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In this paper all representations are over the complex field K. The generalized 
symmetric group S(n, m) of ordernlm71 is isomorphic to the semi-direct product 
of the group of n X n diagonal matrices whose rath powers are the unit matrix 
by the group of all n X n permutation matrices over K. As a permutation 
group, S(n, m) consists of all permutations of the mn symbols {1, 2, . . . , mn} 
which commute with 

(1, n + 1, . . . , (ra - \)n + 1) (2, n + 2, . . . , (ra - l)n + 2) . . . 

(n, 2n, . . . , mn). 

Obviously, 5(1 , ra) is a cyclic group of order ra, while S(n, 1) is the symmetric 
group of order n\. If ct — (i, n + i, . . . , (ra — \)n + i) and 

Sj = UJ + l)(w + j , n + j + 1) . . . ((m - \)n + j , (m - l)n + j + 1), 

then {ci, c2, . . . , cn] generate a normal subgroup Q(n) of order mw and 
{su s2, . . . , 5n_i} generate a subgroup S(n) isomorphic to S(n, 1). The group 
rings KS(n,2) and KS(n,m) were studied by Young (7) and Osima (4), 
respectively; however, they did not give the construction theory of their 
irreducible representations. The first part of this paper (which is based on the 
work done in (5)) fills this gap and also includes a result of Frame (2) as a 
special case of Theorem 2. In the second part of the paper we are concerned 
with the development of an operator theory for S(n, m), similar to that of the 
symmetric group (6). 

1. If G is any finite group, let KG be the group ring of G over the field K. 
If M is a finite-dimensional vector space, we denote by aut(ikf) the group of all 
automorphisms of M. If there is a homomorphism of G into aut(ikf), then M 
can be regarded as a (right) i£G-module. Conversely, any XG-module M 
defines a homomorphism of G into aut(ikf). Let B be a normal subgroup of 
index m in G. Then G = U7=i^>#z- Let M and N be iLE>-modules which afford 
the representations U and V, respectively. For any a Ç G, Ua defined by 
Ua(pc) = U(a~lxa), x Ç B, is also a representation of KB. Let U ® V and 
U ® V be the representations of KB afforded by the direct sum M ® N and 
tensor product M ® N, respectively. Let Um denote the representation of KB 
defined by Um(x) = S?=i © U{a{~lxai). If IF is a representation of a sub­
group of G, then WG denotes the representation of G induced by W. 
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THEOREM 1. Let G be a semi-direct product of B by A and let D be a subgroup 
of A of index n. 

(i) If X and /z are homomorphisms of A and B into aut(M"), respectively, then 
A/* (defined by \ij,(ab) = X(&)/z(fr)) is also a homomorphism if and only if 
X(A) H JJL(B) = X(l) and X(a-1)/i(ô)X(a) = ix(arlba) for all a in A and b in B. 

(ii) If a and /3 are homomorphisms of D and B into aut(iV) such that a/3 is also 
a homomorphism, then (a/3)G = aA/3n. 

Proof, (i) Let X(A) H /*(£) = X(l) and X ^ - 1 ) / ^ ) ^ ) = n(arlba) for all 
am A and b in B. If ab, cd £ AB, then 

\n(abcd) = X^(acc~lbcd) = X(ac)ii(c~lbcd) = X(a)X(c)fjL(c~1bc)fjL(d) = 

À(a)À(c)\(r1)MWAWMW = \(a)n(b)\(c)n(d) = \n(ab)\n(cd) 

so that Xfj, is a homomorphism. 
Conversely, let XJJL be a homomorphism. Then X(A) H fi(B) = X(l) follows 

from the fact that A H B = 1. Also, each element a Ç A defines an auto­
morphism /x(6) —» \(a~1)n(b)X(a) of AI(5) if and only if \(a_1)/A(6)X(a) = 
nia-iba) for all 6 G 5 . 

(ii) Let 4̂ = U!=i-E>0*. Since I? is normal in G, we have that 

n n 

G = BA = B U Dat= U (££>)a*. 

