
Natural Language Engineering (2024), 30, pp. 943–972
doi:10.1017/S1351324923000438

ARTICLE

Improving short text classification with augmented data
using GPT-3
Salvador V. Balkus1 and Donghui Yan2

1Program in Data Science, University of Massachusetts Dartmouth, Dartmouth, MA, USA and 2Department of
Mathematics, University of Massachusetts Dartmouth, Dartmouth, MA, USA
Corresponding author: Salvador V. Balkus; Email: sbalkus@g.harvard.edu

(Received 22 May 2022; revised 21 April 2023; accepted 20 July 2023; first published online 25 August 2023)

Abstract
GPT-3 is a large-scale natural languagemodel developed byOpenAI that can performmany different tasks,
including topic classification. Although researchers claim that it requires only a small number of in-context
examples to learn a task, in practice GPT-3 requires these training examples to be either of exceptional
quality or a higher quantity than easily created by hand. To address this issue, this study teaches GPT-3
to classify whether a question is related to data science by augmenting a small training set with additional
examples generated by GPT-3 itself. This study compares two augmented classifiers: the Classification
Endpoint with an increased training set size and the Completion Endpoint with an augmented prompt
optimized using a genetic algorithm. We find that data augmentation significantly increases the accuracy
of both classifiers, and that the embedding-based Classification Endpoint achieves the best accuracy of
about 76%, compared to human accuracy of 85%. In this way, giving large language models like GPT-3 the
ability to propose their own training examples can improve short text classification performance.

Keywords: GPT-3; Data augmentation; Text classification; Machine learning

1. Introduction
Text messages, social media posts, emails, and internet comments are just a few examples of
“short text” data that people use to communicate every day (Song et al. 2014). Because of their
ubiquity, building natural language processing (NLP)models that can classify the topic or category
of short text is an important business problem (Li et al. 2020). For example, classification models
could automatically detect and censor offensive text, identify when customers ask questions that
should be forwarded to a specific contact, or determine the sentiment of a message—whether it
is considered positive or negative. Previously, building text classification models has been chal-
lenging as it requires collecting vast quantities of training examples to learn subtle differences in
context—a quantity that may not have been feasible to collect for individuals, academics, or small
businesses.

In recent years, however, new developments have made text classification accessible for every-
one. Transfer learning for NLP is a process by which researchers pretrain a large neural network on
vast quantities of unstructured text data to be easily tuned or generalized to many different types
of problems such as text classification, question answering, and summarization. Some examples
of pretrained transfer learning models include Google’s BERT (Devlin et al. 2019) andMicrosoft’s
Turing NLR (Bajaj et al. 2022), as well as OpenAI’s GPT-3, a public model released in November
2020 that is the main subject of this work (Brown et al. 2020; Dale 2020; Pilipiszyn 2021).

C© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438
https://orcid.org/0000-0003-4695-833X
mailto:sbalkus@g.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1351324923000438&domain=pdf
https://doi.org/10.1017/S1351324923000438

944 S. V. Balkus and D. Yan

Since this study began, the public GPT-3 API has offered two different methods of text classifi-
cation, both of which involve trade-offs. The Completion Endpoint uses a text prompt followed
by example-label pairs as input. It only requires a few (5–10) examples, but its performance is
highly sensitive to which examples are included in the context. The Classification Endpoint uses
text embedding with a JSON file of example-label pairs. It has more reliable performance, but
requires hundreds or thousands of examples to performwell—more than could be quickly be con-
structed by hand. After our research was conducted, OpenAI merged the Classification Endpoint
into the Embeddings Endpoint, but the functionality remains similar (OpenAI 2022).

Because GPT-3 requires much less training data to learn a specific task than a typical language
model, Brown et al. (2020) describe it as “few-shot learning.” That means developers can use
GPT-3 to solve text classification problems without needing large domain-specific sets of training
examples. Developers have already created dozens of applications using GPT-3, and this number
will likely only grow (Pilipiszyn 2021). However, because of the trade-off between the Completion
Endpoint’s sensitivity to example quality andClassification Endpoint’s still relatively large training
data requirement, the few-shot learning ability of GPT-3 is currently limited for text classification.
Those who have access to only small datasets with fewer than 100 observations need a way to use
GPT-3 and other transfer learning models more effectively.

This raises the research question of this study: how can we construct a better set of train-
ing examples to improve GPT-3’s few-shot learning capabilities? This process is often called
data augmentation, and we are especially interested in its practical application to empirical text
classification problems faced by organizations with small datasets.

This study evaluates two potential optimization-based data augmentation methods. Both
involve using GPT-3 to generate new questions of a given class based on the existing ones. The
first method increases the quantity of the sample size for the embedding-based Classification
Endpoint, with the goal of improving accuracy after optimizing hyperparameters. The second
selects optimal generated training examples to be included in the Completion Endpoint using a
genetic algorithm, in hopes of improving the quality of the input context.

We evaluate these two methods in a case study: predicting question topics related to data
science in the English language. At the University of Massachusetts Dartmouth, a student organi-
zation called the Big Data Club collected questions asked by students through the organization’s
server on Discord, an instant messaging application. To help track which members participated
the most in the group, the Big Data Club wanted to use GPT-3 to identify when members asked
questions related to data science, the group’s academic focus. Using data from this case study,
our research evaluates the performance of two data augmentation methods with the GPT-3
Classification and Completion Endpoints for solving a practical, real-world text classification
problem.

By providing methods to train natural language models on small short text datasets, our
research benefits developers looking to apply GPT-3 and other pretrained generative transfer
learning models in practice. Previous studies on data augmentation techniques for NLP do not
leverage GPT-3 and are typically not evaluated on practical classification problems beyond highly
sanitized NLP benchmarks. They also focus on generating examples that are highly similar to
existing training data, rather than formulating new, diverse samples and selecting the ones that
provide the most valuable training. Overall, the goal of this study is to evaluate whether GPT-3
can be used to improve its own performance, rather than relying on external methods. This would
promote the implementation and widespread use of NLP models for automating mundane busi-
ness tasks requiring text classification, from commercial chatbots to the detection of harmful or
misleading social media posts.

The remaining content is summarized as follows. Section 2 reviews the existing literature on
data augmentation for NLP problems and provides readers with necessary background informa-
tion on GPT-3 and the other methods we use for augmentation. In Section 3, we explain the
workings of the proposed augmentation methods implemented in this study. Section 4 describes

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 945

how these methods were evaluated, including the data and model parameters. Then, Section 5
presents our evaluation results, while a discussion on these results, their limitations, and potential
future work is included in Section 6. Finally, Section 7 summarizes our conclusions.

2. Background and related work
2.1 Natural language processing and transfer learning
Text classification is defined as “the procedure of designating predefined labels for text”
(Li et al. 2020). Language classifiers take tokens—the most basic components of words—as input
in order to yield labels as output. Previously, traditional machine learning models such as the
Naive Bayes, Support Vector Machine, K-Nearest Neighbor, and Random Forest algorithms have
been combined with text representation methods such as N-gram, Bag-Of-Words, and word2vec
for text classification (Kowsari, Heidarysafa, and Mendu 2019; Li et al. 2020). However, these
methods often require feature engineering and suffer performance limitations. Classification is
especially challenging for short text because of the sparseness of the training examples, which
contain very few words to inform the model (Song et al. 2014). This is also the reason that tech-
niques like keyword or topic extraction (Onan, Korukoğlu, and Bulut 2016; Onan 2019b) are
more difficult to use in short text, as they typically rely on characteristics only present in longer
documents.

More recent research focuses on deep learning, which uses large-scale neural networks to
better capture the complex, nonlinear relationships between words (Zulqarnain et al. 2020;
Minaee et al. 2022). However, deep neural networks often require time consuming and expen-
sive training processes to develop. To overcome this problem, researchers have implemented the
technique of transfer learning (Pan and Yang 2010). Transfer learning for NLP involves construct-
ing a pretrained deep learning model for some general task, which can then be fine-tuned for a
specific task using a smaller dataset (Dai and Le 2015; Radford et al. 2018). Using pretraining
reduces the time and data necessary to achieve quality performance in a model. It can even allow
the construction of “few-shot” learning models, which require only a small number of training
examples to attain acceptable performance.

Transfer learning models for NLP are trained to predict tokens in a sequence of text. Training
on this task allows large language models to generate text by repeatedly predicting a sequence
of tokens given an input (Radford et al. 2018; Devlin et al. 2019; Brown et al. 2020). To develop
a transfer learning model, a neural network with millions or billions of neurons is trained on a
large corpus of unstructured text data, usually from the internet, to predict masked tokens on
unseen passages. This allows the model to, in essence, learn the relationships between thousands
of different words in different contexts. Then this model, in turn, can be applied to numerous
natural language problems either through fine-tuning or by providing a prompt structured in a
specific pattern, which the model will attempt to continue (Devlin et al. 2019; Brown et al. 2020).

Some transfer learning models for NLP include BERT (Devlin et al. 2019), which has spawned
numerous spin-off models (Liu et al. 2019; Adhikari et al. 2019); GPT-3 (Brown et al. 2020), which
has been deployed for dozens of commercial products; and even more recent models like ERNiE
(Sun et al. 2021), ST-MoE (Zoph et al. 2022), and TuringNLR (Bajaj et al. 2022). Our paper focuses
on GPT-3 since it was made available to the public through an API in 2021, allowing anyone to
use it for practical applications.

2.2 GPT-3
GPT-3 is a recent transfer learning model developed for natural language problems (Brown
et al. 2020). Its deep neural network architecture features layers of transformers, which are deep
learning layers that use self-attention (modeling the relationship between each word and all other

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

946 S. V. Balkus and D. Yan

words in the sequence) to learn the complex relationships between words in different contexts
(Vaswani et al. 2017). Several versions of the model were trained, with the largest having up to
175 billion neurons. The model was trained on the Common Crawl dataset (Brown et al. 2020;
Raffel et al. 2022), which contains unstructured text data scraped from the web, including sites
like Wikipedia.

GPT-3 is commercially available through an application programming interface (API) offered
by OpenAI (Pilipiszyn 2021). It features several different engines, of which this study considers
two: ada and davinci. The ada engine provides the fastest and cheapest inference but limited pre-
dictive performance, while davinci offers the most accurate predictions, but is the most expensive
and is limited by slow inference time.

Short text classification can be performed using the OpenAI GPT-3 API in two main ways. The
first is the Completion Endpoint, which is traditionally used for generating human-sounding
text given a prompt (OpenAI 2021b). By structuring the prompt in a specific pattern, the GPT-3
Completion Endpoint can also be used for classification. If users provide a prompt that consists
of a series of examples, each followed by a label, and leave the label of the final example blank the
Completion Endpoint will follow the pattern provided by the user and attempt to predict the label
of the final example. Users can also restrict the output to ensure the only possible token outputs
are the known classes. This process is explained further in Section 3.2 and depicted visually in
Figure 2. However, because the input is restricted to 2,049 tokens, and since more tokens induce
greater expense, the number of possible training examples that can be used with the Completion
Endpoint is limited.

