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1. Introduction

This note gives a way of looking at Malcev conditions for varieties as ideals
in a certain lattice. Though this viewpoint (so far) yields no new results, we feel
it puts Walter Taylor's results [3] characterizing "Malcev definable classes of
varieties" into a clearer perspective and is therefore worth mentioning. The
author is grateful to R. Wille for pointing out W. Taylor's paper to him.

We construct in a simple way a complete lattice L of equivalence classes of
varieties containing a countable sublattice M (represented by the finitely presented
varieties) such that:

1. equivalent varieties are indistinguishable by Malcev conditions, that is, they
either all satisfy a given Malcev condition or all do not;

2. the classes of varieties defined by strong Malcev conditions are just (modulo
the equivalence relation) the principal ideals in L generated by single elements
of M;
3. the classes of varieties defined by ordinary Malcev conditions (respectively,
weak Malcev conditions) are the ideals in L generated by subsets of M (respec-
tively, countable intersections of such ideals. Walter Taylor's closure theorems
follow easily.

Our lattice L is actually defined on a class, rather than a set. This can be
avoided by a cardinality restriction on the number of defining operations that a
variety may have; L will then be complete only up to this cardinality.

2. Construction of L

We first recall the relevant definitions. Let 9JI be a finitely presented variety
given, say, by the finite set pi,---,pn of primitive operations and a finite set
ri = si> •"•>'•* = sfc of equational laws in these operations. An arbitrary variety
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33 is said to satisfy the strong Malcev condition determined by 2R if there are
algebraic operations pu •••,pn for the variety 93, having the same ranks as the pt

and satisfying the given equations. Since then any algebra of 33 is an algebra of
StR with respect to the operations Pi,---,pn, we get a functor 93 -»SR which pre-
serves underlying sets. Conversely, by Felscher [1], any set preserving functor be-
tween varieties arises in the above way, so

LEMMA 1. 93 satisfies the strong Malcev condition determined by'M if and
only if there exists a set preserving functor 93 ->2R.

In particular we see that the condition is independent of the presentation of SOi.
Let 'far1 be the category of varieties and set preserving functors. The super-

script / stresses that we only allow finitary operations. ~f~arf is a complete cate-
gory (see the appendix for a description of sums and products in this category).
For reasons that become clear in the appendix, the terminology "sum and pro-
duct of varieties" has come to mean categorical sum and product in the dual
category ("Tar1)*, that is, product and sum respectively in far*. Our notation
here therefore differs slightly from [2], where product and sum were taken in the
undualized category.

Given %1,%2er'arf, write

if a morphism 93i -»932 exists in 'far*. This defines a transitive reflexive relation,
so if "Tarf is factored by the equivalence relation

93x ^ 932 : «> 93X ^ 932 and 932 ^ 93,

we get a partially ordered class

L = irars\^ .

The following lemma is immediate from the categorical definition of sum and pro-
duct and the fact that sum and product of two finitely presented varieties are still
finitely presented.

LEMMA 2. L is a complete lattice with meet and join given by product and
sum of varieties (that is, in ("far*)*). The subset M of elements of L represented
by finitely presented varieties is a countable (not complete) sublattice of L.

Now if 2R is a finitely presented variety, then by lemma 1 a variety 93 satisfies
the corresponding strong Malcev condition if and only if 93 ^ 2R. Two varieties
93!,932 which define the same element of L (that is 93t = 932) either both satisfy
such a condition or both do not, so such varieties will be called Malcev indis-
tinguishable, and in discussing classes of varieties defined by Malcev conditions
we lose nothing by working modulo this relation; that is, we work in L rather
than in far1'.
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The following proposition is trivial:

PROPOSITION 1. A subclass of L is defined by a strong Malcev condition if
and only if it is a principal ideal in L generated by an element of M (namely
the element given by a variety which defines the strong Malcev condition in
question).

Now an ordinary Malcev condition is defined as a countably infinite logical
alternation

C = Ctv C2v ••• ( d = > C 2 =>•••)

of a chain of strong Malcev conditions.

PROPOSITION 2. A subclass of Lis defined by a Malcev condition if and only
if it is an ideal in L generated by a subset of M.