Assume that a and /3 are matrix representations. If we let a(x) = 0 for 
x G A — D, we obtain 

(@a)G(ba) = (f3a(ai~lbaaf)) = (f$a(ai-
lbaiai-

laaJ)) = 

(fiiar^a^aÇa^aaj)) = (fiiar^a^ot^iaiai^aa/)) = f$n(b)aA(a) 

for all 6 £ J5 and a f i . Clearly, /3W is a representation of J5. Furthermore, 

(fiayiar^ba) = d3a)G(a~1ba • 1) = /T (#-%*)<* A ( l ) = 
pn(a~lba) = (/foO^la-^a) = (/3a) G(la"1) (/3a)G(ba) = 

pn{l)oLA(a-l)Pn(b)aA(a) = aA{a~l)fin(b)aA(a) 

for all a G A and b £ B. Therefore, /3waA is a representation of G and 
((3a)G = /3naA, which proves the result. 

The theory of characters and the associated properties of S(n, m) were 
studied by Osima (4), who showed that there is a one-to-one correspondence 
between the distinct irreducible representations of KS(n, m) and the distinct 
w-quotient diagrams (for definition see (6)) of n nodes. In the following, the 
irreducible representation of KS(n, m) corresponding to the m-quotient 
diagram [X]m* of n nodes will be denoted by ([Xi]; [X2]; . . . ; [Xm]) = ([X]) 
where [X*] means [Xa, Xi2, Xz-3, . . .] with \ a ^ Xi2 ^ Xi3 ^ . . . ^ 0 and 
Xn + Xi2 + Xi3 + . . . = nu subject to the condition: n± + n2 + . . . + nm = n. 
If tit = 0, then it is still necessary to write [Xt] = [0] in ([X]). 
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30 B. M. PUTTASWAMAIAH 

Generalized Young diagram and tableau. Let n = ?zi + #2 + . . . + wm, 
where 0 S nt ^ n. Corresponding to each partition (X*) of 

nt = \a + Xî2 + Xi3 + . . . , 

we define a unique generalized Young diagram denoted by the same symbol 
([X]) in the form: 

X11 nodes 
X12 nodes 

X21 nodes 
X22 nodes 

\m\nodes 
Xm2 nodes 

In the diagram ([X]), the part corresponding to [X*] will be called the ith. 
constituent of the diagram. The graph ([X])* of ([X]) is obtained by replacing 
the {u, v)Ûi node by the quantity x — u + v, where x is an arbitrary parameter. 

Example 1. Let n = 3 + 2 + 0 and [Xi] = [21], [X2] = [2], [X3] = [0]. Then 
the diagram ([21]; [2]; [0]) and its graph are 

• 

and 

X — 1 

• 
and 

X, X + 1 

0 

and 

0 

If (UyV) and (uf, v') are positions of two nodes in ([X]) with u < u' and 
vf < v, then the axial distance 1/p between these two nodes is defined to be 
(i) (V — u) —- (V — v) if both nodes are in a constituent or (ii) arbitrarily 
large if the two nodes are in different constituents. Thus, 

p = (<y _ u) - {p' - v))-i 

if both the nodes are in the same constituent, otherwise p = 0. 
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If we now arrange the n symbols 1, 2, . . . , n in all possible ways in places 
of the nodes of the diagram ([X]), we obtain a generalized Young tableau. Of 
these generalized tableaux, there are a certain number / = /([X]) of tableaux, 
in which the symbols in each row and column appear in their natural order, 
which may be called the generalized standard Young tableaux. If /* is the 
number of standard tableaux of nt nodes of the ith constituent, t hen / is given 
(3) by 

where we set/* = 1 if nt = 0. T h e n / is the i£-dimension of the minimal right 
ideal of KS(n, m) which affords the irreducible representation ([X]). 

Example 2. The generalized standard Young tableaux associated with the 
irreducible representation ([2]; [1]) of KS(3, 2) are 

12 

3 

13 

2 

23 

1 

Furthermore, the i^-dimension / of the minimal right ideal of KS(3, 2) which 
affords the representation <[2]; [1]) of KS(S, 2) is 3. 

The generalized standard Young tableaux associated with ([X]) will be 
denoted by ti, t2, . . . , tf. A tableau tv (with u < v) will be called the j-conju-
gate of tu if tv is obtained from tu by interchanging j and j + 1. In the following 
theorem, tv is the /-conjugate of tu. 

THEOREM 2. Let {ex, e2, . . . , ef] be a K-basis of a vector space M. Then Mis an 
irreducible KS(n, m)-module with respect to the action of S(n, m) defined as 
follows: 

(i) euSj = eu or —eu if j and j + 1 lie in the same row or column of tUi 

respectively; 
(ii) eusj = — peu + (1 — p2)hv and evsù = (1 — p2)hu + pev if j and j + 1 

are not in the same row or column; 
(iii) euCj = ur~leu, where r is the cardinality of the constituent of tu in which j 

appears and co is a primitive mth root of unity. 

