0.02

and w = (0.19 ± 0.04) L0.80±0.09, respectively. While the above best-
fit q on clean Himalayan glaciers matched the recommended glo-
bal value (Bahr, 1997), the best-fit qd on debris-covered
Himalayan glaciers was relatively larger. Also, the best-fit scale
factor (cq) was significantly smaller for the debris-covered ones
compared to that for the clean ones.

Given the above empirical values of q = 0.6 and qd = 0.8 for the
Himalayan glaciers, and assuming m = 2 and md = 1.5, Eqn (2)
obtained γ = 1.375 and γd = 1.28 for the clean and debris-covered
Himalayan glaciers, respectively.

Empirical volume-area scaling for Himalayan glaciers

For the above clean and debris-covered Himalayan glaciers, the
best-fit volume-area scaling relations were, V = (0.024 ± 0.001)
A1.38±0.02 and V = (0.040 ± 0.002) A1.30±0.02, respectively. These
best-fit forms are consistent with the theoretical predictions for
the volume-area scaling exponents presented above. Thus, theoret-
ical calculations, simulation results for idealised glaciers and empir-
ical data from the Himalaya were all consistent with each other as
far as the values of the volume-area scaling exponent is concerned.
These pieces of evidence indicate that the volume-area scaling rela-
tions for extensively debris-covered and clean glaciers are different,
with γ larger than γd by about 7%. Moreover, the best-fit
volume-area scaling relations for Himalayan glaciers suggest that
the scale factor c for debris-covered glaciers is about 1.6 times
that for the clean glaciers. This can be ascribed to a significantly
smaller best-fit cq, and a gentler slope of the debris-covered glaciers
(Bahr and others, 2015). The median values of slope for the debris-
covered and clean Himalayan glaciers are 16 and 21°, respectively.

Notably, the alternative expression for the exponent given by
Bahr and others (2015) γ = (2q + 1)/(q + 1), is inconsistent with
the above values of qd = 0.8 and γd = 1.3 obtained from empirical
data of debris-covered Himalayan glaciers. This suggests that
some of the assumptions involved in deriving this alternative
expression may not be valid for debris-covered glaciers.

Implications for scaling-based models

A relatively smaller γd (by ∼6%) and a larger c (by ∼60%) for
extensively debris-covered Himalayan glaciers compared to their
clean counterparts as established above, suggest a possible under-
estimation of the volume of debris-covered glaciers when derived
using the clean-glacier scaling relation. For a given value of glacier
area, this fractional bias is given by, ΔV/V≈ Δc/c + Δγ lnA, and
the negative first term on the right-hand side is likely to have a
larger magnitude than the positive second term (Δc/c∼−0.6,
and Δγ∼ 0.1).

The above underestimation of volume implies a corresponding
negative bias in the estimate mean ice-thickness. A low bias in
estimated thickness may lead to an overestimation of instantan-
eous area loss on debris-covered glaciers when computed using
the relation ΔA = ΔV/γh, if the fractional negative bias in h is lar-
ger than the fractional positive bias in γ. Any such bias in the esti-
mated area change for debris-covered glaciers may affect the
asymptotic response due to a feedback between glacier area and
net balance. These issues may compromise the accuracy of the
predictions from scaling-based glacier models in regions where
extensively debris-covered glaciers are abundant.

Fig. 2. The characteristic ablation rates b∗d on the simulated debris-covered glaciers
(red circles) scales as ∼ L0.67, and mean ablation on the simulated clean glaciers (blue
circles) scales as ∼ L. This is consistent with the theoretical analysis (see text). The
best-fit curves (solid lines) yield exponents that are somewhat smaller with m =
0.90 ± 0.0 and md = 0.65 ± 0.00.
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Limitations

The theoretical results on scaling of ablation with glacier length,
and that of volume with area on steady debris-covered glaciers
presented above, are based on assumptions of a uniform englacial
debris-concentration, and specific forms of debris-thickness-
dependent ablation rate. There are several processes in a typical
Himalayan debris-covered glacier that violate these assumptions
to some extent. The englacial debris concentration is not constant,
and varies spatially (Nakawo and others, 1986) even within a sin-
gle glacier. It also varies with time due to stochastic and systematic
changes in headwall-erosion rates (Banerjee and Wani, 2018).
Additional sources of debris due to rockfall, debris avalanche
and degradation of lateral moraines (Nakawo and others, 1986)
add further noise to the debris-thickness distribution (Shah and
others, 2019). Complex mass-balance processes like avalanche
activity (Laha and others, 2017), and stochastic increase in local
ablation due to thermokarst features like supraglacial ponds and
ice-cliffs (Sakai and others, 2000), may modify the mass-balance
profile. Despite ignoring these complicating factors, the close
match between theoretically predicted and empirically observed
scaling exponents for Himalayan glaciers may indicate that the
idealised model employed here was able to capture the dominant
processes on debris-covered glaciers rather well.