PROOF. For each i let 5R; be a finitely presented variety which determines the
strong Malcev condition Q and let Kt be the principal ideal in L generated by
[SOi,]. The subclass of L determined by condition C is

which is itself an ideal since Ky s K2 £ • • •, and is generated by the subset
{pDl 1 ] , [3K 2 ] , -}ofM.

Conversely, let K be an ideal in L generated by a subset {[30ti'],[3W2],-"}
of M (we can index this way since M is countable). Then K is also generated by

C&RJ,-}, where

[ S R J = [ 9 H i ] A [2R' 2 ] A ••• A [SRG = [ 9 K ; + ••• + SRJ].

Here A is the lattice operation in M, given by the categorical sum + in ('far*)*
(lemma 1). Since 3Rl §; 2R2 ^ •••, we have for the corresponding principal ideals
Kt in L that Xx £ X2 s ••• . Hence K is the union Kt U K 2 u • •• and is deter-
mined by the Malcev condition as above.

Before discussing weak Malcev conditions we need a lemma.

LEMMA 3. The logical conjunction of a finite number of Malcev conditions
is a Malcev condition. Equivalently, the intersection of a finite number of ideals
of the type of proposition 2 again has this type.

PROOF. We need only prove this for the intersection of two such ideals K
and K'. But if K is generated by the elements [9JI,] e M and K' by the elements
[Wj]eM, then K nK' is generated by the elements [SOt,] v [2R;]eM.

Finally we come to weak Malcev conditions. These are logical conjunctions
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C = Ct A C 2 A •••

of a chain

of progressively stronger Malcev conditions.

However, given any countable logical conjunction

C = C[ A C2 A •••

of Malcev conditions, we can write it as

C = C , A C 2 A - , (d<=C 2 <=•••),
where Q = C[ A • • • A C'h which is a Malvec condition by the above lemma. Thus
any countable conjunction of Malcev conditions is a weak Malcev condition (and
vice versa), so

PROPOSITION 3. A subclass of L is defined by a weak Malcev condition if and
only if it is a countable intersection of ideals, each of which is generated by a
subset of M.

3. Closure theorems

As example applications of the viewpoint developed above, we derive two of
W. Taylor's closure theorems [3]. We must first recall a definition ([2] p. 6): a
set preserving functor F :^Bl -> 932 between varieties is a pure forgetful functor if
232 is generated as a variety by the image of F, that is, 93 2 = QSP(F%$j).

We now formulate W. Taylor's theorem 4.1, giving in round brackets the
formulation in our language.

THEOREM. A non-empty class K of varieties is definable by a [strong~]
Malcev condition if and only if it satisfies the following five conditions:
(i) K is closed under formation of equivalent varieties;
(ii) K is closed under formation of subvarieties;
(iii) K is closed under formation of [countable] respectively finite products of
varieties;
(iv) ifSQeK and 93 is generated by all reducts of members o/2B to the type of
of 93 then 9U e K (if 93 e K and 9B -> 93 is a pure forgetful functor then 2B e K);
(v) if the equations Z define a variety on K of type T, then there exist finite
subsets I o £ I , T0 ^ ^, such that Z o defines a variety in K of type T0 (if
93 eK then there exists a finitely presented variety tyRe K and a set preserving
functor 93 ->9K).

The equivalence of formulations is immediate from the fact that set preserving
functors are equationally defined and vice versa.
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PROOF OF THEOREM. Since trivially any morphism (set preserving functor)
F : 33i -* 332 of varieties splits (uniquely) as a pure forgetful functor

followed by an inclusion QSPiF^B^ ->332, conditions (i), (ii), and (iv) just
say that if 33! ->932 and 332e/C, then 23! eK. That is, K contains with any
variety also all larger varieties (in our order relation jg) and is hence in particular
closed under "Malcev indistinguishability". We thus lose nothing by working
modulo Malcev indistinguishability, that is in L, and considering K as a subclass
of L. Since product of varieties is meet in our lattice L, adding condition (iii) to
(i), (ii), and (iv) just says K defines an ideal in L. Condition (v) then says every
element of K is greater than an element of M n K, so K is generated by the subset
M O K of M and is thus defined by a Malcev condition by proposition 2. If K
is actually closed under countable meets (condition (iii) [3]) then, since M C\K
is countable, K is the principal ideal generated by the meet of the elements in
M C\K. This smallest element of K must be in M by condition (v), so K is denned
by a strong Malcev condition. The converse is trivial in both cases.

