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1. Introduction

This note gives a way of looking at Malcev conditions for varieties as ideals
in a certain lattice. Though this viewpoint (so far) yields no new results, we feel
it puts Walter Taylor’s results [3] characterizing ‘‘Malcev definable classes of
varieties’” into a clearer perspective and is therefore worth mentioning. The
author is grateful to R. Wille for pointing out W. Taylor’s paper to him.

We construct in a simple way a complete lattice L of equivalence classes of
varieties containing a countable sublattice M (represented by the finitely presented
varieties) such that:

1. equivalent varieties are indistinguishable by Malcev conditions, that is, they
either all satisfy a given Malcev condition or all do not;
2. the classes of varieties defined by strong Malcev conditions are just (modulo
the equivalence relation) the principal ideals in L generated by single elements
of M;
3. the classes of varieties defined by ordinary Malcev conditions (respectively,
weak Malcev conditions) are the ideals in L generated by subsets of M (respec-
tively, countable intersections of such ideals. Walter Taylor’s closure theorems
follow easily.

Our lattice L is actually defined on a class, rather than a set. This can be
avoided by a cardinality restriction on the number of defining operations that a
variety may have; L will then be complete only up to this cardinality.

2. Construction of L

We first recall the relevant definitions. Let 9t be a finitely presented variety
given, say, by the finite set p,,--:, p, of primitive operations and a finite set
ry = 8y, 1, = 5, of equational laws in these operations. An arbitrary variety
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B is said to satisfy the sirong Malcev condition determined by IR if there are
algebraic operations p,, -, p, for the variety B, having the same ranks as the p,
and satisfying the given equations. Since then any algebra of B is an algebra of
M with respect to the operations p,, -, p,, we get a functor B — M which pre-
serves underlying sets. Conversely, by Felscher [1], any set preserving functor be-
tween varieties arises in the above way, so

LeEMMA 1. B satisfies the strong Malcev condition determined by I if and
only if there exists a set preserving functor B — .

In particular we see that the condition is independent of the presentation of YX.

Let ¥"ar’ be the category of varieties and set preserving functors. The super-
script f stresses that we only allow finitary operations. ¥"ar/ is a complete cate-
gory (see the appendix for a description of sums and products in this category).
For reasons that become clear in the appendix, the terminology ‘‘sum and pro-
duct of varieties’’ has come to mean categorical sum and product in the dual
category (¥ ar/)*, that is, product and sum respectively in ¥"ar/. Our notation
here therefore differs slightly from [2], where product and sum were taken in the
undualized category.

Given B,,B, € ¥ ar’, write

B, 2B,

if a morphism B, —» B, exists in ¥ ar’. This defines a transitive reflexive relation,
so if #"ar’ is factored by the equivalence relation

B, 2B, :«<PB, =B, and B, = B,

we get a partially ordered class
L=%ar|~.

The following lemma is immediate from the categorical definition of sum and pro-
duct and the fact that sum and product of two finitely presented varieties are still
finitely presented.

LeMMA 2. L is a complete lattice with meet and join given by product and
sum of varieties (that is, in (¥ ar’)*). The subset M of elements of L represented
by finitely presented varieties is a countable (not complete) sublattice of L.

Now if 9 is a finitely presented variety, then by lemma 1 a variety 9B satisfies
the corresponding strong Malcev condition if and only if B = IR. Two varieties
B,, B, which define the same element of L (that is B, =~ B,) either both satisfy
such a condition or both do not, so such varieties will be called Malcev indis-
tinguishable, and in discussing classes of varieties defined by Malcev conditions
we lose nothing by working modulo this relation; that is, we work in L rather
than in ¥ ar’.
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The following proposition is trivial:

PROPOSITION 1. A subclass of L is defined by a strong Malcev condition if
and only if it is a principal ideal in L generated by an element of M (namely
the element given by a variety which defines the strong Malcev condition in
question).

Now an ordinary Malcev condition is defined as a countably infinite logical

alternation
C=C1VC2V"‘ (C1:>C2:>"')

of a chain of strong Malcev conditions.

PROPOSITION 2. A subclass of Lis defined by a Malcev condition if and only
if it is an ideal in L generated by a subset of M.