Proof. By (i) and (ii), it follows that M is a KSin)-module and by (iii) it 
follows that M is a KQ(n)-module. Let U and V be the corresponding repre­
sentations of KS(n) and KQ(n), respectively. If a constituent [Xj of ([X]) has 
n nodes, then U is an irreducible representation of KS(n) (see 6) and each 
V(Cj) is a scalar multiple of the identity transformation. Therefore, we have 
that U(a-1) V(cj) U(a) = V(arlCjO,) for all a 6 S(n). I t follows from Theorem 1 
that M is an irreducible KS(n, m) -module. 

Next, assume that not all the n nodes belong to a single constituent. Since 
the argument is similar in the general case, it is not a restriction to assume that 
the n nodes are distributed between two constituents [Xr] and [Xs] with r 9e s. 
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Let p nodes belong to [Xr] and q nodes belong to [\s]. Let S(p) and S(q) be the 
corresponding symmetric subgroups of S(n, m). 

The tableaux can be divided into I = n\/p\q\ packs 7\, T2j . . . , Th each 
olfrfs tableaux, in the following manner. First, let h, t2j h, . . . be the standard 
tableaux obtained by the arrangement of the symbols 1, 2, . . . , p while 
p + 1, p + 2, . . . , n of [\s] are invariant. Then the pack 7\ is obtained by 
arranging £ + 1, p + 2, . . . , n of [Xs] in ti, t2, h, . . . , while 1, 2, . . . , p are 
invariant. Then, clearly, 7\ has / r / s tableaux. The pack T2 is obtained by 
arranging 1, 2, . . . , p — 1, p + 1 in place of 1, 2, . . . , p and p, p + 2, . . . , n 
in place of p + 1, p + 2, . . . , n. Similarly, the other packs are obtained. By 
restricting the construction to 7\, we obtain a representation U\ of KS(p) X 
S(q) and a representation Fi of KQ(n). Again, each element Vi(b) is a multiple 
of identity transformation, so that U\(arl) Vi(b) Ui(a) = V\{a~lba) for all 
a G S(p) X 5(g) and b Ç (?(«). By Theorem 1, it follows that UiVi is an 
irreducible representation of KS(p, m) X S(q, m). Therefore, we have that 

( [ / iF i )^ n ' m ) = Ui^V!1. 

Then, clearly, U= Uis^ and V = Vil. Thus, M is a KS(n, m)-module. 
Since S(p, m) X 5(g, w) is the stability subgroup of the representation V\ 
of the normal subgroup Q(n), Clifford's result (1) implies that M is an 
irreducibleKS(n, m)-module. 

COROLLARY. The representation of S(n, m) afforded by the module M with 
respect to {e^ e2j . . . , ef\ is an irreducible unitary representation. 

Example 3. The representation ([2]; [0]; [1]) of 5(3, 3) is of degree 3. The 
standard tableaux associated with ([2]; [0]; [1]) are 

12 

0 
3 

M 
0 

2 

23 

0 
1 

The irreducible unitary matrix representation V of 5(3, 3) based on this 
arrangement is given by 

/ l 0 0 \ A) 1 0\ / l 0 0 \ 
V(Sl) = ( 0 0 1 , 7(s2) = ( 1 0 0 1, 7(ci) = 1 0 1 0 , 

\0 1 0 / \0 0 1/ \0 0 w/ 

where 5i = (12) (45) (78), 52 = (23) (56) (89), cx = (147), and w is a primitive 
cube root of unity. 

2. Young's raising operators. In the ordinary representation theory of 
S(n, 1), an interesting role is played by Young's raising operators; see (6). 
If (X) = (XiX2. . . Xr) ; Xi à X2 ^ . . . ^ Xr > 0 and Xi + X2 + . . . + Xr = n 
is any partition of n, let 5(Xi, 1) be the symmetric subgroup on 1, 2, . . . , Xi, 
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S(X2, 1) the symmetric subgroup on Xi + 1, Xi + 2, . . . , X2, and so on. Then 
the representation of S(n, 1) induced by the identity representation of 
Young's subgroup S(Xi, 1) X S(X2, 1) X . . . X 5(Xr, 1) is denoted by 
[Xi] • [X2] • . . . • [Xr], which is in general reducible. Then Young's reduction 
formula (6) states that 