The second closure theorem is as follows (Theorem 4.2 of [3]):

THEOREM. A nonempty class K of varieties is definable by a \strong~\ Malcev
condition if and only if K satisfies conditions (i), (ii), (ii) of the previous theorem
and
(vi) if the equations Z define a variety 33 in K of type x, then there exists a
finite subset Z o c Z defining a variety in K of type x.

PROOF. Let us first investigate what (vi) means in our language. Let us first
assume the type x has n operations of each finite rank, where n is some large
infinite cardinal. This can be achieved without changing the variety 23 (up to
equivalence) by simply adding operations and simultaneously adding equations
which set the new operations equal to old operations of 33. The finite set Z o of
equations can only involve a finite subset T0 C T. SO the variety of type x defined
by Z o splits as a sum of varieties

an + g,
2ft of type T0 defined by Zo , and 5 of type a = x — x0 with no equations. We thus
have the weaker version of (vi):

(vii) if n is an infinite cardinal, 3 the variety with n operations of each rank
and with no laws, then for any 23 s K there exists for n sufficiently large a finitely
presented variety 2ft such that 2ft + ge .K and 33 £ 2R + g.
Now suppose 33 e K and 3B ->• 33 is any set preserving functor. We wish to show
2B £ K. By choosing n large enough we can embed 3B in % as a subvariety:
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Let
95 sOR + g

be given by (vii). Thirdly, since n is infinite, we have an equivalence of varieties

Now the functor 2B -* 93 yields an inclusion of varieties (the diagonal map)
3B ^ 23 + 2B, so using the above inclusion and equivalence we get

This gives 9B as a subvariety of a variety in K, hence 2B is in K by (ii).
Thus K contains with any variety also all larger (with respect to S; ) varieties.

As before, K is thus closed under Malcev indistinguishability and can thus be
considered as a subclass of L. It is then an ideal in L by condition (iii) (product
closure in {Y~ars)*, that is, closure under meets in L).

In condition (vii) we see that 9JI and 9Jt + g a r e Malcev indistinguishable
(since set preserving functors 9JI-+9R + g a n d 2R + 3f-+9ft certainly exist), so
(vii) says that each element of K is greater than some element of M C\K, so, as
before, K is generated by M n K [respectively, the meet of all elements of M r»K].

We now give the description of Walter Taylor's heirarchy [3] of subclasses
of "far1 in our language. The proofs of the equivalence of our description in
cases 4 and 5 are exactly like the proofs of the above two theorems and can be
filled in by the reader.

Denote by Mj the set of elements in L which are joins of elements in M,
that is, are representable by sums of finitely presented varieties. These joins and
sums can be assumed to be countable since M is countable. Let M2 be the set of
elements in L representable by countably presented varieties. Clearly Mj £ M2

Taylor's hierarchy is:

1). Classes defined by strong Malcev conditions, i.e. principal ideals in L gen-
erated by an element of M.

2). Classes defined by Malcev conditions, i.e. ideals in L generated by subsets
of M.
3). Classes defined by weak Malcev conditions, i.e. countable intersections of
ideals generated by subsets of M.
4). Ideals K in L generated by subsets of Mt and satisfying (*): a meet of a
family of elements of L is in K if the meet of every countable subfamily is in K.
5). Ideals in L generated by subsets of M2.

This description suggests several additions one could make to this heirarchy.
Most interesting seems to be the following addition between 3) and 4):
3^). Arbitrary intersections of ideals generated by subsets of M.
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That hierarchy 3) is contained in hierarchy 3J) is trivial. Now suppose a
class K is of hierarchy 3^), that is, K is an intersection of ideals of hierarchy 2).
Since each ideal of hierarchy 2) satisfies condition (*), their intersection K also
does. But K is certainly generated by a set of the joins of elements of M, that is,
by a subset of M t , so K is of hierarchy 4).

