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Abstract. In this paper we are concerned with a class of p(x)-Kirchhoff equation
where the non-linearity has non-standard growth and contains a bi-non-local term. We
prove, by using variational methods (Mountain Pass Theorem and Ekeland Variational
Principle), several results on the existence of positive solutions.

2000 Mathematics Subject Classification. 35J60; 35J70; 58E05.

1. Introduction. In this paper we investigate questions of existence of positive
solutions for the bi-non-local elliptic problem⎧⎨⎩−M

(∫
�

1
p(x)

|∇u|p(x)
)

�p(x)u = λ|u|q(x)−2u
[∫

�

1
q(x)

|u|q(x)
]r

in �

u = 0 on ∂�

, (1.1)

where � ⊂ IRN is a bounded smooth domain, λ, r > 0, are real parameters and M :
IR+ → IR+ is a continuous function, p, q ∈ C(�) are functions whose properties will
be given later and �p(x)u = div(|∇u|p(x)−2∇u) is the p(x)-Laplacian.

Problem (1.1) is a version of the non-local problem⎧⎨⎩−�u = λf (x, u)
[∫

�

F(x, u)
]r

in �

u = 0 on ∂�

, (1.2)

with F(t) =
∫ t

0
f (s)ds, where f : IR → IR is a given regular function.

Problems in the form (1.1) are associated with the energy functional

Jλ(u) = M̂
(∫

�

1
p(x)

|∇u|p(x)
)

− λ
1

r + 1

[∫
�

1
q(x)

|u|q(x)
]r+1

(1.3)
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for all u ∈ W 1,p(x)
0 (�), where W 1,p(x)

0 (�) is the generalised Lebesgue–Sobolev space
whose precise definition and properties will be established in Section 1 and M̂(t) =∫ t

0
M(s)ds.

Depending on the behaviour of the functions p, q, the above functional is
differentiable and its Fréchet-derivative is given by

J ′
λ(u)v = M

(∫
�

1
p(x)

|∇u|p(x)
) ∫

�

|∇u|p(x)−2∇u∇v − λ

[∫
�

1
q(x)

|u|q(x)
]r ∫

�

|u|q(x)−2uv

for all u, v ∈ W 1,p(x)
0 (�). So accordingly the definition that we give in the next section,

u ∈ W 1,p(x)
0 (�), is a weak solution of problem (1.1) if and only if u is a critical point of

Jλ.
Before giving preliminaries on the space W 1,p(x)

0 (�) and on the operator �p(x), we
give some motivation for the study of problems (1.1) and (1.2).

Indeed, problems like (1.2) have been previously studied by several authors. Let us
cite some of them.

Gomes and Sanchez [16] studied problem (1.2) by using a variational approach by
considering f with a sort of exponential growth and � as a ball of IRN . In this work,
the authors improve results contained in Bebernes and Lacey [3].

Bebernes and Talaga in [4] considered a particular case of (1.2), namely⎧⎨⎩−�u = δ
eu∫
�

eu
in �

u = 0 on ∂�

, (1.4)

with f (t) = F(t) = et, which is the stationary counterpart of the parabolic problem⎧⎪⎪⎨⎪⎪⎩
ut − �u = δ

eu∫
�

eu
in � × [0, T)

u(x, 0) = u0(x) in �

u(x, t) = 0 on ∂� × [0, T)

, (1.5)

which arises in the analytical investigation of phenomena associated with the
occurrence of shear bands in metals being deformed under high strain rates. See
also Burns ([5, 6]) and Olmstead et al. [20]. It also arises in the investigation of a fully
turbulent behaviour of a real flow and in the theory of gravitational equilibrium of
polytropic stars. See, for example, Caglioti et al. [7], and Krzywick and Nadzieja [17].

Other physical motivations for the problem (1.2) may be found in [8, 10, 15] and the
references therein. These works are related with problem (1.2), in which p is constant
and so its study is done in the usual Sobolev space. However, we are concerned with
problem (1.1) in which the p(x)-Laplace operator appears and the growth of non-
linearities are not standard, i.e. the exponent q(x) depends on x ∈ �.

This type of problem has interesting motivation from both physical and
mathematical point of view. Indeed, it appears in the so-called model of motion of
electrorheological fluids, characterized by their ability to change in a drastic way the
mechanical properties when influenced by an exterior electromagnetic field. In order
to emphasize the importance of this subject, we cite Mihailescu and Radulescu [18]:
The first major discovery on electrorheological fluids is due to Willis Winslow in 1949.
These fluids have the interesting property that their viscosity depends on the electric
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field in the fluid. He noticed that in such fluids (for instance lithium polymetachrylate)
viscosity in a electrical field is inversely proportional to the strength of the field. The
field induces string-like formations in the fluid, which are parallel to the field. They
can raise the viscosity by as much as five orders of magnitude. This phenomenon is
known as the Winslow effect. Electrorheological fluids has been used in robotic and
space technology. The experimental research has been done mainly in the USA, for
instance in NASA laboratories.