The second short text classification method with GPT-3 is the Classification Endpoint. This
method, designed specifically for classification, converts sequences of tokens into vectors of real
numbers. When called to classify a short text input, the Classification Endpoint searches for exam-
ples most semantically similar to the input (based on their distance), ranks them based on their
relevance, and then selects the class with the highest likelihood of occurring based on the labels
of the most similar examples (OpenAI 2021a). OpenAI recently merged its function into the
Embeddings Endpoint OpenAI (2022).

Both the Completion and Classification Endpoints enable users to develop few-shot natural lan-
guage classification models—in other words, GPT-3 requires only a small number of examples to
learn a domain-specific task, rather than the terabytes of data necessary for the original pretrain-
ing. At the time of release, GPT-3 had achieved state-of-the-art performance on the SuperGLUE
natural language benchmark tasks (Brown et al. 2020), including reading comprehension and
question answering. Current research has applied GPT-3 to other tasks, such as understanding
and drafting emails (Thiergart, Huber, and Ubellacker 2021). It also attracted media attention due
to its human-like performance in writing fake news articles (GPT-3 2020).

Despite its promise, using GPT-3 is still challenging. The performance of GPT-3 highly depends
on the choice of examples provided in the few-shot learning scenario (Zhao et al. 2021; Liu et al.
2022). Hence, a method for training example selection is necessary. Contextual calibration pro-
vides a method to select where in the prompt to place different answers to avoid instability in
responses (Zhao et al. 2021). However, this method only selects where to place the example, not
which example to use. KATE, proposed by Liu et al. (2022), selects optimal in-context examples
for the Completion Endpoint by retrieving examples semantically similar to the test sample before
constructing the prompt for GPT-3. However, this requires modifying the prompt of GPT-3 for
each prediction, may result in very expensive API calls, and is already performed efficiently by the
Classification Endpoint.

As such, a better method is needed for improving the classification performance of GPT-3
outside of the context of benchmarks like SuperGLUE (Wang et al. 2019) that contain many
accurately labeled snippets of text. What happens if the user does not have a dataset with a large
number of labeled training examples? In this case, data augmentation methods can improve the
performance of GPT-3.

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 947

2.3 Data augmentation
Data augmentation is the process of improving a model’s input data by “selecting important sam-
ples, addingmore useful data samples or adding extra information to adapt themodel” to a specific
domain (Guo and Yu 2022). Previous research has proposed several techniques, though compared
to other domains such as image processing (Shorten and Khoshgoftaar 2019), augmentation of
text data is still in its infancy.

Guo and Yu (2022) survey the types of domain adaptation available for large natural language
models, including data augmentation. One type of data augmentation is importance sampling,
which attempts to select only relevant samples for training to improve performance. Another is
pseudo-labeling, which attempts to increase the amount of training data by applying pseudo-labels
to previously unlabeled data. An example of this is the SentAugment technique, which retrieves
previously unlabeled sentences from a text bank and labels them to increase the number of train-
ing examples (Du et al. 2020). Finally, prompting provides additional information such as task
descriptions to the language model—which is how the GPT-3 Completion Endpoint to classifies
text.

As Guo and Yu (2022) discuss, input data can also be augmented using adversarial training.
Qu et al. (2020) discuss several variations of data augmentation for text which rely on adver-
sarial training methods to generate new examples. They also propose CoDA, which combines
data transformations to augment training data. Though successful, these methods are complex to
implement and do not necessarily allow the model to improve by proposing examples that are
better than the existing ones.

Feng et al. (2021) also survey data augmentation for NLP and describe a multitude of specific
methods that have been developed to generate new training examples. These include rule-based
approaches, interpolation approaches which adopt mixup (Zhang et al. 2018) for NLP, techniques
for modifying existing text like Backtranslation (Sennrich, Haddow, and Birch 2016), and even
techniques which generate new text.

Several cutting-edge data augmentation approaches rely heavily on the generative capabilities
of transfer learning models to expand the number of training samples. Kobayashi (2018) dis-
cusses contextual augmentation, where words in existing examples are modified. LAMBADA,
proposed by Anaby-Tavor et al. (2020), generates new labeled data using GPT-2, filters the new
data to reduce noise and potential error, and then provides it as input to another language model.
Similarly, GPT3Mix uses GPT-3 to select samples from training data and generate additional
samples by mixing previous sentence components together into new, yet still plausible, examples
(Yoo et al. 2021). Quteineh et al. (2020) use Monte Carlo Tree Search to generate optimal exam-
ples for model training. Generating new training data effectively combines the ideas behind
importance sampling, pseudo-labeling, and prompting into one powerful technique.

Kumar et al. (2020) extend these ideas by using LAMBADA with a variety of NLP transfer
learning models—including BERT, GPT-2, and BART—to augment the training data of multi-
ple text classifiers. Evaluating training sets with 10 examples per class, they showed that pairing
each sample in the training data with one additional synthetic sample improved performance
on NLP benchmarks for sentiment analysis, intent classification, and question classification. Each
languagemodel evaluated achieved similar accuracies across tasks. They also evaluated the seman-
tic fidelity, or how well-generated examples retained the meaning and class information of the
input examples, for each model. They noted that GPT-2 exhibited much lower semantic fidelity
than other models.

One interesting feature of the previous text data augmentation literature is its focus on trying
to generate new examples that are very similar to preexisting ones. Kumar et al. (2020) even imply
that GPT’s inability to preserve the meaning of existing examples is a weakness. Yet, why should
augmented examples try to duplicate existing examples in meaning? If language models can gen-
erate entirely new questions in a given class that are completely unrelated to existing training

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

948 S. V. Balkus and D. Yan

examples, would that not be beneficial in providing more information about the problem? We
hypothesize that such new questions, as long as they preserve enough labels, would expand the
coverage of the training data and help better capture unique edge cases within classes.

Therefore, inspired by Kumar et al. (2020), our study attempts to develop an improved method
of data augmentation. First, we leverage the newer GPT-3 model, which has much better text-
generation capabilities. Second, our training data focuses on a practical, empirical case study with
highly limited data availability and a specific domain focus, which goes beyond the highly sanitary
NLP benchmark datasets used in the literature. Third, we evaluate the model’s performance after
generating far more synthetic examples than previous studies—up to 10,000 more new examples
for the Classification Endpoint. And finally, unlike Kumar et al. (2020) and Anaby-Tavor et al.
(2020), we allow GPT-3 to creatively generate any example, allowing new examples to be unre-
lated to old ones. To ensure only quality examples are selected for the Completion Endpoint, we
evaluate a genetic algorithm that select the highest-quality examples based on how much they
improve the classifier’s performance.

2.4 Genetic algorithms
2.4.1 Motivation
As discussed earlier, GPT-3 is sensitive to the in-context examples selected as training data—
especially the Completion Endpoint, whichmust use limited examples since larger inputs aremore
expensive and their size is capped at 2049 tokens. Using the GPT-3 Completion Endpoint for few-
shot natural language classification requires selecting the best examples to include in its context.
This amounts to an optimization problem, wherein the feature space is defined by text examples
rather than numeric values. Because of this, traditional optimization algorithms such as gradient
descent cannot be applied directly.

Most modern machine learning techniques for text classification overcome this problem by
relying on embeddings (Minaee et al. 2022), which transform sequences of text into numerical
vectors based on their similarly. In fact, the GPT-3 Classification Endpoint uses embeddings to
select the best examples for classification.When trying to select examples that optimize the predic-
tive performance of the Completion Endpoint; however, we hypothesize that embeddings might
not be the best choice. The acute sensitivity of the Completion Endpoint to the input means that
its performance can behave erratically as a function of the input. The function is nonsmooth, and
the global maximum could occur anywhere on the discrete gradient. Even two prompts that are
similar semantically can produce very different few-shot performance.

Genetic algorithms overcome this problem. Erratic functions (like we believe the Completion
Endpoint to be) contain many local optima that can trap typical optimization algorithms, pre-
venting them from finding the global optimum. Genetic algorithms are designed to avoid getting
trapped in local optima, and unlike other popular techniques, they operate even on nonsmooth
functions where the overall gradient does not necessarily inform the location of the global opti-
mum. Selecting the optimal subset of training examples is a problem more closely related to
NP-Hard combinatorial problems, at which genetic algorithms excel (Katoch, Chauhan, and
Kumar 2020), rather than function optimization. This is why we believe it might be more
appropriate than an embedding-based approach.

In NLP, genetic algorithms have been applied for feature selection problems in text classifica-
tion, especially problems like our own that involve challenges with embeddings (Deng et al. 2018).
Chen et al. (2021) employ genetic algorithms for extractive summarization due to their ability to
be customized to specific problem domains. Onan, Korukoğlu, and Bulut use genetic algorithms
and other evolutionary and similar meta-heuristic algorithms for optimizing feature selection and
ensemble pruning in multiple types of text classification tasks (Onan and Korukoğlu 2016; Onan,
Korukoğlu, and Bulut 2017; Onan 2018). Hence, we believe they could be applicable to our similar
problem.

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 949

2.4.2 Overview
A genetic algorithm is an iterative optimization technique inspired by the biological mechanism of
natural selection. The algorithm initializes andmaintains a population of potential solution candi-
dates. At each iteration (termed generation), the algorithm evaluates the fitness of each candidate,
which is the value to be optimized. The candidates with the highest fitness are preserved, and
their genetic information is recombined using a crossover operator to produce genetically sim-
ilar offspring, which are evaluated at the next iteration. As this process continues, the fitness of
the population rises, thereby maximizing the fitness function (Srinivas and Patnaik 1994; Katoch
et al. 2020).

In a genetic algorithm, each candidate is defined as a set of alleles, each of which describes a
feature of the candidate. Genetic algorithms also feature several operators which are applied at
each iteration. After the population is initialized, they are applied in the following order (Srinivas
and Patnaik 1994; Katoch et al. 2020):

1. Encoding. Candidate solutions can be encoded in multiple ways, such as binary digits or,
in the case of this study, a value like a string of characters.

2. Fitness Evaluation. At the start, each possible candidate is evaluated based on the func-
tion to optimize. For example, when seeking to optimize a machine learning algorithm, a
performance metric like accuracy or F1 score can be used as the fitness function.