ProoF. For each i let I; be a finitely presented variety which determines the
strong Malcev condition C; and let K, be the principal ideal in L generated by
[t;]. The subclass of L determined by condition C is

K = K1U KzU Tty
which is itself an ideal since K, € K, < -, and is generated by the subset
{[M].[M], -+ } of M.

Conversely, let K be an ideal in L generated by a subset {{3{],[IM;],--}

of M (we can index this way since M is countable). Then K is also generated by
{[P,],[M,], -+ }, where

(O] = [M] A [D2] A - A [D] = [ + - + ).

Here A is the lattice operation in M, given by the categorical sum + in (¥ ar)*
(lemma 1). Since 9N, = IR, = ---, we have for the corresponding principal ideals
K; in L that K, < K, < - . Hence K is the union K, UK, U .- and is deter-
mined by the Malcev condition as above.

Before discussing weak Malcev conditions we need a lemma.

LEMMA 3. The logical conjunction of a finite number of Malcev conditions
is a Malcev condition. Equivalently, the intersection of a finite number of ideals
of the type of proposition 2 again has this type.

PrROOF. We need only prove this for the intersection of two such ideals K
and K'. But if K is generated by the elements [I;] € M and K’ by the elements
[M;]e M, then K N K’ is generated by the elements [I,] v [P]] e M.

Finally we come to weak Malcev conditions. These are logical conjunctions
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C=C,ACy A
of a chain
C,<Cy<--

of progressively stronger Malcev conditions.
However, given any countable logical conjunction

C=CiAC A
of Malcev conditions, we can write it as
C=C1/\C2/\"', (C1¢C2<="'),

where C; = C{ A -+ A C}, which is a Malvec condition by the above lemma. Thus
any countable conjunction of Malcev conditions is a weak Malcev condition (and
vice versa), so

PROPOSITION 3. A subclass of L is defined by a weak Malcev condition if and
only if it is a countable intersection of ideals, each of which is generated by a
subset of M.

3. Closure theorems

As example applications of the viewpoint developed above, we derive two of
W. Taylor’s closure theorems [3]. We must first recall a definition ([2] p. 6): a
set preserving functor F : B, — B, between varieties is a pure forgetful functor if
B, is generated as a variety by the image of F, that is, B, = QSP(FB,).

We now formulate W. Taylor’s theorem 4.1, giving in round brackets the
formulation in our language.

THEOREM. A non-empty class K of varieties is definable by a [strong]
Malcev condition if and only if it satisfies the following five conditions:
(i) K is closed under formation of equivalent varieties;
(i) K is closed under formation of subvarieties;
(ili) K is closed under formation of [countable] respectively finite products of
varieties;
(iv) if BeK and B is generated by all reducts of members of W to the type of
of B then We K (if Be K and W — B is a pure forgetful functor then W e K);
(v) if the equations X define a variety on K of type t, then there exist finite
subsets o € X, 19 S 1, such that X, defines a variety in K of type 1o (if
B eK then there exists a finitely presented variety It e K and a set preserving

Sfunctor B ->M).

The equivalence of formulations is immediate from the fact that set preserving
functors are equationally defined and vice versa.
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PrOOF OF THEOREM. Since trivially any morphism (set preserving functor)
F : B, - B, of varieties splits (uniquely) as a pure forgetful functor

B, » QSP(FB,)

followed by an inclusion QSP(FB,) —»B,, conditions (i), (ii), and (iv) just
say that if B, - B, and B, €K, then B, e K. That is, K contains with any
variety also all larger varieties (in our order relation =) and is hence in particular
closed under ‘‘Malcev indistinguishability’’. We thus lose nothing by working
modulo Malcev indistinguishability, that is in L, and considering K as a subclass
of L. Since product of varieties is meet in our lattice L, adding condition (iii) to
(i), (i), and (iv) just says K defines an ideal in L. Condition (v) then says every
element of K is greater than an element of M N K, so K is generated by the subset
M N K of M and is thus defined by a Malcev condition by proposition 2. If K
is actually closed under countable meets (condition (iii} [3]) then, since M N K
is countable, K is the principal ideal generated by the meet of the elements in
M N K. This smallest element of K must be in M by condition (v), so K is defined
by a strong Malcev condition. The converse is trivial in both cases.