The above makes it very unlikely that hierarchies 3) and 4) coincide. In fact,
it seems probable that 3 )̂ lies strictly between 3) and 4). The non-equality of 3)
and 3 )̂ would imply that there are uncountably many different classes defined by
Malcev conditions (W. Taylor's problem 4.6), which seems not yet be known.

4. Appendix: Sum and product of varieties

The category fars is a full subcategory of the category far (see [2]) of
varieties allowing n-ary operations also for n countably infinite. Recall that sum
and product of varieties is used to mean categorical sum and product in the dual
category ("far*)*, which is a full subcategory of (far)*. The description of sum
and product in (far)* (see [2]) can easily be transferred to {far1)* as follows:

Given varieties 23f (i e /), each 23; defined by a set Ft of operations and a
set Z; of equational laws in these operations, the sum 23 in ('far)* of the 23( is
defined by taking the disjoint union of the sets Ft as set of operations and the
disjoint union of the Zf as the equations ([2]). Since, if the SB,- are finitary then
so is 23, this also describes sum in {far1)*.

Product causes trouble because an infinite (y^ar)*-product of finitary vari-
eties is no longer finitary. However, it is easily seen directly that the {far*)*-
product is just the reduct of the (T^ar)*-product to the set of all its finitary opera-
tions; that is, one takes the (^ar)*-product 23 (defined for instance via [2]) and
then if F is the set of all finitary algebraic operations of 23, and H the set of all
equations defined over F and valid in 23, then F and S together define
the (T^'ar/)*-product.

This can also be proved using K0-clones [2]. Recall that the variety of No-
clones is defined by one operation (• • •) of rank a> and a countable sequence of
nullary operations (constants) po,Pi, • •• satisfying the laws

Cl) (xplp2---) = x

C2) ( J W 2 - ) = Xj (i = 1,2, •••)

C 3 ) ((xy1y2---)zlz2---) = (x(ylzlz2 •••\y2zxz1 • • • ) • • • ) .

By [2], the variety (f of K0-clones is equivalent as a category to (far)*. This
equivalence _ .„ . „ ^

is defined by taking H(23) to be the set of co-ary algebraic operations of 23 and
defining pt to be the i-th coordinate operation and
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(right hand side is composition of operations).
Now by [2], {Y'ar1)* gets mapped to the subclass (£/ of £ consisting of all

K0-clones which satisfy

F) 3n(xptP2---pnPiPi--) = (xPlp2--pnPn+1--),

for every element x. In an arbitrary X0-clone H, the set of elements x satisfying F)
is a sub-clone Hf. It follows immediately that for a family of K0-clones Ht e G/,
the G/-product is just ( x cy, where x Ct is cartesian product (i.e. product in G).
Our claim about product in (far*)* follows then from the relationship between
{-Tar)* and £ .

For two varieties 931 (defined by a set F of operations and a set S i of equa-
tional laws) and 932 (defined by operations G and laws S 2 ) , the product 93 i x 332

can be defined by the disjoint union F u G u { • } of operations, where • is a
binary product, and the disjoint union S i U H2 u X of laws, where S is the
set of laws (fe F,geG):

x • x = x

(x • y)- z = x-(y z) = x • z

/ ( x j , ••• ,Xj • y h •••,xk) = f(xu ••• ,xk) , i > 1

= /(>'l.X2, "-.Xt)

-,yi-iJ(x1,--,xk),•••,yl) = flfC^.-.^-LX!,--,yt) , t > 1

= /(x1 ; • • • ,xk) • g(xu y2, — ,y,) , i = 1

This is maybe most easily seen by observing that the K0-clone of the variety
93 defined by F u B U { • } and the laws £ x u S 2 U S is in an obvious way
naturally isomorphic as a set to the cartesian product of the N0-clones of 93 x and
932 (namely, first extend all operations trivially to have rank co; then using the
equations, every rank co operation of V has form qt • q2 where qt is a term in
the operations F and the coordinate operations, and q2 in the operations G and
the coordinate operations; map this to the pair (qui2)eH(581) x //(932)). Check
that this is an K0-clone isomorphism.
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The above descriptions are probably well known; we have included them
for completeness. They show in particular that finite sum and product of finitely
presented varieties are finitely presented, a fact used in this paper.
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