For more information on this subject, the reader may consult, for example, [18]
and the references therein.

Another application of such a kind of equation is related to image processing. See
[23] and the references therein.

Besides these practical applications, there is the mathematical aspect that involves
nontrivial questions of the generalized Lebesgue–Sobolev spaces and the p(x)-
Laplacian operator. In Section 2 we give a review of some concepts and results on
this subject necessary for the development of this work.

With respect to the Kirchhoff equation, most of the works treat problems like{−M
(‖u‖p

1,p

)
�pu = f (x, u) in �

u = 0 on ∂�
, (1.6)

where M is the original Kirchhoff term of the form M(t) = a + bt, t ≥ 0, a, b > 0 and
1 ≤ p < +∞ are real constants. In Alves et al. [2] and Corrêa and Figueiredo [9] other
M terms were considered.

We also cite [21] and [22], in which the authors study{−‖u‖2�u = μu3 in �,

u = 0 on ∂�

as an auxiliary problem where ‖u‖ = (
∫
�

|∇u|2)1/2 is the usual norm of H1
0 (�).

Note that in Equation (1.2) only the non-local term [
∫
�

F(x, u)]r appears, while in
Equation (1.6) the only non-local term is M(‖u‖p

1,p).
We should point out that the literature related to problems like (1.1), even for the

case of p ≡ 2, is limited. We cite, for instance, Agarwal et al. [1], in which the authors
focus their attention on the problem{−‖u‖p−q

1,q �qu = λ‖u‖p−r
r |u|r−2u in �

u = 0 on ∂�
,

where ‖u‖1,q = (
∫
�

|u|q)1/q is the usual norm in W 1,q
0 (�).

The novelty in this paper, at least to our knowledge, is to relate the bi-non-
local problem (1.1), with the variable exponent theory, which possesses a variational
structure. Using solely variational methods (Mountain Pass Theorem and Ekeland
Variational Principle), we establish several results by considering various classes of the
Kirchhoff term M and ranges determined by p, q, M, r and λ. We only consider the
subcritical case. The critical case will be attacked in a forthcoming paper.

This work is organized as follows: In Section 2 we establish some preliminary
results related to the generalized Lebesgue–Sobolev spaces and the p(x)-Laplacian. In
Section 3 we prove the existence results.
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2. Preliminary results. First of all we set

C+(�) = {
h; h ∈ C(�), h(x) > 1 for all x ∈ �

}
and for each h ∈ C+(�) we define

h+ = max
�

h(x) and h− = min
�

h(x).

We denote by M(�) the set of real measurable functions defined on �.
For each p ∈ C+(�), we define the generalized Lebesgue space by

Lp(x)(�) =
{

u ∈ M(�);
∫

�

|u(x)|p(x)dx < ∞
}

.

We consider Lp(x)(�) equipped with the Luxemburg norm,

|u|p(x) = inf

{
μ > 0;

∫
�

∣∣∣∣u(x)
μ

∣∣∣∣p(x)

dx ≤ 1

}
.

The generalized Lebesgue–Sobolev space W 1,p(x)(�) is defined by

W 1,p(x)(�) =
{

u ∈ Lp(x)(�); |∇u| ∈ Lp(x)(�)
}

with the norm

‖u‖1,p(x) = |u|p(x) + |∇u|p(x).

We define W 1,p(x)
0 (�) as being the closure of C∞

c (�) in W 1,p(x)(�) with respect to the
norm ‖u‖1,p(x). According to Fan and Zhao [13], the spaces Lp(x)(�), W 1,p(x)(�) and
W 1,p(x)

0 (�) are separable and reflexive Banach spaces. Furthermore, if the Lebesgue
measure of � is finite, p1, p2 ∈ C(�) and p1(x) ≤ p2(x), for all x ∈ �, then we have the
continuous embedding Lp2(x)(�) ↪→ Lp1(x)(�).

The proof of the following propositions may be found in [11–13].

PROPOSITION 2.1. Suppose that � is a bounded smooth domain in IRN and p ∈ C(�)
with p(x) < N for all x ∈ �. If p1 ∈ C(�) and 1 ≤ p1(x) ≤ p∗(x) (1 ≤ p1(x) < p∗(x)) for
x ∈ �, then there is a continuous (compact) embedding W 1,p(x)(�) ↪→ Lp1(x)(�), where

p∗(x) = Np(x)
N − p(x)

.