The second closure theorem is as follows (Theorem 4.2 of [3]):

THEOREM. A nonempty class K of varieties is definable by a [strong] Malcev
condition if and only if K satisfies conditions (i), (ii), (ii) of the previous theorem
and
(vi) if the equations X define a variety B in K of type t, then there exists a
finite subset X, X defining a variety in K of type .

ProoF. Let us first investigate what (vi) means in our language, Let us first
assume the type t has n operations of each finite rank, where 1 is some large
infinite cardinal. This can be achieved without changing the variety B (up to
equivalence) by simply adding operations and simultaneously adding equations
which set the new operations equal to old operations of 8. The finite set X, of
equations can only involve a finite subset 1, = 7. So the variety of type 7 defined
by X, splits as a sum of varieties

M+,

M of type 1, defined by X, and & of type 0 = 1 — 1, with no equations. We thus
have the weaker version of (vi):

(vii) if n is an infinite cardinal, § the variety with n operations of each rank
and with no laws, then for any B € K there exists for w sufficiently large a finitely
presented variety M such that M+ Fe K and B = M+ §.

Now suppose B e K and I8 - B is any set preserving functor. We wish to show
2 € K. By choosing 1t large enough we can embed I in § as a subvariety:

W< F.
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Let
BoM+§F

be given by (vii). Thirdly, since n is infinite, we have an equivalence of varieties
§+5 =8

Now the functor I8 — B yields an inclusion of varieties (the diagonal map)
W = B + I, so using the above inclusion and equivalence we get

WeBVB+WeB+F<sMM+F+F=M+&.

This gives 9B as a subvariety of a variety in K, hence I is in K by (ii).

Thus K contains with any variety also all Jarger (with respect to = ) varieties.
As before, K is thus closed under Malcev indistinguishability and can thus be
considered as a subclass of L. It is then an ideal in L by condition (iii) (product
closure in (¥ ar’)*, that is, closure under meets in L).

In condition (vii) we see that I and M + §F are Malcev indistinguishable
(since set preserving functors W —>IM + §F and M + §F - IN certainly exist), so
(vii) says that each element of K is greater than some element of M N K, so, as
before, K is generated by M N K [respectively, the meet of all elements of M N K].

We now give the description of Walter Taylor’s heirarchy [3] of subclasses
of ¥"ar’ in our language. The proofs of the equivalence of our description in
cases 4 and 5 are exactly like the proofs of the above two theorems and can be
filled in by the reader.

Denote by M, the set of elements in L which are joins of elements in M,
that is, are representable by sums of finitely presented varieties. These joins and
sums can be assumed to be countable since M is countable. Let M, be the set of
elements in L representable by countably presented varieties. Clearly M; = M,
Taylor’s hierarchy is:

1). Classes defined by strong Malcev conditions, i.e. principal ideals in L gen-
erated by an element of M. '

2). Classes defined by Malcev conditions, i.e..ideals in L generated by subsets
of M.

3). Classes defined by weak Malcev conditions, i.e. countable intersections of
ideals generated by subsets of M. '

4). Ideals K in L generated by subsets of M, and satisfying (*): a meet of a
family of elements of L is in K if the meet of every countable subfamily is in K.
5). Ideals in L generated by subsets of M,.

This description suggests several additions one could make to this heirarchy.
Most interesting seems to be the following addition between 3) and 4):

31). Arbitrary intersections of ideals generated by subsets of M.
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That hierarchy 3) is contained in hierarchy 31) is trivial. Now suppose a
class K is of hierarchy 3%), that is, K is an intersection of ideals of hierarchy 2).
Since each ideal of hierarchy 2) satisfies condition (*), their intersection K also
does. But K is certainly generated by a set of the joins of elements of M, that is,
by a subset of M,, so K is of hierarchy 4).

The above makes it very unlikely that hierarchies 3) and 4) coincide. In fact,
it seems probable that 34) lies strictly between 3) and 4). The non-equality of 3)
and 3}) would imply that there are uncountably many different classes defined by
Malcev conditions (W. Taylor’s problem 4.6), which seems not yet be known.