[Xi] • [X2] • . . . • [Xr] = X I ! J?s.i[XiX2 . . . Xr], 

where RStt is a Young's operator which, for s < t, represents the raising of a 
node from the tth row to the sth row of [XiX2 . . . Xr] to obtain a new diagram 
and I I RStt represents successive raisings of nodes in [X] = [XiX2 . . . Xr], where 
s = 1,2, . . . , r — 1 and t = 2, 3, . . . , r. In applying Young's raising operator, 
the resulting diagram is to be disregarded (i) if any row contains more symbols 
than a previous row, or (ii) if two symbols from the same row appear in the 
same column. In the following we give a formula for the reduction of the 
representations of S(n, m) induced by linear representations of certain sub­
groups. This will generalize Young's reduction formula given above. 

Let n = ft! + n2 + . . . + nm, 0 g nt ^ n, and (X*) = (XaX*2. . .), 
Xa è Xi2 è X*3 è . . . > 0, be a partition of nt for i = 1, 2, . . . , m. Let 
S(\ijy m) be the corresponding generalized symmetric subgroups. Then the 
subgroup 5(Xn, Xi2, Xi3, . . .) = 5(Xn, m) X 5(Xi2, m) X 5(Xi8, m) X . . . may 
be called a (generalized) Young subgroup of S(n,m). A skew diagram is 
formed of separated diagrams of one line each, containing X^ nodes for 
j = 1 , 2 , . . . and i = 1, 2, . . . , m, such that no two nodes are in the same 
column. If we now replace the nodes by the symbols 1, 2, . . . , n, then the 
number of standard skew tableaux is seen to be 

A n ! Ai 2 ! A13! . . . 

The d(X)-dimensional KS(n, w)-module M constructed according to Theorem 
2 is no longer irreducible. The representation of KS(n, m) afforded by M will 
be denoted by the symbol ([Xi]) • ([X2]) • . . . • ([Xm]). 

THEOREM 3. The representation ([Xi]) • ([X2]) • . . . • ([XOT]) of S(n, m) is 
induced by a linear representation of the Young subgroup S(\u, Xi2, . . .). The 
reduction of the representation into the direct sum of the irreducible representations 
is given by the formula 

m i i 

<[Xi]> • <[x,]> • . . . • <[xm]) = I l E IT RAM; M ; • • • ; [x»]>, 

where Rst* operates only on the ith constituent [\{]for i = 1, 2, . . . , m. 

Proof. I t is no restriction to assume that w = 0 + . . . + 0 + X r + 0 + 
. . . + \s + . . . + 0. As in the proof of Theorem 2, divide the standard skew 
tableaux into I = n\/p\q\ packs 7\ , T2, . . . , Tt each of 

Plal 
Xri! Xr2! . . . X,i! Xs2!. . . 
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tableaux. The restriction of the construction to pack 7\ gives the repre­
sentation 

Ui = ([Xn] • [Xr2] • . . .) ® ([X,i] ' [X,2] • • . 0 

of the subgroup S(p) X S(q) and the representation Vi of Q(n) in which each 
element is mapped on a scalar multiple of the identity transformation, so that 
Uiipr^ViMUiia) = Viiariba) for all a G S(p) X S(q). By Theorem 1, it 
follows that U1V1 is a representation of S(p, m) X S(q, m) such that 

(UlVl)8in.m) = UlS(n)Vil = < [ X f ] > . ( [ X s ] ) > 

However, [Xri] • [Xr2] • . . . • [\Tkl = /S ( p ) , where / is the identity representa­
tion of 5(Xri, 1) X S(\r2, 1) X . . . X S(\rk, 1). Also, Vi is a direct sum of a 
linear representation of Q(n). This proves the first assertion. 

Next we have that 

Ui = ([Xri] • [Xr2] • . . . • [\n]) ® ([X,i] ' [X,2] * • • • ' [X,,]) 

= ( É I 1 ^/[XriXr2 • • • Xrt]j ® ( E l l ^«'[X.iX.a . . . \st] 

= Et É^. ' [Xr]® [X,], 
i—r, s 

where R^1 operates only on the ith constituent [X*], for i = r, s. Since each 
element Fi(6) is a scalar multiple of identity, we have that 

uiVx = ( n i,Ru»%r} ® [x,]Vi = n z^/([x,i ® M F / ) , 
\ J ' = / ' , S / i=r,s 

where Vi = X) ^V> the summands depending on the operators. This in turn 
implies that 

<[M> • <[x.]> = (u1v1)
s^n) 

/ i \s(n,n 

= ( I I L^.J([Xr]® [X.]7i')j 
\ z=r,s / 

= r i Z ^ A M ® [X,]Fi')S("'m) 

= I l E ^ / ( [ 0 ] ; - - - ; M ; - . . ; M ; . . . [ 0 ] ) . 