PROPOSITION 2.2. Set ρ(u) =
∫

�

|u(x)|p(x)dx. For all u ∈ Lp(x)(�), we have:

(1) For u �= 0, |u|p(x) = λ ⇔ ρ
( u

λ

) = 1.
(2) |u|p(x) < 1 (= 1; > 1) ⇔ ρ(u) < 1 (= 1; > 1).
(3) If |u|p(x) > 1, then |u|p−

p(x) ≤ ρ(u) ≤ |u|p+
p(x).

(4) If |u|p(x) < 1, then |u|p+
p(x) ≤ ρ(u) ≤ |u|p−

p(x).
(5) lim

k→+∞
|uk|p(x) = 0 ⇔ lim

k→+∞
ρ(uk) = 0.

(6) lim
k→+∞

|uk|p(x) = +∞ ⇔ lim
k→+∞

ρ(uk) = +∞.
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PROPOSITION 2.3 (Poincaré Inequality). If u ∈ W 1,p(x)
0 (�), then

|u|p(x) ≤ C|∇u|p(x),

where C is a constant that does not depend on u.

Note that, in view of Poincaré inequality, the norms ‖ · ‖1,p(x) and ‖u‖ = |∇u|p(x)

are equivalent in W 1,p(x)
0 (�). From now on we work on W 1,p(x)

0 (�) with the norm
‖u‖ = |∇u|p(x).

We denote by Lp ′(x)(�) the conjugate space of Lp(x)(�), where

1
p(x)

+ 1
p ′(x)

= 1, for all x ∈ �.

PROPOSITION 2.4 (Hölder Inequality). If u ∈ Lp(x)(�) and v ∈ Lp ′(x)(�), then∣∣∣∣∫
�

uvdx
∣∣∣∣ ≤

(
1

p− + 1
p ′−

)
|u|p(x)|v|p ′(x).

In what follows, we consider the problem⎧⎨⎩−M
(∫

�

1
p(x)

|∇u|p(x)
)

�p(x)u = λ(u+)q(x)−1

[∫
�

1
q(x)

(u+)q(x)
]r

in �,

u = 0 on ∂�

(2.7)

because we are interesting in finding positive solutions. Note that possible solutions of
(2.7) are positive solutions of (1.1). See Fan et al. [14] and Zhang [24].

We say that u ∈ W 1,p(x)
0 (�) is a weak solution of the problem (2.7) if

M
(∫

�

1
p(x)

|∇u|p(x)
) ∫

�

|∇u|p(x)−2∇u∇v = λ

[∫
�

1
q(x)

(u+)q(x)
]r ∫

�

(u+)q(x)−1v ,

∀v ∈ W 1,p(x)
0 (�).

We define M̃,B by

M̃(u) = M
(∫

�

1
p(x)

|∇u|p(x)
)

and

B(u) =
[∫

�

1
q(x)

|u|q(x)
]r

and the mappings T, G, Lp(x), N : W 1,p(x)
0 (�) → (W 1,p(x)

0 (�))∗ by

T(u) = M̃(u)
∫

�

|∇u|p(x)−2∇u∇v, ∀u, v ∈ W 1,p(x)
0 (�),

G(u)v = λB(u)
∫

�

|u|q(x)−2uv, ∀u, v ∈ W 1,p(x)
0 (�),
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Lp(x)(u)v =
∫

�

|∇u|p(x)−2∇u∇v, ∀u, v ∈ W 1,p(x)
0 (�),

and

N(u)v =
∫

�

|u|q(x)−2uv, ∀u, v ∈ W 1,p(x)
0 (�).

So T(u) = M̃(u)Lp(x)(u) and G(u) = λB(u)N(u) for all u ∈ W 1,p(x)
0 (�).

THEOREM 2.1 (Fan–Zhang [12]).
(i) Lp(x) : W 1,p(x)

0 (�) → (W 1,p(x)
0 (�))∗ is a continuous, bounded and strictly

monotone operator;
(ii) Lp(x) is a mapping of type S+, i.e. if un ⇀ u in W 1,p(x)

0 (�) and lim sup(Lp(x)(un) −
Lp(x)(u), un − u) ≤ 0, then un → u in W 1,p(x)

0 (�);
(iii) Lp(x) : W 1,p(x)

0 (�) → (W 1,p(x)
0 (�))∗ is a homeomorphism.

It is a standard matter to show that the functional Jλ, described in the Introduction,
is of class C1(W 1,p(x)

0 (�), IR) and

J ′
λ(u)v = M̃(u)

∫
�

|∇u|p(x)−2∇u∇vdx − λ

[∫
�

1
q(x)

(u+)q(x)
]r ∫

�

(u+)q(x)−1vdx,

for all u, v ∈ W 1,p(x)
0 (�).

3. Main results. This section will be devoted to the proof of the main existing
results. Three classes of functions M will be considered and the Mountain Pass
Theorem and the Ekeland Variational Principle will be used.