Conclusions

To summarise the results from the above analysis of scaling rela-
tions for debris-covered glaciers:

(1) The characteristic ablation rate on idealised debris-covered
glaciers scale with glaciers length with the exponent md≈
1.5. md is smaller than the corresponding clean-glacier
exponent m = 2.

(2) For the extensively debris-covered glaciers in the Himalaya,
the glacier width scales with length with an exponent qd≈
0.8. The corresponding exponent for the Himalayan clean
glaciers is q = 0.6.

(3) The above values of md and qd predict a volume-area scaling
exponent γd = 1.28 for debris-covered glaciers. γd is about 7%
smaller than the corresponding clean-glacier exponent
γ = 1.375.

(4) The empirical volume-area scaling exponents for clean
and debris-covered Himalayan glaciers (γ = 1.38 ± 0.00 and
γd = 1.30 ± 0.02) are consistent with the above predictions.

(5) The Himalayan debris-covered glaciers are characterised by a
∼60% larger value of the scale factor c.

The difference in the scaling relations for the two types of
glaciers – particularly, a larger scale factor c for the debris-covered
glaciers – when not taken into account, may cause a significant
negative bias in corresponding scaling-derived estimates of vol-
ume and ice thickness. Related biases could also be present in
the results of scaling-based simple models of glacier dynamics,
with an overestimation of the instantaneous area change of
debris-covered glaciers for a given mass-balance forcing. A larger
scale factor for the debris-covered Himalayan glaciers implies that
the stored ice volume in a debris-covered glacier is larger than that
in a clean glacier having similar area. The results presented here
may be useful in quantifying and correcting possible biases in
existing scaling-based estimates of the volume of debris-covered
glaciers or that of the future ice loss at these glaciers.
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Appendix A

Scaling of ablation rate for glaciers with quadratic
clean-glacier mass-balance profile

The general form of a quadratic mass-balance profile for clean glaciers is
given by,

b(zs) = b1((z0 − E)2 − (z0 − zs)
2). (A1)

Fig. A1. (a) Scaling of b∗d on debris-covered glaciers (red circles and line), and maximum ablation on clean glaciers (blue circles and line) with L. Here, a quadratic
clean-glacier mass-balance function was assumed (Eqn (A1)). (b) V− A scaling for the same set of simulated clean (blue) and debris-covered (red) glaciers.

Fig. A2. (a) Simulated ice-thickness profiles of clean (thin lines) and debris-covered (thick lines) glaciers corresponding to quadratic clean-glacier mass-balance
function given in Eqn (A1). (b) Corresponding mass-balance and debris-thickness profiles (inset) for the simulated debris-covered glaciers.
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Here, z0 is a reference elevation higher than the top of the bedrock, E is the
ELA and β1 is a mass-balance parameter having unit of m−1 a−1. The corre-
sponding sub-debris ablation is taken to be, bd(z, d) = b(z)/(1 + d/d0) as before.
Then, the sub-debris ablation at x∗ is,

b∗d ≈
2b1(z0 − E)sL∗

1+ d0/d0
. (A2)

Here, I have assumed that (z0 − E) ≫ sL∗, and linearised Eqn (A1) around zs
= E. Now, taking (z0− E)∼ s L,

b∗d � s2b1LL
∗. (A3)

Now, just as for the m = 1 case discussed in the main text, a steady-state con-
dition implies, d0u∗s /L

∗ � ab∗d. Together the last two relations imply,

b∗d � s
������������
b1d0Lu∗s /a

√ � L1/2+
(n+1)(md+1)

2(n+2) (A4)

Or, md = 1/2 + ((n + 1)(md + 1))/2(n + 2), which can be simplified to obtain,

md = 2n+ 3
n+ 3

= 3
2
. (A5)

Where in the last equation n = 3 is used.
As shown in Appendix Figure A1, for idealised glaciers with the quadratic

form of b(zs) (Eqn (A1)), md = 1.16 ± 0.03, which is lower than the above pre-
dicted value of 1.5. However, with md = 1.16 and q = 0, Eqn (2) predicts γd =
1.43, which matches the best-fit γd = 1.43 ± 0.00 obtained for the simulated gla-
ciers. For the above quadratic mass-balance profile (Eqn (A1)), scaling of mean
ablation in the simulated clean glaciers yieldedm = 1.50 ± 0.03 (Fig. A1), which
is lower than the naive expectation of m = 2. However, the best-fit γ = 1.52 ±
0.00 is again consistent the corresponding predicted value of γ = 1.5 (from
Eqn (2), setting m = 1.5 and q = 0).

In the above numerical experiments, the best-fit ablation rate scaling expo-
nents are about 25% smaller than the predicted values for clean and debris-
covered glaciers. This is possibly related to the effects of ice-elevation feedback.
However, given these best-fit m and md, the predicted γ and γd match with the
corresponding modelled values.
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