Thus, we have proved the reduction formula 

m i 

<[Xi]> • <[x»l> • • • • • «xj> = E[E^ / ( [Xi ] ; [x2];... ; [xj>, 
i=l 

where Ruv
l operates only on the ith constituent [Xj. 
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COROLLARY. In the representation ([Ai]) • ([A2]) • . . . • ([Am]) of S(n9m), 
each of the irreducible representations 

( M ; M ; . . . ; \K\) and <[»i]; [n2])... ; [»»]) 

appears exactly once. 

Example 4. As an application of Theorem 3, let us determine the irreducible 
representations of 5(6, 3) in ([21]) • ([l2]) • ([1]). In this case we have that 

U1^1 = -RnlRw1, U2RUv2 = Rn2Ru2, and U*RUV* = 2JU« 

while the other factors do not appear. Therefore, 

([21]) • <[12]> • <[1]> = I I XX/<[21]; [l2]; [1]) 

= E (RnWl]; [2]; [1]) + {RiMpl]; [l2]; [1]) 
= <[3]; [2]; [1]) + ([21]; [2]; [1]) + ([3]; [l2]; [1]> 

+ ([21]; [l2]; [1]>. 
Thus, we have that 

([21]} • <[1»]> • ([1]> = ([3]; [2]; [1]) + ([21]; [2]; [1]) + ([3]; [1*]; [1]} 
+ ([21];[P];[1]>. 

The converse of Theorem 3 can be stated as follows. 

THEOREM 4. The character of the irreducible representation 

( [ A i ] ; [ A 2 ] ; . . . ; [ X » ] > 

of S(n, m) is a linear combination with rational integral coefficients of the 
characters of S(n>m) induced by linear characters of generalized Young subgroups 
and the coefficients are given by the formula 

m i 

<[Xi]; [X , ] ; . . . ; [XJ> =U JJ (1 - i?s/)([Xi]> • <[X,]> • . . . • <[X»]>, 
1=1 

whereU^l — R^*) operates only on [\n] • [\i2] • [Ai3] • . . .fori = 1,2 w. 

Proof. With the same notation as in Theorem 3, we have that 
m i 

([Xrt] • [Xrt] • . . . ) ® ([X,i] • [Xrt] • . . .)Fx = n E *..'([X,] ® [X,])tY 
i = l 

which can be written (see 6) in the form 
m i 

([xf] ® [x,])F,' = n i l ( i - R u S ) ( [ x r t ] • [xrt]•...) ® ([x.i]• [xrt]•...)Vu 
f = l 

This implies that 

(03];. . . ; [X, ] ; . . . ; [X.] ; . . . ) = ([Xr] ® [X,]71')fl(",") = 
m i 

n n a - ^.')<[xi]>... <[xr]>... ([x,]>... ([x.]), 
i = l 

where no conditions on Ruv
l are required. 
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Example 5. As an illustration, let us express the character 0(21)(12)(1) of 
the irreducible representation ([21]; [l2]; [1]) of 5(6,3) in terms of the 
characters $(Xi) (X2) (X3) of ([Xi]) • ([X2]> • ([X3]> of 5(6, 3). Here, the relevant 
operators are 

11(1 - RJ) = 1 - Rl2\ 

11(1 - i V ) = 1 - Rl2\ 

11(1 - Rtt*) = 1, 
so that we obtain 

([21]; [P]; [1]) = (1 - i?12i)(l - i?12
2)([21]> • ([P]> • <[1]> 

= (1 - i?i2x - i?i22 + RiJRiSXVl]) • ([P]> • <[1]) 

= <[21]> • ([P]> • ([1]) - ([3]) • ([l2]) • ([1]) 

- ([21]) • ([2]) • <[1]> + ([3]) • ([2]) • ([1]). 
Thus, we have that 

0(21) ( P ) ( l ) = $(21)(P)(1) - $ (3) (P) (1) - *(21)(2)(1) + #(3)(2)(1). 