THEOREM 3.1.
(i) Suppose that 1 < p(x) < N with 1 < q(x) < p∗(x) = Np(x)

N−p(x) for all x ∈ �. In
addition, assume that exist 0 < m0 and m1 such that m0 ≤ M(t) ≤ m1, with
m1p+

m0
<

(q−)r+1(r + 1)
(q+)r

and q−(r + 1) > p+. Then problem (1.1) possesses a

weak solution for all λ > 0.
(ii) Suppose that 1 < p(x) < N with 1 < q(x) < p∗(x) = Np(x)

N−p(x) for all x ∈ �. In
addition, assume that exist 0 < m0 and m1 such that m0 ≤ M(t) ≤ m1 . If q−(r +
1) < p−, there is λ∗ > 0 such that problem (1.1) possesses a positive solution uλ

for each λ ∈ (0, λ∗).
(iii) Suppose that 1 < p(x) < N with 1 < q(x) < p∗(x) = Np(x)

N−p(x) for all x ∈ �.
In addition, assume M(t) = a + bt, where a > 0, b > 0 and t ≥ 0. If

max
{

p+,
2(p+)2

(p−)2

}
<

(r + 1)(q−)r+1

(q+)r
and q−(r + 1) > 2p+, then problem (1.1)

possesses a weak positive solution for all λ > 0.
(iv) Suppose that 1 < p(x) < N with 1 < q(x) < p∗(x) = Np(x)

N−p(x) for all x ∈ � and
M(t) as in (iii). If q−(r + 1) < p−, there is λ∗ > 0 such that problem (1.1)
possesses a positive solution uλ for each λ ∈ (0, λ∗).
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(v) Suppose that 1 < p(x) < N with 1 < q(x) < p∗(x) = Np(x)
N−p(x) for all x ∈ �. Let

M(t) = tα−1 be such that
α(p+)α

(q−)α−1
<

(q−)r+1(r + 1)
(q+)r

and q−(r + 1) > αp+ ≥
αp− > 1. Then problem (1.1) possesses a weak positive solution for all λ > 0.

(vi) Suppose that 1 < p(x) < N with 1 < q(x) < p∗(x) = Np(x)
N−p(x) for all x ∈ �. Let

M(t) = tα−1. If q−(r + 1) < αp−, there is λ∗ > 0 such that problem (1.1)
possesses a positive solution uλ for each λ ∈ (0, λ∗).

Proof. (i) Let us use the Mountain Pass Theorem. Recalling that

Jλ(u) = M̂
(∫

�

1
p(x)

|∇u|p(x)dx
)

− λ

r + 1

[∫
�

1
q(x)

(u+)q(x)dx
]r+1

for all λ > 0, we have

Jλ(u) ≥ m0

p+

∫
�

|∇u|p(x)dx − λ

(r + 1)(q−)r+1

[∫
�

|u|q(x)
]r+1

.

We now observe that taking ‖u‖ < 1, we obtain
∫

�

|∇u|p(x)dx ≥ ‖u‖p+
, which implies

Jλ(u) ≥ m0

p+ ‖u‖p+ − λ

(r + 1)(q−)r+1

[∫
�

|u|q(x)
]r+1

.

Using the Sobolev embedding W 1,p(x)
0 (�) ↪→ Lq(x)(�), one has

|u|q(x) ≤ C‖u‖ = Cρ < 1

if ρ = ‖u‖ is small enough. By Proposition 2.2,∫
�

|u|q(x)dx ≤ |u|q−
q(x)

and so (∫
�

|u|q(x)dx
)r+1

≤ |u|q−(r+1)
q(x) .

Thus,

Jλ(u) ≥ m0

p+ ‖u‖p+ − λ

(r + 1)(q−)r+1
(C‖u‖)q−(r+1)

and taking ‖u‖ = ρ

Jλ(u) ≥ m0

p+ ρp+ − λ

(r + 1)(q−)r+1
Cρq−(r+1),

which implies

Jλ(u) ≥ ρp+
[

m0

p+ − λC
(r + 1)(q−)r+1

ρq−(r+1)−p+
]

.
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Since q−(r + 1) > p+, we find positive numbers a, ρ such that

Jλ(u) ≥ a > 0 if ‖u‖ = ρ and for all λ > 0.

We now take 0 < ω ∈ W 1,p(x)
0 (�) and estimate

Jλ(tω) = M̂
(∫

�

1
p(x)

|∇tω|p(x)dx
)

− λ

r + 1

[∫
�

1
q(x)

|tω|q(x)dx
]r+1

.

For t > 1, one has tp(x) ≤ tp+
and tq− ≤ tq(x) and so

Jλ(tω) ≤ m1tp+

p−

∫
�

|∇ω|p(x)dx − λ

(r + 1)
tq−(r+1)

(q+)r+1

[∫
�

ωq(x)dx
]r+1

.