3. Selection. This operator selects the best candidates to provide offspring based on their fit-
ness. There are many selection mechanisms, including rank based as well as tournament
selection, the method used in this study. In tournament selection, groups of candidates
are randomly created, and the candidate with the best fitness survives. In addition, elitist
selection allows previous candidates to remain in the population.

4. Crossover. The process by which remaining candidates produce offspring by combining
their sets of alleles into one new set. Partially matched crossover is the most common for
sequence data (like text), as it preserves the order of observations.

5. Mutation. To avoid premature convergence, some alleles are randomly modified using
a technique appropriate to the data representation. For example, a new value can be
randomly sampled from existing possible values.

Genetic algorithms have been applied to numerous problems, including logistics, informa-
tion security, image processing, agriculture, gaming, and wireless communications (Katoch et al.
2020).We use a genetic algorithm to select optimal examples for the GPT-3 Completion Endpoint.

3. Proposed augmentation methods
This study evaluates two methods for improving short text classification by augmenting training
data using GPT-3. The first augments the GPT-3 Classification Endpoint, which classifies each
short text input by searching for the most semantically similar training examples and comparing
the probabilities of each class. In this method, additional training examples for the Classification
Endpoint are generated using GPT-3 and added to the set of training examples in an attempt
to improve performance. The second method augments the GPT-3 Completion Endpoint using
a genetic algorithm to select the optimal examples to be included in the input context. These
methods are described in detail as follows.

3.1 Classification Endpoint Augmentation
As mentioned in Section 2, the OpenAI GPT-3 Classification Endpoint performs classification
by comparing the input text to a labeled training set. A semantic search first identifies a specific

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

950 S. V. Balkus and D. Yan

Figure 1. Our Classification Endpoint Augmentation. First, new artificial questions are created using the ability of the GPT-3
Completion Endpoint to generate text based on existing examples. Then, newly generated questions are used to train the
Classification Endpoint to, given an input, produce a more accurate output.

number of relevant training samples up to a user-specified hyperparametermax_examples. Then,
these results are ranked based on their relevance. Finally, the input is classified based on the prob-
abilities of the labels for the selected results. This process is provided by the OpenAI API (OpenAI
2021a 2022).

To augment the GPT-3 Classification Endpoint, this study generates additional training exam-
ples using GPT-3 itself—specifically, using the GPT-3 Completion Endpoint, which is designed
to generate text given a prompt. To generate each additional training example for Classification
Endpoint Augmentation, we first provide the GPT-3 Completion Endpoint with the prompt
“Generate a similar question:” followed by three questions of the same class (“data” or “other”)
each preceded by the “Q:” token. These questions are randomly selected from the original training
set. Finally, the output question is labeled with the same class as the input questions. The process
is repeated to generate the desired number of questions with which to augment the Classification
Endpoint.

This is similar to the method used by Kumar et al. (2020) who also generate synthetic exam-
ples using a large language model but employ filtering and fine-tuning to only include examples
semantically similar to the existing training set. This method differs in that it allows all examples
at first, regardless of quality, and instead selects the best examples for a given classification based
on whichever ones yield the highest accuracy (instead of ones which are similar to the original
training set). Figure 1 demonstrates this process graphically.

Once the desired number of example questions are generated, they are added to the training set,
which is then uploaded to the OpenAI Classification Endpoint. With this training set, represented
as a JSON file, users can call the GPT-3 API to classify any given text input. Of course, to enhance
performance, users should compare the performances of models that use different numbers of
additional training examples, as well as test different parameters for the Classification Endpoint
such as temperature andmax_examples—these are known as hyperparameters.

Different hyperparameters can result in slightly different performance. The temperature con-
trols how deterministic the model’s prediction is—a temperature of 0 ensures questions with clear
labels are classified the same every time, while temperature greater than 0 allows some degree of

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 951

Figure 2. Example of an input to the GPT-3 Completion Endpoint interface. By organizing text in the question-topic-question-
topic pattern, GPT-3 can be instructed to output labels classifying the topic of a question. The output of the model is
highlighted.

guessing to better handle examples with less clear labels. As mentioned previously,max_examples
determines the number of training examples to which the Classification Endpoint compares each
question to be classified—a higher number provides more information to inform the question’s
label, but having toomany slows prediction and could provide misleading, irrelevant information.
There are many ways to optimize hyperparameters (Bischl et al. 2023); the methods used in this
study are described in Section 4.

3.2 Completion Endpoint Augmentation
3.2.1 Classification using the Completion Endpoint
In the first augmentation method, we just described, we use the Completion Endpoint to generate
new examples to attempt to augment the Classification Endpoint. Recall from Section 2, however,
that the Completion Endpoint can also be directly applied to classification problems. To classify
the topic of a question, we prompt the Completion Endpoint with the phrase “Decide whether
the topic of the question is ‘Data’ or ‘Other’,” and append several training examples in a question-
topic-question-topic pattern. An example of this input to the Completion Endpoint that results in
classification is shown in Figure 2.

The examples provided, often referred to as “in-context examples,” serve as a miniature train-
ing set for the Completion Endpoint. To classify a question, we simply append it to the end of
the prompt and add a “Topic:” token with no label after it. When provided as input, this prompts
GPT-3 to predict the next token as the topic of the previous question. The API even allows us to
restrict the output of GPT-3 to specified tokens, so we can ensure that only the possible classes
(in this case, “Data” or “Other”) can be output as predictions. Hence, the Completion Endpoint
can be used as a classifier after being provided with only a few training examples.

Like the Classification Endpoint, the Completion Endpoint can also be provided augmented
training examples, but input prompts are limited to only 2,049 tokens. This means only a small
number of training examples can be used. In addition, limited training examples are desirable
because the more tokens included in the prompt, the more expensive the model is to call from
the API. Therefore, rather than augmenting the Completion Endpoint by generating additional
training examples, this study uses an optimization algorithm to select which subset of examples
from a larger training set yields the best accuracy when provided as a prompt.

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

952 S. V. Balkus and D. Yan

Figure 3. Graphical depiction of the genetic algorithm for selecting optimal augmented in-context examples for the GPT-
3 Completion Endpoint. Each candidate consists of a set of alleles representing questions provided to the Completion
Endpoint prompt. At each generation, the candidates with the best accuracy are selected to produce offspring with new
candidates containing augmented examples generated by GPT-3.

3.2.2 Performing augmentation by optimizing training example selection
Few-shot learning with the Completion Endpoint is limited to only a small number of examples,
so we need some way to select the optimal subset of examples to provide as a prompt. To optimize
which augmented examples are chosen to include in the Completion Endpoint prompt, this work
employs a genetic algorithm, as described in the Section 2 literature review. Recall that a genetic
algorithm maintains a population of candidates with certain alleles (traits). Each candidate repre-
sents a possible prompt for the Completion Endpoint, consisting of a sequence of example-label
pairs. An example of a single candidate was shown previously in Figure 2. Each allele within a
candidate represents a single example-label pair, encoded as a string of text, in the sequence. For
instance, the text snippet “Is it possible to set up an API in AWS? Topic: Data” in Figure 2 is
an allele. The gene pool, then, is the set of all possible alleles, or all possible example-label pairs
available for training.

The genetic algorithm process is depicted in Figure 3. As mentioned previously, a genetic algo-
rithm applies a number of operators at each iteration. Operators apply some transformation to
the existing population of candidates, and at each iteration, the fitness of the candidates improves.
The specific operators we use in the genetic algorithm for optimizing Completion Endpoint train-
ing examples are described as follows (note that Step 1 is applied only in the first iteration) and
are listed in Figure 4.

Step 1: Population Initialization. To begin, each candidate in the population is initialized as a
set of random alleles sampled from the training set. We sample eight alleles, four from each class
(“Data” or “Other”). We chose eight alleles to balance performance with API cost for few-shot
learning, as the Completion Endpoint limits the number of tokens; other numbers could also be
chosen. The alleles are sampled uniformly without replacement (only being replaced when the
training set is empty), as the algorithm should ensure that no duplicate alleles are placed together
in the same candidate (which would be inefficient). Then, each candidate is evaluated using the
fitness function.

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 953

Figure 4. Steps in the genetic algorithm for Completion Endpoint augmentation.

Step 2: Fitness Calculation. The fitness function is defined as GPT-3’s predictive performance
on the validation set. In this study, we define fitness as the model’s accuracy on the validation
set since it is easily interpretable. Accuracy is also commonly used for NLP model performance
evaluation (Brown et al. 2020). Other measures such as sensitivity or F1 score could also be chosen
depending on the task. To evaluate the fitness for a given candidate, its alleles are provided as the
prompt to the Completion Endpoint, which is used to predict the label of each observation in the
validation set. The accuracy of these validation predictions is calculated as the fitness. Hence, we
seek to maximize candidate accuracy.

Step 3: Selection. Once a fitness has been calculated for each candidate, selection is performed
using 4-way tournament selection. Candidates are allocated randomly into groups of four, and
only the candidate with the best accuracy moves on to the next generation. This ensures that the
algorithm uses elitist selection, allowing the best individual from the previous population to carry
over to the next population. This prevents the best solutions from being lost. However, its random
nature also promotes genetic diversity by allowing a small number of candidates that are not the
best to possibly survive as well.

Step 4: Immigration. For such a small training set, it is necessary to introduce augmented
examples—otherwise, the lack of genetic diversity will cause the algorithm to converge pre-
maturely. This is performed using immigration, an operator which introduces candidates with
entirely new sets of alleles into the gene pool (Yang 2004). The immigration operator in this algo-
rithm employs the GPT-3 Completion Endpoint to generate new alleles in the same manner as in
Classification Endpoint data augmentation: by prompting the Completion Endpoint with three
random questions of the same class and asking it to generate a new question of the same class.

Step 5: Crossover. Genetic algorithms optimize by proposing new candidates likely to have
high accuracy at each iteration. This is done by creating “offspring” that combine observations
from different existing candidates. In this study, each candidate selected in Step 3 performs
crossover with an immigrant to generate two offspring. We accomplish this using partially
matched crossover which randomly selects one or more alleles to swap between the sets of alleles
of the selected candidate and the immigrant (Katoch et al. 2020). These alleles are selected in such
amanner as to prevent duplication of the same allele. The newly created sets become the alleles for
each offspring. After this step, the number of candidates will have been multiplied by 4, reverting
the effect of the selection process and returning the population to its original size (provided it was
divisible by four; otherwise, the size will be approximately the original).

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

954 S. V. Balkus and D. Yan

Step 6: Mutation. Finally, each allele in the offspring has a chance to be modified with some
mutation probability. Themutation operator replaces the allele with a random allele sampled from
the total gene pool—the set of all alleles in the population, including those newly generated in each
immigrant population and excluding those already contained in the candidate. This promotes
genetic diversity and prevents the optimization algorithm from being limited to the local optima
of the best candidates found so far.