4. Appendix: Sum and product of varieties

The category ¥"ar’ is a full subcategory of the category ¥ ar (see [2]) of
varieties allowing n-ary operations also for n countably infinite. Recall that sum
and product of varieties is used to mean categorical sum and product in the dual
category (¥ ar')*, which is a full subcategory of (¥ ar)*. The description of sum
and product in (¥"ar)* (see [2]) can easily be transferred to (¥ ar/)* as follows:

Given varieties B; (i), each B, defined by a set F; of operations and a
set X; of equational laws in these operations, the sum B in (¥ ar)* of the B, is
defined by taking the disjoint union of the sets F; as set of operations and the
disjoint union of the X; as the equations ([2]). Since, if the P, are finitary then
so is B, this also describes sum in (¥ ar/)*.

Product causes trouble because an infinite (¥ ar)*-product of finitary vari-
eties is no longer finitary. However, it is easily seen directly that the (¥ ar/)*-
product is just the reduct of the (¥ ar)*-product to the set of all its finitary opera-
tions; that is, one takes the (¥ ar)*-product B (defined for instance via [2]) and
then if F is the set of all finitary algebraic operations of B, and X the set of all
equations defined over F and valid in B, then F and X together define
the (¥ ar’)*-product.

This can also be proved using Ny-clones [2]. Recall that the variety of No-
clones is defined by one operation (---) of rank w and a countable sequence of
nullary operations (constants) py, py, -+ satisfying the laws

Cl) (xpyp2-) = x

C2) (px;xy-) = Xx; (i=1,2:)

C3) ((xy1y2-+)z1z2) = (x(¥12125 - X¥2z12577) ).
By [2], the variety € of Ny-clones is equivalent as a category to (¥ ar)*. This
equivalence H:(¥ary*>G

is defined by taking H(®B) to be the set of w-ary algebraic operations of B and
defining p; to be the i-th coordinate operation and
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(fflfz ) =f(f1,f2,"')

(right hand side is composition of operations).

Now by [2], (#"ar')* gets mapped to the subclass €/ of € consisting of all
No-clones which satisfy

F) 3,(xp1P2*** PuP1P1 ") = (XP1D2 """ PuPn+1""")>

for every element x . In an arbitrary X,-clone H, the set of elements x satisfying F)
is a sub-clone H”. It follows immediately that for a family of Ny-clones H;e G/,
the &/-product is just (x C;)/, where x C; is cartesian product (i.e. product in €).
Our claim about product in (¥ ar/)* follows then from the relationship between
(¥ ar)* and €.

For two varieties B, (defined by a set F of operations and a set X, of equa-
tional laws) and B, (defined by operations G and laws X,), the product B, x B,
can be defined by the disjoint union F U G u { - } of operations, where  is a
binary product, and the disjoint union X, U X, U X of laws, where X is the
set of laws (fe F, ge G):

X X=X

-y z=x-Q-2)=x-z

JGegs ity %) = flxg, 000 ,%) ,i>1

= f(xg, %)y ,i=1

gy X Yoy = g o) ,i>1

=Xy gy, ) ,i=1

SO X 1,9V a5 YD %) = (X X 1,V 10 5 %) ,i>1

=f(y1!x2""9xk) ) 9()’1,"',}’1) > i=1
G Ve 1S X YD) = gV 15 Vi X1 ) , i1>1
=f(x1"”9xk) : g(xl’yZa"',yl) ’ i=1

This is maybe most easily seen by observing that the ¥,-clone of the variety
B defined by FuU BU{ -} and the laws £, U X, U X is in an obvious way
naturally isomorphic as a set to the cartesian product of the X,-clones of B, and
B, (namely, first extend all operations trivially to have rank w ; then using the
equations, every rank o operation of V has form ¢q, - q, where g, is a term in
the operations F and the coordinate operations, and g, in the operations G and
the coordinate operations; map this to the pair (¢, q;) € H(B,) x H(B,)). Check
that this is an Ng-clone isomorphism.
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The above descriptions are probably well known; we have included them
for completeness. They show in particular that finite sum and product of finitely
presented varieties are finitely presented, a fact used in this paper.
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