Using the fact that q−(r + 1) > p+, we obtain Jλ(tω) → −∞ as t → +∞.
Consequently, Jλ satisfies the geometry of the Mountain Pass Theorem.

Now to complete the result (i), we show that Jλ satisfies the Palais–Smale condition
(or (PS) for short). This means that all sequence (un) ⊂ W 1,p(x)

0 (�) such that

Jλ(un) → Cλ and J ′
λ(un) → 0 (3.8)

contains a convergent subsequence in the norm of W 1,p(x)
0 (�).

Let (un) ⊂ W 1,p(x)
0 (�) be a sequence satisfying condition (3.8). Thus, taking

m1p+

m0
< θ <

(q−)r+1(r + 1)
(q+)r

,

C + ‖un‖ ≥ Jλ(un) − 1
θ

J ′
λ(un)un

≥
(

m0

p+ − m1

θ

) ∫
�

|∇un|p(x)

+ λ

(
1

θ (q+)r
− 1

(q−)r+1(r + 1)

) [∫
�

|un|q(x)
]r+1

.

If (un) is unbounded in W 1,p(x)
0 (�), we may suppose, passing to a subsequence if

necessary, that ‖un‖ > 1 and, in view of the previous inequalities,

C + ‖un‖ ≥
(

m0

p+ − m1

θ

)
‖un‖p−

,

which is an absurd because p− > 1. Hence, (un) is bounded in W 1,p(x)
0 (�). Thus, there

exists a subsequence, still denoted by (un), such that un ⇀ u in W 1,p(x)
0 (�).

From

J ′
λ(un) → 0,

we have

J ′
λ(un)(un − u) = M̃(un)

∫
�

|∇un|p(x)−2∇un∇(un − u) − G(un)(un − u) → 0. (3.9)
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By Hölder inequality we obtain∣∣∣∣∫
�

|un|q(x)−2un(un − u)dx
∣∣∣∣ ≤

∫
�

|un|q(x)−1|(un − u)|dx ≤ C|u|q(x)/q(x)−1|un − u|q(x).

Since q(x) < p∗(x) for all x ∈ �̄, we deduce that W 1,p(x)
0 (�) is compactly embedded in

Lq(x)(�), hence (un) converges strongly to u in Lq(x)(�). Then N(un)(un − u) → 0.
On the other hand, there exist positive constants c1 and c2 such that

c1 ≤
∫

�

1
q(x)

|∇un|q(x) ≤ c2.

So we have G(un)(un − u) → 0.

From (3.9) we obtain

Lp(x)(un)(un − u) =
∫

�

|∇un|p(x)−2∇un∇(un − u) → 0,

since there exists positive constants c3 and c3 such that c3 ≤ M̃(un) ≤ c4. We also have

Lp(x)(u)(un − u) =
∫

�

|∇u|p(x)−2∇u∇(un − u) → 0.

Consequently,

(Lp(x)(un) − Lp(x)(u), un − u) → 0.

From Theorem 2.1, we have un → u in W 1,p(x)
0 (�) and the proof of (i) is over.

(ii) We will use the Ekeland Variational Principle following the ideas contained in
Mihailescu and Radulescu [19]. Reasoning as before, we obtain

Jλ(u) ≥ m0

p+

∫
�

|∇u|p(x)dx − λ

(r + 1)(q−)r+1

[∫
�

|u|q(x)
]r+1

,

and so for ‖u‖ = ρ sufficiently small

Jλ(u) ≥ ρq−(r+1)

[
m0ρ

p+−q−(r+1)

p+ − λC
(r + 1)(q−)r+1

]
≥ a > 0 if 0 < λ < λ∗

for some λ∗ > 0. Thus, for all λ ∈ (0, λ∗), we have

inf
∂Bρ (0)

Jλ > 0.

Note that in this item the parameter λ plays a crucial role.
Now let ε0 > 0 be such that q−(r + 1) + ε0(r + 1) < p−. Because q ∈ C(�), it

follows that there exists an open set �0 ⊂ � such that |q(x) − q−| < ε0 for all x ∈ �0.
Thus, we conclude that q(x)(r + 1) ≤ q−(r + 1) + ε0(r + 1) < p− for all x ∈ �0.

Let φ ∈ C∞
0 (�) be such that suppφ ⊃ �0, φ(x) = 1 for all x ∈ �0 and 0 ≤ φ ≤ 1

in �. For t sufficiently small, t ∈ (0, 1), we have that tφ ∈ Bρ(0), where Bρ(0) is the ball
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centred at the origin and of radius ρ in W 1,p(x)
0 (�), and

Jλ(tφ) ≤ m1tp−

p−

∫
�

|∇φ|p(x)dx − λ

(r + 1)
1

(q+)r+1

[∫
�

|tφ|q(x)dx
]r+1

≤ m1tp−

p−

∫
�

|∇φ|p(x)dx − λ

(r + 1)
tq−(r+1)+ε0(r+1)

(q+)r+1

[∫
�0

|φ|q(x)dx
]r+1

.