After this process, a new population is created which contains about the same number of
candidates as the original. Then, steps 2 through 6 are repeated for the desired number of itera-
tions (termed “generations”) until the best candidate’s desired accuracy is achieved, or some other
stopping criteria such as a time or spending limit is met.

Through this procedure, the best candidates reproduce with new candidates, searching for new
possible solutions that are similar to yet different from the best found so far. Using mutation and
immigration to preserve genetic diversity prevents the population from becoming overrun with
candidates that have the same alleles, thereby avoiding convergence to a mere local optimum.
Instead, the algorithm better seeks a global optimum containing candidate sets of alleles that allow
the Completion Endpoint to achieve the highest accuracy on the classification task.

4. Numerical evaluation
This section describes how the abovemethods were evaluated on an English language case study to
compare their performance. Though the overall algorithms for data augmentation were described
previously, here we detail which specific data and parameters were used for the models and the
basic reasoning behind their selection in the evaluation process.

4.1 Data collection
To train the model, we collected a dataset of short text from the University of Massachusetts
Dartmouth. This dataset consisted of questions asked in the Discord instant messaging app by
undergraduate and graduate members of the University of Massachusetts Dartmouth Big Data
Club. The Big Data Club Discord server is used by students at the university to specifically discuss
data science topics as well as engage in casual conversation over text-based chat. As a result, we
were able to collect both questions related to data science as well as questions related to other
topics.

The dataset contained 72 questions that we labeled either “data” or “other” to indicate whether
the topic was related to data science. Of these, 45 were collected directly from Discord messages
with the members’ permission. The remaining 27 were proposed by club members and edited by
the research team with the goal of covering a broad range of data science topics, such as statis-
tics, machine learning, databases, and cloud computing. They also included 8 counterintuitive
examples that use data science terms in a non-data-related context, as well as 2 “junk” questions.
For example, a counterintuitive question might be “How many neurons are contained within the
human nervous system?”—although neural networks are a type of machine learning model, in
this context the term “neuron” does not relate to data science. An example of a junk question
would be a single-word question like “What?” or a string of random characters. Not only did
these expand the distribution of possible topics in the training set, but they may also have served
as “adversarial examples” that would have been exceptionally hard to classify or that would have
represented boundary conditions in the data. In the end, about 14% of the data consisted of these
human-proposed adversarial examples.

These questions were divided into three sets. The training set and validation set contained
26 questions each, with a random allocation of questions that occurred naturally and that
were proposed by club members. The test set contained 20 questions and included only those

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 955

originally asked in the Discord server. All sets were randomly selected to contain the same number
of questions of the “data” and “other” classes to avoid any class imbalance issues.

The training set was used as input to each endpoint; it included the examples from which the
algorithm actually learned. The validation set was used to evaluate performance and optimize
parameters, such as the examples selected for the prompt in the genetic algorithm. The test set
was also used to evaluate performance—it represented questions that the algorithm had never
seen before, so performance on this set is the most important metric.

4.2 Implementation
Data processing, experimentation, and programming of the genetic algorithm were performed in
Python 3.8.5. The Python API for OpenAI was used to call predictions from GPT-3. All simula-
tions were run on a Dell XPS 15 9560 with an Intel (R) Core (TM) i7-7700HQ processor. API calls
to GPT-3 used the default frozen model, with no fine-tuning.

Except for example generation, all GPT-3 API calls used the ada engine since it is currently
the least expensive and yielded the fastest inference time—necessary characteristics for a real-
time deployed machine learning application. New questions were generated using the davinci
engine since it is optimized by performance. After data augmentation, once enough questions
were generated, the model could be used continuously without needing to generate any more
questions, negating any considerations of speed or cost. This is why we used davinci for generating
new questions during data augmentation, but not for the actual classification task.

In evaluating the performance of the Completion Endpoint, we generated new question-label
pairs for immigrant candidates on the fly. To evaluate the Classification Endpoint, to save costs,
we sampled without replacement from a set of about 11,000 questions generated by the GPT-3
davinci engine during code development that were not used in the final Completion Endpoint
tests.

4.3 Model parameters
4.3.1 Classification Endpoint Augmentation parameters
To evaluate augmentation on the Classification Endpoint Augmentation, we ran a battery of tests.
In each test, n question-label pairs were first sampled from the set of 11,000 questions generated by
the GPT-3 Completion Endpoint (using the procedure specified in Section 3.1) and added to the
26-question training set to create the augmented training set. Then, the augmented training set
was formatted into a JSON file and uploaded to the API. Finally, using each augmented training
set, we evaluated the performance of the model on the validation set and the test set.

Tests of the model’s performance were run for n= 0 (for a baseline), 10, 100, 1000, and 10,000
augmented examples added. Each test was repeated five times for each hyperparameter setting.
All augmented Classification Endpoint models were first evaluated on the validation set using
different sets of hyperparameters to determine which hyperparameters were the best.

We optimized two hyperparameters, temperature and max_examples, using a grid search
(Bischl et al. 2023). As mentioned previously, the temperature controls the determinism of the
algorithm, with high values allowing GPT-3 to take more risks and be more creative, and low
values limiting its answers to the most well-defined answer (OpenAI 2021a, b). For temperature,
we tested values of 0, 0.1, and 0.5. The max_examples controls the number of training examples
selected in the first step of the Classification Endpoint against which to compare the text being
classified (OpenAI 2021a). For max_examples, we tested values of 5, 10, 15, 20, 25, and for >100
added examples, 100, in order to evaluate a large range of feasible selections.

After this, we selected the set of hyperparameters that achieved the best average accuracy out of
the 5 evaluations on the validation set. A model using these hyperparameters was then evaluated

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

956 S. V. Balkus and D. Yan

Table 1. Genetic algorithm parameters for Completion Endpoint in-context example selection optimization

Parameter Value Parameter Value

Encoding String Population size 32
.. .

Selection method Tournament Tournament size 4
.. .

Crossover method Partially matched Crossover probability 1.0
.. .

Mutation method Uniform Mutation rate 0.1
.. .

Fitness function Accuracy Validation set size 26
.. .

GPT-3 engine Ada GPT-3 temperature 0
.. .

Header Yes Number of alleles 8

five times on the test set. This provides a description of the model’s performance on unseen data,
which more closely approximates how well it would perform if it were deployed in practice.

4.3.2 Completion Endpoint Augmentation parameters
To evaluate the augmentation method for the Completion Endpoint, we employed the genetic
algorithm described in Section 3.2 to optimize the endpoint’s accuracy on the validation set. The
genetic algorithm was run for 40 generations. Eight alleles (possible training examples) were pro-
vided to each candidate. The algorithm was evaluated under the same setting three times. In
the first, the candidates of the starting generation were made entirely of augmented examples
generated by GPT-3 based on the training set. In the second and third, in order to increase con-
vergence speed, the starting generation was restricted to only examples from the original training
set, with no augmented examples at the beginning.We chose these quantities to balance assurance
of reproducibility with available funds, which limited the total number of generations that could
be run.

Table 1 displays the parameters used in the genetic algorithm. The fitness function calculated
the accuracy of the algorithm on the validation set. Temperature was set to 0 to ensure classifi-
cations are deterministic. Partially matched crossover ensured that no duplicate examples were
placed into the context (Katoch et al. 2020).

The uniform mutation rate of 0.1, although high, was chosen to ensure that most offspring
would obtain at least one mutation since there are only eight alleles to be mutated. Many
mutations are desirable because it permits random search in the algorithm. Combined with a
population size of 32 with a tournament size of 4 and certain crossover, this ensures rapid replace-
ment of the existing population. We believe rapid replacement is necessary because, while the
original training set is small, there are nearly infinite possible examples to generate from them—
hence, spending some time randomly searching the space of training examples rapidly will result
in higher accuracy. It also prevents convergence to a local minimum.

Larger populations, higher mutation rates, and larger tournament sizes bias the algorithm
toward random search, meaning that the algorithm can find new combinations that are closer to
the global minimummore effectively. However, they also modify the convergence rate. Changing
the hyperparameters could change how quickly the algorithm converges, prevent it from reaching
the same results that we did within 40 generations.

Regarding the population dynamics, in each of the three tests, a population of 32 candidates
with 8 alleles (question-label pairs) each was randomly initialized by sampling sets of alleles from
the 26 training questions, with no duplicate questions permitted. These numbers were chosen to
ensure that different combinations of the sample examples could be represented in the starting

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 957

population. This also ensured that when each tournament winner produced two offspring with a
new immigrant, the original population size would be recovered. At each generation, after 4-way
tournament selection culled all but 8 candidates, 8 new immigrants were introduced, and
crossover yielded 16 new offspring; as a result, we attain the same population size (32) as that
prior to selection.

At the end of the 40 generations, we selected the best candidate in terms of fitness (accuracy)
that occurred. We then took the examples from the best candidate as the Completion Endpoint
model. Finally, the accuracy of this model was evaluated on the test set. This yielded the algo-
rithm’s performance on examples it had never seen before, to ensure that it continued to perform
well in practice. The performance of our augmentation methods on the validation and test sets is
described in the next section.

4.4 A note on baselines
To our knowledge, this is the first study using an optimization algorithm to augment training
data based on newly generated examples from a large language model. While there are no baseline
methods that solve exactly the same problem against which to compare our own, we can define a
baseline for each endpoint based on a slight modification of existing techniques in the literature
for ease of implementation.

Classification Endpoint Baseline: A method nearly identical to KATE (Liu et al. 2022) is imple-
mented in the GPT-3 Classification Endpoint to select examples. Therefore, we take the mean
accuracy of the hyperparameter-optimized Classification Endpoint with 0 newly generated exam-
ples added as our baseline. We expect this would mimic the performance of KATE while adapting
it to our problem.

Completion Endpoint Baseline: Kumar et al. (2020) and Anaby-Tavor et al. (2020) use
LAMBADA to expand the size of the training data directly, but our goal is to avoid doing this,
and to instead use optimization to select the best generated examples. Since both the genetic algo-
rithm’s first iteration and LAMBADA both similarly generate new examples and filter for quality,
we take the best solution produced by the first generation, measured by mean accuracy, as our
baseline for the Completion Endpoint.

5. Results
5.1 Classification Endpoint Augmentation results
Data augmentation for the Classification Endpoint successfully resulted in increased model accu-
racy on text classification for the problem of classifying whether a question is related to data
science in the English language. Table 2 reports the mean μ and standard error of the endpoint
accuracy for both the validation set and the test set, with the model using optimized hyperparam-
eters. A permutation test for difference in means is used to calculate p-values comparing the mean
of the baseline (0 examples added) to each scenario with n examples added, to examine whether
each difference in accuracy is statistically significant. The time taken to train each model was
fairly consistent across simulations—it took about 18–20minutes on average to optimize GPT-3’s
hyperparameters, no matter the amount of additional examples added. This time does not count
generating the examples.