Let A X B be a subgroup of a group G. If U and V are representations of 
A and B, respectively, then U - V = (£/ ® F ) G is the outer tensor product 
representation of G. But, in practice, the process is somewhat reversed. For 
arbitrary groups A and B, one can always form the direct product A X B but 
the group G is not well-defined in general. If A = S(n, 1) and B = S(nf, 1), 
then G = S(n + nf, 1) is well-defined. The representation [X] • [̂ t] of 
S(n + n', 1) induced by [X] ® [p] of S(n, 1) X S(n', 1) is the subject of an 
extensive study by several authors; see (6). In the following, we show that the 
situation is similar for a generalized symmetric group and then we give a 
generalization of the Littlewood-Richardson rule (6) for the reduction of such 
a representation. 

If ([X]) and ([/x]) are irreducible representations of S(n,m) and S(n', m)1 

respectively, then ([X]) • ([/x]) is the outer tensor product representation of 
S(n + n',m). In general, ([X]}- ([/*]) is reducible. The irreducible com­
ponents of the representation ([X]} • ([/JL]) can be determined by the application 
of the following generalization of the Littlewood-Richardson rule. 

THEOREM 5. Each diagram constructed according to (a) and (b) below defines 
an irreducible component of ([X]) • ([/x]) and all components are obtained in this 
manner. 

(a) To each tableau of [Xj, add the symbols of the first row of a tableau of [ixt] 
for i = 1, 2, . . . , m. These may be added to one row or divided into any number 
of sets, preserving their order, the first set being added to one row of [Xz], the second 
set to a subsequent row, the third to a row subsequent to this, and so on. After the 
addition, no row of the compound tableau may contain more symbols than a 
preceding row, and no two added symbols may appear in the same column. Next, 
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add the second row of [/**], according to the same rules, followed by the remaining 
rows in succession until all the symbols of [M*] have been used. 

(b) These additions must be such that each symbol from [M*] shall appear in a 
later row of the compound tableau than that occupied by the symbol immediately 
above it in [/Jii],for i = 1, 2, . . . , m. 

Proof. In order to prove this result, we employ the corresponding result for 
the symmetric group; see (6). In order to limit the size of the expressions, we 
carry out the proof for m = 2. Again the generalization is straightforward. 
Using the notation of the previous section, we have that 

([x]) • <[M]> = « M ; [x2]> ® <[MI]; L U 2 ] » ^ ™ 

= [([Xi] ® [X2]7i)fl<B'w> 0 ([MI] ® \ni]V2)
8(>n''m)Ysw-m) 

= [(([Xi] ® [X2]7i) ® ([MI] ® [^]V2))
s^n^xs^'m^n+nf^ 

= [([Xi] ® [X2]) ® ([/xi] ® [M2])(7i ® V2)]
s^n'^ 

= (([Xi] ® [MI]) ® ([X2] ® [M 2 ] ) (FI ® F2) )*(»•+*'.»> 
= (([Xl] ® [Ml])S(Wl+Wl,) ® ([X2] ® [M2])^2W))S(W',™) 

(Vi ® F2 ')S(n+n ' ,w), 
where V/ is just a direct sum of Vi (certain number of times). Thus, we have 
shown that 

<[x]> • <W> = ([Xi] • [MI] ® [x2] • [M2]F/ ® vsyw-*. 
By the Littlewood-Richardson rule (6), one obtains 

[XJ • bit] = X ) Cti^/L 

where [*>/] is an irreducible representation of S (tit + # / ) and ctJ are non-
negative integers. Therefore, 

( \s(n+n',m) 
Z^/loZ^k2]^'® tV)J 

j k 

where V\ ® IV is the direct sum of Vu = ' FH( Ï> / , P*2) a certain number of 
times. This yields the equation 

<[X]>-<M>= Z E c W h 1 ] ; ^ ] ) 

which generalizes the Littlewood-Richardson rule. 

Example 6. The representation ([21]; [2]; [0]) • ([2]; [1]; [1]) of 5(9, 3) is 
the outer product representation. In this case, 

([21]; [2]; [0]) • <[2]; [1]; [1]) = ([41]; [3]; [1]) + ([32]; [3]; [1]) 

+ ([3P]; [3]; [1]) + ([2*1]; [3]; [1]) + ([41]; [21]; [1]) 

+ ([32]; [21]; [1]) + ([3P]; [21]; [1]) + ([2*1]; [21]; [1]). 
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