Therefore, in view of
∫

�

|∇φ|p(x)dx > 0, we get

Jλ(tφ) < 0.

Since for all u ∈ Bρ(0) we get

Jλ(u) ≥ m0

p+ ‖u‖p+ − λC
r + 1

1
(q−)r+1

‖u‖q−(r+1),

it follows that

−∞ < c := inf
Bρ (0)

Jλ < 0.

We now let 0 < ε < inf
∂Bρ (0)

Jλ − inf
Bρ (0)

Jλ. Applying Ekeland’s Variational Principle to the

functional Jλ : Bρ(0) → IR, we find uε ∈ Bρ(0) such that

Jλ(uε) < inf
Bρ (0)

Jλ + ε and Jλ(uε) < Jλ(u) + ε‖u − uε‖, u �= uε .

Reasoning as in Mihailescu and Radulescu [19], we obtain (wn) ⊂ Bρ(0) such that

Jλ(wn) → c and J ′
λ(wn) → 0.

Since q(x) < p∗(x) and Jλ satisfy the (PS) condition, we have a subsequence,
denoted still by wn, and an element w ∈ W 1,p

0 (�) such that wn → w, Jλ(w) = c < 0 and
J ′

λ(w) = 0, and thus we conclude that w is a nontrivial weak solution for problem (1.1).

(iii) Note that

Jλ(u)=a
(∫

�

1
p(x)

|∇u|p(x)dx
)

+b
2

(∫
�

1
p(x)

|∇u|p(x)dx
)2

− λ

r + 1

[∫
�

1
q(x)

(u+)q(x)dx
]r+1

for all λ > 0 and

Jλ(u) ≥ a
p+

∫
�

|∇u|p(x)dx + b
2(p+)2

(∫
�

|∇u|p(x)dx
)2

− λ

(r + 1)(q−)r+1

[∫
�

|u|q(x)
]r+1

.

We now observe that taking ‖u‖ < 1,

Jλ(u) ≥ a
p+ ‖u‖p+ + b

2(p+)2
‖u‖2p+ − λ

(r + 1)(q−)r+1

[∫
�

|u|q(x)
]r+1

.
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Thus,

Jλ(u) ≥ a
p+ ‖u‖p+ + b

2(p+)2
‖u‖2p+ − λ

(r + 1)(q−)r+1
(C‖u‖)q−(r+1).

Since q−(r + 1) > 2p+, we find positive numbers δ, ρ such that

Jλ(u) ≥ δ > 0 if ‖u‖ = ρ and for all λ > 0.

Using arguments as in (i), we find 0 < ω ∈ W 1,p(x)
0 (�) such that Jλ(tω) → −∞ as

t → +∞. Consequently, Jλ satisfies the geometry of the Mountain Pass Theorem.
It rests to show that Jλ enjoys the (PS) condition.
Let (un) ⊂ W 1,p(x)

0 (�) be a sequence such that

Jλ(un) → Cλ and J ′
λ(un) → 0.

Thus, taking

max
{

p+,
2(p+)2

(p−)2

}
< θ <

(r + 1)(q−)r+1

(q+)r
,

we have

C + ‖un‖ ≥ Jλ(un) − 1
θ

J ′
λunun

≥ a
(∫

�

1
p(x)

|∇un|p(x)
)

+ b
2

(∫
�

1
p(x)

|∇un|p(x)
)2

− λ

r + 1

[∫
�

1
q(x)

|u|q(x)
]r+1

− a
θ

(∫
�

|∇un|p(x)
)

−b
θ

(∫
�

1
p(x)

|∇un|p(x)
)2

+ λ

θ (q+)r

[∫
�

|u|q(x)
]r+1

≥
(

a
p+ − a

θ

) (∫
�

|∇un|p(x)
)

+
(

b
2(p+)2

− b
θ (p−)2

) (∫
�

|∇un|p(x)
)2

+λ

(
1

θ (q+)r
− 1

(r + 1)(q−)r+1

) [∫
�

|u|q(x)
]r+1

.

Now suppose that (un) is unbounded in W 1,p(x)
0 (�). Thus, passing to a subsequence

if necessary, we get ‖un‖ > 1 and

C + ‖un‖ ≥
(

a
p+ − a

θ

)
‖un‖p+ +

(
b

2(p+)2
− b

θ (p−)2

)
‖un‖2p+

,

which is an absurd because p+ > 1. Hence, (un) is bounded in W 1,p(x)
0 (�). Thus, there

exists a subsequence, still denoted by un, such that un ⇀ u in W 1,p(x)
0 (�).