As more generated examples were added to the training set, the Classification Endpoint
accuracy tended to increase. Without augmentation, the Classification Endpoint with just the
26-question training set performed comparably to random guessing, only classifying about 49% of
questions correctly on average for the validation set and 58% on average for the test set. However,
on the validation set, accuracy continually increased asmore examples were added, reaching about
73% accuracy after adding 10,000 new examples.

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

958 S. V. Balkus and D. Yan

Table 2. GPT-3 Classification Endpoint performance on data science question topic classification, addi-
tional examples generated using GPT-3 Davinci Completion. p-values test for significance from results with
0 additional examples using a permutation test for difference in means

n added Validation accuracy Test accuracy Time (min)

Examples μ SE p μ SE p μ SE

0 0.49 (±0.028) – 0.58 (±0.023) – 20.4 6.6
.. .

10 0.52 (±0.018) 0.21 0.56 (±0.048) 0.690 18.8 3.1
.. .

100 0.62 (±0.022) 0.012 0.62 (±0.041) 0.349 16.8 5.4
.. .

1000 0.67 (±0.008) 0.004 0.76 (±0.017) 0.004 19.3 5.7
.. .

10,000 0.73 (±0.000) 0.004 0.73 (±0.030) 0.008 18.6 8.5

Figure 5. GPT-3 Classification Endpoint mean performance with standard errors on data science question topic
classification. Training data are augmented by adding different quantities of new examples generated with GPT-3 Davinci
Completion.

While, for the validation set, accuracy was positively related to the number of questions gen-
erated, the same was not true for the test set. Figure 5 plots the relationship between accuracy
and number of example questions added across both validation and test sets, with the shaded
regions representing the standard error. Note that the x-axis is a log scale. On the test set, accu-
racy scarcely increased at all until the number of questions added reached about 1000, at which
point it increased to 76%. This represented peak accuracy; augmented training sets with 10,000
new questions averaged only 73% accuracy, a slight drop.

Overall, data augmentation yielded statistically significant increases in accuracy, based on
permutation tests between accuracies for each set of n additional artificial examples and the base-
line. On the validation set, only 100 examples were necessary to observe statistically significant
increases in accuracy at α = 0.05. However, adding 100 examples did not yield significant increases
in accuracy on the test set, as the baseline accuracy wasmuch higher.With themore strict α = 0.01
requirement for significance, the increase in accuracy became statistically significant after adding
1000 examples or more for both the validation and test set.

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 959

Figure 6. Genetic algorithm performance for selecting best in-context examples for the GPT-3 Completion Endpoint. Results
from each individual trial are compared to the baseline, which represents the expected performance of random guessing, in
terms of classification accuracy on the 26-question validation set.

Figure 7. Averaged genetic algorithm performance for selecting best in-context examples for the GPT-3 Completion
Endpoint with standard error across three trials. Performance is measured in terms of classification accuracy on the
26-question validation set.

5.2 Completion Endpoint Augmentation results
To evaluate the performance of the augmentation method for the Completion Endpoint, we first
examine the changes in validation set accuracy across each generation of the genetic algorithm.
Three trials of the genetic algorithm experiment were completed. Figure 6 displays the validation
accuracy across generations for each individual trial, while Figure 7 shows the averaged results
across trials, with the shaded regions representing standard error. We take the first generation’s
performance as a baseline, approximating what we might expect from another data-generation-
based augmentation algorithm (Kumar et al. 2020). Trials 1–3 took 105, 119, and 112minutes to
run, respectively (μ = 112± 3.3), counting example generation.

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

960 S. V. Balkus and D. Yan

Figure 8. Average proportion of original population of alleles, candidates, and alleles from the best candidate that remain
in the population at each subsequent generation across three trials. This plot shows the average replacement rate of each
over time.

Figures 6 and 7 demonstrate that, during the genetic algorithm, the validation accuracy of
the best candidate continually increased—rapidly at the start, and then more slowly as the algo-
rithm converges. Moreover, simply selecting the best candidate from 32 random subsets, which
yielded the validation accuracy at generation 0, resulted in an average validation accuracy of about
72%. Hence, before generating any new candidates, the Completion Endpoint achieved a valida-
tion accuracy comparable to the Classification Endpoint augmented with 10,000 new training
examples, which obtained about 73% accuracy.

Using data augmentation on the Completion Endpoint by selecting the optimal set of examples
yielded a validation accuracy of about 85%—much better than augmentation on the Classification
Endpoint. It is important to note that large spikes in accuracy often occurred in a single genera-
tion in the genetic algorithm. These spikes represented when a new best combination of training
questions was found, which could have corrected several errors from the previous set at once. In
addition, although generations 10–35 featured large standard errors, by the end of each of the
three trials, all simulations reached the same final best validation accuracy of about 85%.

Figure 8 shows the average replacement rate of the population in the genetic algorithm. None of
the starting candidates were the best at classification, and they were quickly replaced by offspring.
Alleles from the original population tended to be replaced by newly generated examples over
time, though a small number lingered in the population across generations. Alleles from the best
candidate did tend to last slightly longer than others.

Results for the Completion Endpoint worsen on the unseen test set. Table 3 compares
the best test accuracy as well as validation accuracy for both the Completion Endpoint and
the Classification Endpoint. Unlike augmenting the Classification Endpoint, augmenting the
Completion Endpoint with a set of optimal examples failed to achieve a testing accuracy com-
parable to the validation accuracy. We see that the test accuracy, 67%, was much lower than the
validation accuracy of 85%.

This indicates that the in-context example set solutions produced by the genetic algorithm
did not generalize well to unseen questions. As a result, when augmented with additional in-
context examples, the Completion Endpoint was far less consistent in performance compared
to the Classification Endpoint. Furthermore, since unseen questions more closely approximated
those the algorithm would have been asked to classify in a practical environment, it is arguable

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 961

Table 3. Comparison of augmented GPT-3 Completion Endpoint performance on data science ques-
tion classification, in-context examples selected using genetic algorithm (ntrials = 3), to augmented
Classification Endpoint

Completion Endpoint Classification Endpoint

Best validation accuracy 0.85 0.73
.. .

Best test accuracy 0.67 (±0.024) 0.76 (±0.017)
.. .

Mean training time (min) 112 (±3.3) 19 (±0.5)
.. .

Mean proportion of differing alleles 0.94 (±0.009) –

that the augmented Classification Endpoint performed better, with a 76% accuracy on the test set
compared to the Completion Endpoint’s 67% accuracy.

Granted, if the algorithm were run for significantly longer than 40 generations, it is possible
that a better solution could have been found. The Mean Proportion of Differing Alleles displayed
at the bottom of Table 3 measures the relative genetic diversity of the candidate population in
generation 40. On average, 94% of questions in any given candidate were not shared by any other
given candidate, indicating that the sets of alleles among different candidates in the final popula-
tion at generation 40 containedmostly different questions. Hence, since the technique maintained
genetic diversity across generations, we know it did not converge prematurely. Therefore, it could
have been possible for a search to find a better solution. However, given the performance degra-
dation between validation and test sets with the Completion Endpoint, this would probably be an
inefficient use of resources.

5.3 Reviewer agreement
While accuracies less than 80% may seem less than desirable, in reality, categories are subjective,
meaning that performance will never reach very high accuracies. For example, a question that
one person believed to be data science may be seen as unrelated by another person, meaning that
even humans cannot achieve perfect performance. To measure the subjectivity of answers, after
completing the training process, we solicited additional labels for the training, validation, and test
sets from 3 participants who previously contributed questions.

The results, stratified by dataset, are included in Table 4. Only 69% of questions in total had
complete label agreement across reviewers. The greatest agreement occurred for the training set,
while reviewers had the least agreement on the validation set. Most importantly, the reviewers
achieved only about 85% accuracy on the test set and 76% on validation. This puts the perfor-
mance of data augmentation with GPT-3 into context; our two methods achieved comparable or
better accuracy on the validation set, and only 10% less accuracy on the test set.

How did the GPT-3’s struggles compare to those of the reviewers? The three questions that
were always misclassified by every GPT-3 model are included below. They are labeled with their
“true” category in square brackets, followed by the fraction of reviewers which agreed with the
original label.

1. “Can someone help me understand how to SSH into the computing cluster on Friday?”
[Data] [1/3]

2. “Here’s a link on how to make custom Jupyter notebook themes. Big Data Club-themed
notebooks, anyone?” [Data] [0/3]

3. “Are you coming to Big Data Club tomorrow?” [Other] [3/3]

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

962 S. V. Balkus and D. Yan

Table 4. Proportion of questions for which a given fraction of post hoc reviewers agreed
with the original label. Human accuracy is reported as the fraction of post hoc labels
that matched the original label

Training Validation Test

3/3 reviewers agreed 0.77 0.58 0.75
.. .

≥ 2/3 reviewers agreed 0.92 0.77 0.85
.. .

≥ 1/3 reviewers agreed 1.00 0.88 0.95
.. .

Human accuracy 0.90 0.74 0.85

Compared to questions like “What are some libraries for data visualization in python?”
(3/3 agreement among reviewers), these questions are less directly related to data science. In ques-
tion 1, although data scientists use computing clusters, such language is not necessarily specific to
data science as a field, as two of the post hoc reviewers evidently believed. Even though question 2
was labeled “Data” since Jupyter notebooks are frequently used in the data science domain, the
post hoc reviewers believed that such a question regarding the appearance of a particular software
was not relevant to the actual field of data science. Finally, even though every reviewer agreed
that question 3 should have been labeled “Other,” since the club in question is dedicated to data
science, GPT-3 always classified it as “Data.” Hence, while GPT-3 and the reviewers were both fre-
quently in disagreement on the labels of some questions, not every question that GPT-3 classified
incorrectly received mixed labels.

6. Discussion
Meaning, as expressed by human language, is highly subjective. To one person, a question might
be very relevant to a certain topic, while to another, it could be completely unrelated. Hence,
labeling text with a category or topic depends on the complex and minute contextual associations
between the words and phrases it contains. This study has demonstrated that, while GPT-3 can-
not entirely overcome the limitations of this subjectivity, using data augmentation, it can capture
strong enough contextual relationships between words to classify short text topics in a practical
real-world deployment setting with limited data.