From

J ′
λ(un) → 0,
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we have

J ′
λ(un)(un − u) =

(
a + b

∫
�

1
p(x)

|∇un|p(x)dx
)

Lp(x)un(un − u) − G(un)(un − u) → 0.

Reasoning as in the proof of (i), we obtain G(un)(un − u) → 0, positive constants c3

and c4 such that c3 ≤
∫

�

1
p(x)

|∇un|p(x) ≤ c4 and

Lp(x)(un)(un − u) =
∫

�

|∇un|p(x)−2∇un∇(un − u) → 0.

We also have

Lp(x)(u)(un − u) =
∫

�

|∇u|p(x)−2∇u∇(un − u) → 0.

Consequently,

(Lp(x)(un) − Lp(x)(u), un − u) → 0.

From Theorem 2.1 we have un → u in W 1,p(x)
0 (�), and the proof of (iii) is over.

(iv) Reasoning as before, we obtain with ‖u‖ < 1

Jλ(u) ≥ a
p+ ‖u‖p+ + b

2(p+)2
‖u‖2p+ − λ

(r + 1)(q−)r+1
(C‖u‖)q−(r+1)

and so for ‖u‖ = ρ sufficiently small

Jλ(u) ≥ δ > 0 if 0 < λ < λ∗.

We can take λ∗ = 1
3

min

{
(r + 1)(q−)r+1a(ρ)p+−q−(r+1)

Cp+ ,
(r + 1)(q−)r+1b(ρ)2p+−q−(r+1)

2C(p+)2

}
.

Thus, for all λ ∈ (0, λ∗), we have

inf
∂Bρ (0)

Jλ > 0.

Following (ii) for t sufficiently small, t ∈ (0, 1), we have that tφ ∈ Bρ(0) such that

Jλ(tφ) ≤ atp−

p−

∫
�

|∇φ|p(x)dx + bt2p−

2(p−)2

∫
�

|∇φ|p(x)dx− λ

(r + 1)
1

(q+)r+1

[∫
�

|tφ|q(x)dx
]r+1

≤ atp−

p−

∫
�

|∇φ|p(x)dx + bt2p−

2(p−)2

∫
�

|∇φ|p(x)dx − λ

(r + 1)
tq−(r+1)+ε0(r+1)

(q+)r+1

[∫
�0

|φ|q(x)dx
]r+1

.

Therefore, in view of
∫

�

|∇φ|p(x)dx > 0, we get

Jλ(tφ) < 0.
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Since, for all u ∈ Bρ(0) we get,

Jλ(u) ≥ a
p+ ‖u‖p+ + b

2(p+)2
‖u‖2p+ − λC

r + 1
1

(q−)r+1
‖u‖q−(r+1),

it follows that

−∞ < c := inf
Bρ (0)

Jλ < 0.

Applying Ekeland’s Variational Principle to the functional Jλ : Bρ(0) → IR, and
reasoning as Mihailescu and Radulescu [19], we have (wn) ⊂ Bρ(0) such that

Jλ(wn) → c and J ′
λ(wn) → 0.

Thus, we conclude that w is a nontrivial weak solution for problem (1.1).

(v) We will use the Mountain Pass Theorem. Recalling that

Jλ(u) = 1
α

(∫
�

1
p(x)

|∇u|p(x)dx
)α

− λ

r + 1

[∫
�

1
q(x)

(u+)q(x)dx
]r+1

for all λ > 0, we have

Jλ(u) ≥ 1
α(p+)α

(∫
�

|∇u|p(x)dx
)α

− λ

(r + 1)(q−)r+1

[∫
�

|u|q(x)
]r+1

.

Following (i) and taking ‖u‖ = ρ, we have

Jλ(u) ≥ 1
αp+ ραp+ − λ

(r + 1)(q−)r+1
Cρq−(r+1),

which implies

Jλ(u) ≥ ραp+
[

1
αp+ − λC

(r + 1)(q−)r+1
ρq−(r+1)−αp+

]
.

Since q−(r + 1) > αp+, we find positive numbers a, ρ such that

Jλ(u) ≥ a > 0 if ‖u‖ = ρ and for all λ > 0.

By the same arguments, corresponding to (i) we take 0 < ω ∈ W 1,p(x)
0 (�) and using

the fact that q−(r + 1) > αp+, we obtain Jλ(tω) → −∞ as t → +∞. Consequently, Jλ

satisfies the geometry of the Mountain Pass Theorem.
Note that Jλ enjoys the (PS) condition. Let (un) ⊂ W 1,p(x)

0 (�) be a sequence such
that

Jλ(un) → Cλ and J ′
λ(un) → 0.

Thus, taking
α(p+)α

(q−)α−1
< θ <

(q−)r+1(r + 1)
(q+)r
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C + ‖un‖ ≥ Jλ(un) − 1
θ

J ′
λ(un)un

≥
(

1
α(p−)α

− 1
θ (q−)α−1

) (∫
�

|∇un|p(x)
)α

+ λ

(
1

θ (q+)r
− 1

(q−)r+1(r + 1)

) [∫
�

|un|q(x)
]r+1

.

Now suppose that (un) is unbounded in W 1,p(x)
0 (�). Thus, passing to a subsequence

if necessary, we get ‖un‖ > 1 and

C + ‖un‖ ≥
(

1
α(p−)α

− 1
θ (q−)α−1

)
‖un‖αp−

,

which is an absurd because αp− > 1. Hence, (un) is bounded in W 1,p(x)
0 (�). Thus, there

exists a subsequence, still denoted by un, such that un ⇀ u in W 1,p(x)
0 (�).

From

J ′
λ(un) → 0,

we have

J ′
λ(un)(un − u) =

(∫
�

1
p(x)

|∇un|p(x)dx
)α−1

Lp(x)un(un − u) − G(un)(un − u) → 0.

Doing an argument similar to that used in the proof of (i), we obtain G(un)(un − u) → 0,

positive constants c3 e c4 such that c3 ≤
∫

�

1
p(x)

|∇un|p(x) ≤ c4 and

Lp(x)(un)(un − u) =
∫

�

|∇un|p(x)−2∇un∇(un − u) → 0.

We also have

Lp(x)(u)(un − u) =
∫

�

|∇u|p(x)−2∇u∇(un − u) → 0.

Consequently,

(Lp(x)(un) − Lp(x)(u), un − u) → 0.

From Theorem 2.1 we have un → u em W 1,p(x)
0 (�) and the proof of (v) is over.

(vi) Following (ii) we obtain, for ‖u‖ < 1,

Jλ(u) ≥ 1
α(p+)α

‖u‖αp+ − λ

(r + 1)(q−)r+1
(C‖u‖)q−(r+1)
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and so for ‖u‖ = ρ sufficiently small

Jλ(u) ≥ δ > 0 if 0 < λ < λ∗

for some λ∗ > 0. Thus, for all λ ∈ (0, λ∗) we have

inf
∂Bρ (0)

Jλ > 0.

By the same arguments, corresponding to (ii) for t sufficiently small, t ∈ (0, 1), we
have tφ ∈ Bρ(0) such that

Jλ(tφ) ≤ tαp−

α(p−)α

∫
�

|∇φ|p(x)dx − λ

(r + 1)
1

(q+)r+1

[∫
�

|tφ|q(x)dx
]r+1

≤ tαp−

α(p−)α

∫
�

|∇φ|p(x)dx − λ

(r + 1)
tq−(r+1)+ε0(r+1)

(q+)r+1

[∫
�0

|φ|q(x)dx
]r+1

.

Therefore, in view of
∫

�

|∇φ|p(x)dx > 0, we get

Jλ(tφ) < 0.

Since, for all u ∈ Bρ(0) we get

Jλ(u) ≥ 1
α(p+)α

‖u‖αp+ − λ

(r + 1)(q−)r+1
(C‖u‖)q−(r+1),

it follows that

−∞ < c := inf
Bρ (0)

Jλ < 0.

Applying Ekeland’s Variational Principle to the functional Jλ : Bρ(0) → IR, and
reasoning as Mihailescu and Radulescu [19], we have (wn) ⊂ Bρ(0) such that

Jλ(wn) → c and J ′
λ(wn) → 0.

Consequently w is a nontrivial weak solution for problem (1.1).

REMARK. We present below Table 1 summarizing our results.
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Table 1. Results

M(t) Hypotheses MPTa EVPb

m0 ≤ M(t) ≤ m1
m1p+

m0
<

(q−)r+1(r + 1)
(q+)r Yes Not used

and q−(r + 1) > p+ for all λ > 0
m0 ≤ M(t) ≤ m1 q−(r + 1) < p− No Yes for λ ∈ (0, λ∗)

M(t) = a + bt max

{
p+,

2(p+)2

(p−)2

}
<

(r + 1)(q−)r+1

(q+)r Yes Not used

and q−(r + 1) > 2p+ for all λ > 0
M(t) = a + bt q−(r + 1) < p− No Yes for λ ∈ (0, λ∗)

M(t) = tα−1 α(p+)α

(q−)α−1
<

(q−)r+1(r + 1)
(q+)r Yes Not used

and q−(r + 1) > p+ for all λ > 0
M(t) = tα−1 q−(r + 1) < αp− No Yes for λ ∈ (0, λ∗)

aMPT: Existence of solution via The Mountain Pass Theorem.
bEVP: Existence of solution via Ekeland’s Variational Principle.
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