6.1 The efficacy of embedding
This study compared data augmentation techniques for the GPT-3 Classification and Completion
Endpoints, using GPT-3 to generate its own original training data examples based on observations
from an existing training dataset. Augmenting the Classification Endpoint improved performance
significantly, increasing validation accuracy from 49% to about 73% and increasing test set accu-
racy from 58% to 76%. In comparison, humans agreed with the original labels about 76% of the
time on the validation set and about 85% of the time on the test set. Augmenting the Completion
Endpoint yielded even better validation accuracy of about 85%, but this performance was incon-
sistent and likely overfitted; accuracy dropped to 67% when evaluated on the test set, which
represented unseen questions.

For text classification with GPT-3, augmentation using embedding-based models like the
Classification Endpoint appears to be preferable to using genetic algorithms. We hypothesize two
possible reasons for this.

First, despite that genetic algorithms excel on combinatorial problems withmany local minima,
it appears that even the small text prompt of the Completion Endpoint is too high-dimensional

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 963

to be solved efficiently—especially starting with such a small training set. This is why genetic
algorithms are generally not popular in NLP. Embeddings were developed to handle this problem
(Minaee et al. 2022), and it is logical for embedding-based approaches to be less overfitted.

Second, due to cost, the Classification Endpoint method was able to select different examples
for every classification, while the Completion Endpoint was restricted to using the same prompt
every time. So, while employing an embedding-based approach to optimize the Completion
Endpoint prompt might help avoid overfitting, it also might not improve its performance overall.
The success of the Classification Endpoint may have been more due to its ability to draw informa-
tion from many more than the 8 examples available to the Completion Endpoint, rather than its
use of embedding itself.

6.2 Remaining questions
Why was there a loss in accuracy between validation and test sets for the Completion Endpoint
but not for the Classification Endpoint? First, the optimization performed in the Classification
Endpoint only modified the hyperparameters, temperature and max_examples, while for the
Completion Endpoint, the genetic algorithm optimized the in-context examples themselves. If
the accuracy of GPT-3 depends more on the in-context examples in the training set than on the
chosen hyperparameters—which it should so that it can adapt to different problem domains—
then this may have caused the genetic algorithm to overfit to the validation data. Overfitting was
not avoided even in Trial 1, where the training set was augmented with generated questions in
the first generation. Since augmented examples that improve on existing ones are rare, we do not
hypothesize providing augmented examples to the initial population in the genetic algorithm to
be effective. Furthermore, it is possible that the smaller training set in the Completion Endpoint
may simply have been a poorer representation of the broad distribution of possible questions in
general, causing worse performance.

More broadly, why did our technique for data augmentation improve performance? We
hypothesize that it worked because GPT-3 is better at generating text than classifying (Brown
et al. 2020). This means that it can produce new examples that closely match the given category
better than it can match a category to an example. Hence, it follows that relying more heavily
on the algorithm’s generative capabilities can improve its ability to identify topics correctly. In
general, having more samples to describe the true population space tends to result in improved
performance of machine learning models (Hestness et al. 2017). Data augmentation increases
training set size; providing more samples allowed GPT-3 to learn from question-label pairs that
more closely approximated the new questions that it was asked to classify.

6.3 Limitations and future work
6.3.1 Language
The greatest limitation of this study is that its results are confined to the English language.
Because the data were sampled from a solely English-speaking population, the proposed method’s
performance could only be evaluated on questions in English. Further work must expand the
performance of data augmentation for GPT-3 to other languages, especially morphologically rich
languages that may pose unique challenges to model (Gerz et al. 2018). While the current work
demonstrates the applicability of this method to applications in English, additional research is
necessary to confirm its genericity and applicability to other languages.

6.3.2 Sample size
Of course, this study is limited by the sample size of the validation and test sets. Testing data
augmentation on a practical scenario where only a small domain-specific dataset is availablemeant

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

964 S. V. Balkus and D. Yan

the test set could only be limited to 20 questions, which obviously reduces the robustness of the
results. It also limited the study to one particular classification problem.

Although we specifically collected and included a subset of 27 questions meant to cover a wide
variety of data science topics and represent boundary cases, the set of all possible questions is
broad and the impact of including these is therefore unclear. Random sampling of questions-label
pairs into training and testing sets during evaluation and random selection for topic generation
resulted in performance differences, as evidenced by the standard error in the results. These vari-
ations were not extremely large, though—standard errors only reached about 1–5% differences in
accuracy. Still, additional research could address whether a starting training set of more diverse
questions would also improve data augmentation efforts.

6.3.3 Task diversity
Future research in this area should also assess the performance of data augmentation on different
types of classification problems, such as those in other domains or with several possible classes.
One particularly pertinent problem would be data augmentation on data containing a class imbal-
ance (Onan 2019a), which may require better methods for selecting effective training examples.
This is because if a specific class is underrepresented in the prompt or training data compared to
others, the model may fail to classify any text with that given label. It would also be useful to assess
the model’s performance in even more limited-data scenarios, such as having only 4–5 labeled
examples available, to fully assess how much of the performance is attributable to having a small
validation set available for hyperparameter optimization.

The Completion Endpoint-based data augmentation approach is not limited to just classifica-
tion problems. As discussed by Brown et al. (2020), few-shot learning with GPT-3 can be applied
to other language benchmark tasks, including SuperGLUE (Wang et al. 2019), as well as transla-
tion, common sense reasoning, reading comprehension, Winograd-style tasks, and others. Hence,
genetic algorithms can also be used to engineer optimal prompts as well, as long as users adapt
the types of examples and fitness functions used in the genetic algorithm to match the type of task
being performed.

In fact, some tasks may require more complicated training procedures. Multihop question-
answering requires large language models to answer several related questions in sequence
(Jiang et al. 2022). Future research could attempt data augmentation on more complex prob-
lems like multihop question answering by providing each training example as a set of multiple
questions in sequence (or, potentially, even a tree of questions) and optimizing for multianswer
evaluation metrics such as exact match as the fitness function.

6.3.4 Subjectivity and quality control
Since all three post hoc reviewers agreed on the original question label only about 71% of the
time across all of the data, it is necessary to mitigate the effect of incorrect labels on predic-
tion. One way to do this is using data quality control. For example, a software application that
deployed data augmentation on GPT-3 for text classification could periodically poll users, ask-
ing the topic of a given question. This would allow the application to both determine which
questions have more subjective topics and ensure that existing training examples are classified
correctly.

Future work or implementations could also include additional labels such as “Unsure” or even
“Sure Data” versus “Possibly Data,” which might be applied if multiple annotators express dis-
agreement on the true topic of the question. For instance, if a poll indicates great disagreement
from human annotators on a particular category, it could be assigned an “Unsure” label which
could be processed differently from examples that have more certain labels. This would allow
GPT-3 to differentially classify examples whose labels are less clear.

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 965

6.3.5 Comparison to other data augmentation techniques
Finally, even though example optimization did not produce consistent results on the test set,
future work may consider alternative optimization techniques for selecting the best example-label
pairs to provide to GPT-3, such as reinforcement learning (Arulkumaran et al. 2017). For exam-
ple, previous research has applied reinforcement learning to text generation for data augmentation
(Liu et al. 2020), and similar approaches could be applied to transfer learning models like GPT-3
in examples like the one explored here. Similarly, other optimization methods could even be used
to select how the Completion Endpoint prompt itself is formatted. We chose a question-label
structure with a fixed prompt based on examples provided the documentation OpenAI (2021b),
but an algorithm could also identify whether using a label-question structure or different sets of
instructions could yield better performance.

In the future, it would be wise to compare the proposed data augmentation technique for
GPT-3 prompt optimization to other techniques that ensure higher quality examples. As surveyed
by Guo and Yu (2022), importance sampling and pseudo-labeling may be combined to produce
better prompts and training sets. If more data were collected, model optimization techniques—
including continual learning, adversarial learning, and metric learning—could also be used to
construct better input prompts and training sets. Other text-specific data augmentation meth-
ods like LAMBADA (Anaby-Tavor et al. 2020) feature methods to mitigate potential noise and
error from generated training examples which could be incorporated into our optimization-based
approach. Furthermore, personalization—methods that help the model better understand per-
sonal habits of language usage within a domain—could help optimize prompts for a specific
setting. For instance, personalization could help the model avoid classifying a term like “Big Data
Club” as related to data science when used in the organization’s Discord server, even though
though such a classification might be correct in a different context.

7. Conclusion
This study finds that through the process of optimization-based data augmentation, the generative
capabilities of GPT-3 allow small (n< 30) short text data sets to be used for developing effec-
tive text classification models. Expanding the size of the training set in the GPT-3 Classification
Endpoint by generating new examples using GPT-3 itself was found to increase both validation
and testing accuracy. Adding 1000 artificial examples to a Classification Endpointmodel increased
classification accuracy from the baseline of 0.58 to about 0.76—a 31% increase, and only about 10%
less than the estimated human accuracy of 0.85. We also explored the use of genetic algorithms
for optimizing in-context examples for few-shot learning with the Completion Endpoint, but the
model performed inconsistently, achieving a validation accuracy of about 85% but a test accuracy
(on unseen questions) of only 67%. As such, optimization-based data augmentation is more effec-
tive when using an embedding-based model that can draw from a large augmented training set,
instead of being restricted to a small prompt.

Augmenting training data for short text classification using the generative capabilities of
GPT-3 allows NLP models to be constructed even for solving problems with limited available
data. This overcomes a common problem with transfer learning wherein models for domain-
specific practical problems often require either high-quality observations or training sets too large
to be collected or annotated by a single individual. If these models are coupled with methods to
check, validate, or even better optimize artificial examples generated automatically, the few-shot
capabilities of transfer learning models such as GPT-3 can be fully realized. Using data augmenta-
tion with GPT-3 would allow businesses and organizations to more easily construct bespoke NLP
models for problems unique to their own domains.

Acknowledgments. First, we must thank the Program in Data Science at the University of Massachusetts Dartmouth for
financially supporting this project. In addition, we would also like to thank members of the University of Massachusetts

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

966 S. V. Balkus and D. Yan

Dartmouth Big Data Club for contributing questions to our training, validation, and test data. Finally, we especially thank
Benjamin Pfeffer, McCord Murray, and John Willy for generously volunteering to perform post hoc annotations of the
questions used in this study.

Competing interests. Salvador Balkus previously served as a volunteer on the UMass Dartmouth Big Data Club executive
board.

References
Adhikari A., Ram A., Tang R. and Lin J. (2019). Docbert: Bert for document classification. arXiv:1904.08398.
Anaby-Tavor A., Carmeli B., Goldbraich E., Kantor A., Kour G., Shlomov S., Tepper N. and Zwerdling N. (2020). Do not

have enough data? Deep learning to the rescue! In AAAI Conference on Artificial Intelligence.
Arulkumaran K., Deisenroth M. P., Brundage M. and Bharath A. A. (2017). Deep reinforcement learning: A brief survey.

IEEE Signal Processing Magazine 34(6), 26–38.
Bajaj P., Xiong C., Ke G., Liu X., He D., Tiwary S., Liu T.-Y., Bennett P., Song X. and Gao J. (2022). Metro: Efficient

denoising pretraining of large scale autoencoding language models with model generated signals. arXiv:2204.06644.
Bischl B., Binder M., Lang M., Pielok T., Richter J., Coors S., Thomas J., Ullmann T., Becker M., Boulesteix A.-L., Deng

D. and Lindauer M. (2023). Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges.
WIREs Data Mining and Knowledge Discovery 13(2), 7–16.

Brown T. B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A.,
Agarwal S., Herbert-Voss A., Krueger G., Henighan T. J., Child R., Ramesh A., Ziegler D. M., Wu J., Winter C.,
Hesse C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C.,McCandlish S., Radford A., Sutskever I.
and Amodei D. (2020). Language models are few-shot learners. arXiv:2005.14165.

Chen W., Ramos K., Mullaguri K. N. and Wu A. S. (2021). Genetic algorithms for extractive summarization.
arXiv:2105.02365.

Dai A. M. and Le Q. V. (2015). Semi-supervised sequence learning. arXiv:1511.01432.
Dale R. (2020). GPT-3: What’s it good for? Natural Language Engineering 27(1), 113–118.
Deng X., Li Y., Weng J. and Zhang J. (2018). Feature selection for text classification: A review. Multimedia Tools and

Applications 78(3), 3797–3816.
Devlin J., ChangM.-W., Lee K. and Toutanova K. (2019). Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv:1810.04805.
Du J., Grave E., Gunel B., Chaudhary V., Çelebi O., Auli M., Stoyanov V. and Conneau A. (2020). Self-training

improves pre-training for natural language understanding. InNorth American Chapter of the Association for Computational
Linguistics.

Feng S., Gangal V., Wei J., Chandar S., Vosoughi S., Mitamura T. and Hovy E. (2021). A survey of data augmenta-
tion approaches for NLP. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Association
for Computational Linguistics.

Gerz D., Vulić I., Ponti E., Naradowsky J., Reichart R. and Korhonen A. (2018). Language modeling for morphologically
rich languages: Character-aware modeling for word-level prediction. Transactions of the Association for Computational
Linguistics 6, 451–465.

GPT-3. (2020). A robot wrote this entire article. Are you scared yet, human? The Guardian. Available at
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3.

Guo X. and Yu H. (2022). On the domain adaptation and generalization of pretrained language models: A survey.
arXiv:2211.03154.

Hestness J., Narang S., Ardalani N., Diamos G., Jun H., Kianinejad H., Patwary M. M. A., Yang Y. and Zhou Y. (2017).
Deep learning scaling is predictable, empirically. arXiv:1712.00409.

Jiang Z.,Araki J.,DingH. andNeubig G. (2022). Understanding and improving zero-shotmulti-hop reasoning in generative
question answering. In International Conference on Computational Linguistics.

Katoch S., Chauhan S. S. and Kumar V. (2020). A review on genetic algorithm: past, present, and future.Multimedia Tools
and Applications 80(5), 8091–8126.

Kobayashi S. (2018). Contextual augmentation: Data augmentation by words with paradigmatic relations. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers). New Orleans, LA: Association for Computational Linguistics, pp. 452–457.

Kowsari K., Meimandi K.J., Heidarysafa M., Mendu S., Barnes L. and Brown D. (2019). Text classification algorithms:
A survey. Information 10(4), 150.

Kumar V., Choudhary A. and Cho E. (2020). Data augmentation using pre-trained transformer models. In Proceedings
of the 2nd Workshop on Life-long Learning for Spoken Language Systems. Suzhou, China: Association for Computational
Linguistics, pp. 18–26.

Li Q., Peng H., Li J., Xia C., Yang R., Sun L., Yu P. S. and He L. (2020). A survey on text classification: From shallow to deep
learning. ACM Transactions on Intelligent Systems and Technology 13(2), 1–41.

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://arxiv.org/abs/1904.08398
https://arxiv.org/abs/2204.06644
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2105.02365
https://arxiv.org/abs/1511.01432
https://arxiv.org/abs/1810.04805
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
https://arxiv.org/abs/2211.03154
https://arxiv.org/abs/1712.00409
https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 967

Liu J., Shen D., Zhang Y., Dolan B., Carin L. and Chen W. (2022). What makes good in-context examples for GPT-3?. In
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for
Deep Learning Architectures. Dublin and Online: Association for Computational Linguistics, pp. 100–114.

Liu R., Xu G., Jia C.,MaW.,Wang L. and Vosoughi S. (2020). Data boost: Text data augmentation through reinforcement
learning guided conditional generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Online: Association for Computational Linguistics, pp. 9031–9041.

Liu Y., Ott M., Goyal N., Du J., Joshi M., Chen D., Levy O., Lewis M., Zettlemoyer L. and Stoyanov V. (2019). Roberta:
A robustly optimized bert pretraining approach. arXiv:1907.11692.

Minaee S., Kalchbrenner N., Cambria E., Nikzad N., Chenaghlu M. and Gao J. (2022). Deep learning–based text
classification. ACM Computing Surveys 54(3), 1–40.

Onan A. (2018). Biomedical text categorization based on ensemble pruning and optimized topic modelling. Computational
and Mathematical Methods in Medicine 2018, 1–22.

OnanA. (2019a). Consensus clustering-based undersampling approach to imbalanced learning. Scientific Programming 2019,
1–14.

Onan A. (2019b). Two-stage topic extraction model for bibliometric data analysis based on word embeddings and clustering.
IEEE Access 7, 145614–145633.

Onan A. and Korukoğlu S. (2016). A feature selection model based on genetic rank aggregation for text sentiment
classification. Journal of Information Science 43(1), 25–38.

Onan A., Korukoğlu S. and Bulut H. (2016). Ensemble of keyword extraction methods and classifiers in text classification.
Expert Systems with Applications 57, 232–247.

Onan A.,Korukoğlu S. and Bulut H. (2017). A hybrid ensemble pruning approach based on consensus clustering andmulti-
objective evolutionary algorithm for sentiment classification. Information Processing and Management 53(4), 814–833.

OpenAI (2021a). Classification. OpenAI Documentation. Available at https://beta.openai.com/docs/guides/classifications
OpenAI (2021b). Completion. OpenAI Documentation. Available at https://beta.openai.com/docs/guides/completion
OpenAI (2022). Embeddings. OpenAI Documentation. Available at https://platform.openai.com/docs/guides/embeddings/

what-are-embeddings
Pan S. J. and Yang Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10),

1345–1359.
Pilipiszyn A. (2021). GPT-3 Powers the Next Generation. OpenAI. Available at https://openai.com/blog/gpt-3-apps/
Qu Y., Shen D., Shen Y., Sajeev S., Han J. and Chen W. (2020). CoDA: Contrast-enhanced and diversity-promoting data

augmentation for natural language understanding. arXiv:2010.08670.
QuteinehH., Samothrakis S. and Sutcliffe R. (2020). Textual data augmentation for efficient active learning on tiny datasets.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online. Association
for Computational Linguistics, pp. 7400–7410.

Radford A., Narasimhan K., Salimans T. and Sutskever I. (2018). Improving language understanding by generative pre-
training. OpenAI. Available at https://openai.com/research/language-unsupervised.

Raffel C., Shazeer N., Roberts A., Lee K., Narang S.,Matena M., Zhou Y., Li W. and Liu P. J. (2022). Exploring the limits
of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research 21(1), 5–10.

Sennrich R., Haddow B. and Birch A. (2016). Improving neural machine translation models with monolingual data. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin:
Association for Computational Linguistics, pp. 86–96.

Shorten C. and Khoshgoftaar T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data
6(1), 7–17.

Song G., Ye Y.,Du X.,Huang X. and Bie S. (2014). Short text classification: A survey. Journal of Multimedia 9(5), 1–2.
Srinivas M. and Patnaik L. (1994). Genetic algorithms: A survey. Computer 27(6), 17–26.
Sun Y., Wang S., Feng S., Ding S., Pang C., Shang J., Liu J., Chen X., Zhao Y., Lu Y., Liu W., Wu Z., Gong W., Liang J.,

Shang Z., Sun P., Liu W., Ouyang X., Yu D., Tian H., Wu H. and Wang H. (2021). Ernie 3.0: Large-scale knowledge
enhanced pre-training for language understanding and generation. arXiv:2107.02137.

Thiergart J.,Huber S. and Ubellacker T. (2021). Understanding emails and drafting responses – an approach using GPT-3.
arXiv:2102.03062.

Vaswani A., Shazeer N. M., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L. and Polosukhin I. (2017). Attention
is all you need. arXiv:1706.03762.

Wang A., Pruksachatkun Y., Nangia N., Singh A., Michael J., Hill F., Levy O. and Bowman S. R. (2019). SuperGLUE:
A stickier benchmark for general-purpose language understanding systems. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems. Curran Associates Inc, pp. 3266–3280.

Yang W. X. (2004). An improved genetic algorithm adopting immigration operator. Intelligent Data Analysis 8(4), 385–401.
Yoo K. M., Park D., Kang J., Lee S.-W. and Park W. (2021). GPT3Mix: Leveraging large-scale language models for text

augmentation. In Findings of the Association for Computational Linguistics: EMNLP 2021. Association for Computational
Linguistics.

Zhang H., Cisse M.,Dauphin Y. N. and Lopez-Paz D. (2018). mixup: Beyond empirical risk minimization. In International
Conference on Learning Representations.

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://arxiv.org/abs/1907.11692
https://beta.openai.com/docs/guides/classifications
https://beta.openai.com/docs/guides/completion
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
https://openai.com/blog/gpt-3-apps/
https://arxiv.org/abs/2010.08670
https://openai.com/research/language-unsupervised
https://arxiv.org/abs/2107.02137
https://arxiv.org/abs/2102.03062
https://arxiv.org/abs/1706.03762
https://doi.org/10.1017/S1351324923000438

968 S. V. Balkus and D. Yan

Zhao T., Wallace E., Feng S., Klein D. and Singh S. (2021). Calibrate before use: Improving few-shot performance of
language models. arXiv:2102.09690.

Zoph B., Bello I., Kumar S., Du N., Huang Y., Dean J., Shazeer N. and Fedus W. (2022). Designing effective sparse expert
models. In 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). Lyon, France,
pp. 1044.

Zulqarnain M., Ghazali R.,Hassim Y. M. M. and Rehan M. (2020). A comparative review on deep learning models for text
classification. Indonesian Journal of Electrical Engineering and Computer Science 19(1), 325.

A. Appendix
A.1 Datasets used for evaluation
This section contains the original training, validation, and test sets that were augmented.
Identifying information, such names of study participants or course numbers, has been redacted.
The original label is included, along with the three labels assigned by post hoc reviewers.

A.1.1 Training

1. Should I use Plotly or matplotlib for visualization? [Data]; [Data, Data, Data]
2. would this be better if we had dedicated reactions for good/bad questions/answers?

[Other]; [Other, Other, Other]
3. @_ Do you have any of the merch with the new logo done? If so can we see a link/picture?

[Other]; [Other, Other, Other]
4. What are some libraries for data visualization in python? [Data]; [Data, Data, Data]
5. Has anyone seen the original Transformers movie? [Other]; [Other, Other, Other]
6. Neural networks can be programmed in both Tensorflow and PyTorch, true or false?

[Data]; [Data, Data, Data]
7. What statistical distribution models intervals? [Data]; [Data, Data, Data]
8. How many neurons are contained within the human nervous system? [Other]; [Other,

Other, Other]
9. why is it that a snowflake falls in the winter instead of the summer? [Other]; [Other, Other,

Other]
10. What does a data science career path look like? [Data]; [Data, Data, Data]
11. When he attached the wires, they made a spark. Does he need more training? [Other];

[Other, Other, Other]
12. Could you explain the difference between Spark and Hadoop? [Data]; [Data, Other, Data]
13. Does anyone know if non-library buildings are open on campus? [Other]; [Other, Other,

Other]
14. Is it possible to set up an API in AWS? [Data]; [Data, Other, Other]
15. Has anyone ever trained a transformer model for NLP? [Data]; [Data, Data, Data]
16. What is a simulation and how does it differ from machine learning modeling? [Data];

[Data, Data, Data]
17. Django or Flask? [Data]; [Data, Other, Data]
18. What’s the difference between data science and data analytics? [Data]; [Data, Data, Data]
19. What are some people’s favorite movies? [Other]; [Other, Other, Other]
20. The wise old oak tree helped you make a decision? [Other]; [Other, Other, Other]
21. What is the best way to learn Tableau and PowerBI? [Data]; [Data, Other, Data]

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://arxiv.org/abs/2102.09690
https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 969

22. Which programming language is preferable for embedded systems, C or C++? [Other];
[Data, Other, Other]

23. should I just thumbs up every single message or what [Other]; [Other, Other, Other]
24. what is data science? [Data]; [Data, Data, Data]
25. and if we’re not, why not? [Other]; [Other, Other, Other]
26. Where was the largest cluster of cases found this month? [Other]; [Data, Other, Data]

A.1.2 Validation

1. R u ready to go? [Other]; [Other, Other, Other]
2. Are people familiar with APIs? Just wondering if I should plan an explanation for how

APIs work for Thursday. [Data]; [Data, Data, Other]
3. Does P = NP? [Data]; [Data, Data, Other]
4. I need to train a regression and a classification model. Can this be done in sci-kit learn?

[Data]; [Data, Data, Data]
5. What? [Other]; [Other, Other, Other]
6. Is Blender used for creating 3D graphics? [Other]; [Other, Other, Other]
7. What are we going to do for the rest of the meeting? [Other]; [Other, Other, Other]
8. Is clustering an example of supervised or unsupervised learning? [Data]; [Data, Data, Data]
9. Can anyone help with I do not understand any of this at all. The lecture/slides are awful and

I’ve been watching youtube videos getting even more lost. Thanks friends [Data]; [Data,
Other, Data]

10. A SQL query walks into a bar, goes up to two tables, and asks “Can I join you?” [Other];
[Other, Other, Other]

11. ajskdl qwerjksd weknwf we wejirknwdfw? [Other]; [Other, Other, Other]
12. I’m looking at adding data science as a second major but I’m really confused by the _

course. Has anyone taken it or is taking it and could tell me what it is? I couldn’t find it
anywhere on coin. [Data]; [Data, Other, Other]

13. What do you guys think would be some difficult data science questions to answer? [Data];
[Data, Other, Other]

14. Data Science? [Other]; [Other, Data, Other]
15. Which programming language do you prefer: Python, R, Julia, or Matlab? [Data]; [Data,

Other, Other]
16. Did you know that just under half of all data science puns are below average? [Other];

[Other, Data, Other]
17. If I perform a chi-squared test and obtain a p-value of 0.02, is that considered statistically

significant? [Data]; [Data, Data, Data]
18. are we using my redesign? [Other]; [Other, Other, Other]
19. Or Streamlit? [Data]; [Other, Other, Other]
20. Is it better to do a data science bootcamp or get a master’s degree in data science? [Data];

[Data, Data, Data]
21. What is the meaning of life? [Other]; [Other, Other, Other]
22. Who went to the club meeting today? [Other]; [Other, Other, Other]
23. How do I create an SQL database in Azure? [Data]; [Data, Data, Data]

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

970 S. V. Balkus and D. Yan

24. Or what would be some questions that people outside the club would be wondering about?
[Data]; [Other, Other, Other]

25. The base of the model will be made in CAD - can you create this on your computer?
[Other]; [Other, Other, Other]

26. According to statistics is Michael Jordan the best basketball player ever? [Other];
[Data, Data, Data]

A.1.3 Test

1. Is the school open today? [Other]; [Other, Other, Other]
2. When is the meeting time this semester? [Other]; [Other, Other, Other]
3. What is the quantum Fourier transform [Data]; [Data, Data, Other]
4. I tried to push to GitHub but I got amerge conflict error. How do I fix this problem? [Data];

[Data, Other, Other]
5. Are you coming to Big Data Club tomorrow? [Other]; [Other, Other, Other]
6. Will members get those stickers for free? [Other]; [Other, Other, Other]
7. What data science books would recommend for understanding the basic principles?

[Data]; [Data, Data, Data]
8. Where can I access datasets like MNIST for image analysis? [Data]; [Data, Data, Data]
9. Can someone help me understand how to SSH into the computing cluster on Friday?

[Data]; [Data, Other, Other]
10. Where can I find the link? [Other]; [Other, Other, Other]
11. Which language should I use for matrix methods for data analysis [Data]; [Data, Data,

Data]
12. Does anyone have any classes they would recommend forme to take next semester [Other];

[Other, Other, Other]
13. What is a Poisson distribution? [Data]; [Data, Data, Data]
14. Here’s my idea: we combine lookup table and machine learning model. Thoughts? [Data];

[Data, Data, Data]
15. I’ve taken the class before, I really enjoyed it actually. Do you want me to send you the

syllabus? [Other]; [Other, Other, Other]
16. Could everyone send times when you are available before the start of the semester? [Other];

[Other, Other, Other]
17. Here’s a link on how to make custom Jupyter notebook themes. Big Data Club-themed

notebooks, anyone? [Data]; [Other, Other, Other]
18. What’s the best way to get user input in Python? [Data]; [Data, Other, Data]
19. Can you volunteer at the accepted students day @_ [Other]; [Other, Other, Other]
20. Which logo won the design contest? [Other]; [Other, Other, Other]

A.2 Final completionmodel prompts
This section includes final candidate prompts for the Completion Endpoint evaluation. Note that
since we included a few “adversarial” examples (e.g. random characters) in the original data and

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

Natural Language Engineering 971

placed no restrictions on the types of augmented examples that GPT-3 was allowed to gener-
ate, some of these may not be in the proper form of a question in the English language. Such
occurrences are normal, as they still function the same as training examples that are in a question
format for the Completion Endpoint (otherwise they would have been filtered out by the genetic
algorithm’s selection process).

A.2.1 Model 1

1. What is the difference between a neural network and a statistical regression model? [Data]
2. What is the first step when you are solving a math problem? [Other]
3. Explain how to use the R Package Deducer to cite a package. [Data]
4. I’m enjoying the new @pizzahut commercial playing on @midnight right now. “You can’t

spell ’delivery’ without deliver” [Other]
5. What is the difference between a matrix and an array? [Data]
6. What are the two most pervasive problems in data science today? [Data]
7. What is the best way to get started in a new field of research? [Data]
8. How is a lobster like a dinosaur? [Other]

A.2.2 Model 2

1. What’s the best way to learn data science? [Data]
2. Is the movie set in America or somewhere else? [Other]
3. What is a logistic regression? [Data]
4. When would I use the elif keyword in Python? [Data]
5. In what year was the first man on the moon? [Other]
6. Quick question: I am a girl who’s dad never really had a relationship with me. He only sees

me during the winter holidays and has not been a part of my life very much. I have a lot of
resentment towards him and have always felt unwanted. However, I have never told him
that I feel this way [Other]

7. What is the most powerful feature of yEd? What is a good use for it? [Data]
8. Is it true that a 10x programmer is 10 times more productive than an average one? [Data]

A.2.3 Model 3

1. What is the gradient descent algorithm and how does it work? [Data]
2. I get it. I’d say “no”, too. . . [Other]
3. @Caspian I want to thank you and your team for the work you’ve done so far. The product

is fantastic and it makes my life easier as a support engineer. Thanks again! Question:What
tools/scripts do you use to build containers? [Other]

4. What is an aggregate function in SQL? [Data]
5. I have been working on my new script for a feature film, a. . . [Other]
6. What’s the name of this interview? [Data]

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438

972 S. V. Balkus and D. Yan

7. I am curious what your thoughts are on the @Yale proposal to expand the legal meaning of
sexual consent [Other]

8. Is there a reason why I should buy the sample business plan? [Other]

Cite this article: Balkus SV and Yan D (2024). Improving short text classification with augmented data using GPT-3.Natural
Language Engineering 30, 943–972. https://doi.org/10.1017/S1351324923000438

https://doi.org/10.1017/S1351324923000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000438
https://doi.org/10.1017/S1351324923000438

	
	Introduction
	Background and related work
	Natural language processing and transfer learning
	GPT-3
	Data augmentation
	Genetic algorithms
	Motivation
	Overview
	Proposed augmentation methods
	Classification Endpoint Augmentation
	Completion Endpoint Augmentation
	Classification using the Completion Endpoint
	Performing augmentation by optimizing training example selection
	Numerical evaluation
	Data collection
	Implementation
	Model parameters
	Classification Endpoint Augmentation parameters
	Completion Endpoint Augmentation parameters
	A note on baselines
	Results
	Classification Endpoint Augmentation results
	Completion Endpoint Augmentation results
	Reviewer agreement
	Discussion
	The efficacy of embedding
	Remaining questions
	Limitations and future work
	Language
	Sample size
	Task diversity
	Subjectivity and quality control
	Comparison to other data augmentation techniques
	Conclusion
	Datasets used for evaluation
	Training
	Validation
	Test
	Final completion model prompts
	Model 1
	Model 2
	Model 3

