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Abstract

A parallel algorithm is developed for the numerical solution of the diffusion equation
u, = u,,, 0 < * < X, 0 < / < 7\ subject to u(x, 0) = / ( * ) , ux(X, t) = g(t) and the
specification of mass fa u(x,t)dx = M(t), 0 < b < X.

1. Introduction

It is known [2] that because certain chemicals absorb light at various frequencies,
the intensity of such light on a photoelectric cell gives an electric signal which is
proportional to the total amount of chemical present in the volume through which the
light passes. Suppose u(x, t) denotes the concentration of such a chemical which is
diffusing in a straight tube with x measured in the direction of the axis of the tube.
Then the electric signal produced by a light beam passing through the tube at right
angles between x = 0 and x = b is proportional to f0 u(x, t)dx. This integral
represents the total mass of the chemical in 0 < x < b at time t.

This paper considers the problem of obtaining numerical approximations to the
concentration u = u(x, t) which satisfies the partial differential equation (PDE)

subject to a Neumann time-dependent boundary condition on the boundary 3fi of the
open-region £2 defined by the lines x = 0, x = X given by

1 Faculty of Information Technology, University Telekom, 75450 Melaka, Malaysia.
© Australian Mathematical Society, 1999, Serial-fee code 0334-2700/99

475

https://doi.org/10.1017/S0334270000010560 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010560


476 A. B. Gumel [2]

and the specification of mass

rb

f
Jo

u(x, t) dx = MO), 0<b<X, (3)
Jo

with initial conditions

u(x,0)=f(x), 0<x<X, (4)

where / , g and M are known functions and are assumed to be sufficiently smooth to
produce a smooth classical solution of u. The existence and uniqueness properties
of the solution of this problem are detailed in [1]. A number of sequential numerical
procedures have been suggested in the literature for the solution of this problem; see,
for instance, [2, 3].

In the present paper, the method of lines semi-discretization approach will be used
to transform the model PDE into a system of first-order, linear, ordinary differen-
tial equations (ODEs), the solution of which satisfies a certain recurrence relation
involving matrix exponential terms. A suitable rational approximant will be used
to approximate such exponentials leading to an L0-stable algorithm which may be
parallelized through a partial-fraction splitting technique. These L0-stable schemes,
unlike A0-stable schemes, are known to be suitable for use in integrating PDEs with
time-dependent boundary conditions in which discontinuities between initial condi-
tions and boundary conditions (such as the test problems to be considered in this
paper) exist [4, 10, 11].

2. Discretization and recurrence relation

The interval 0 < x < X is divided into N + I subintervals each of width h, so that
(N + \)h = X and the time variable t is discretized in steps of length I. Thus at each
time level t = tn = n£ (n = 0, 1, 2 . . . ), the open region Q = [0 < x < X] x [t > 0]
and its boundary 9 £2 consisting of the lines x = 0 and x = X and the axis t = 0 have
been superimposed by a rectangular mesh with TV points within £2 and one point along
each side of 3 £2.

The solution u(x, t) of (1) is sought at each point (kh, nt) in £1 x [t > 0], where
k = 1,2,... ,N and n = 0, 1, 2 — The solution of an approximating numerical
method will be denoted by U(x, t). The space derivatives in (1) and (2) will be
replaced by their second-order central-difference approximants given by

- ^ = h-2[u(x - h), t) - 2u(x, t) + u(x + h, t)] + O(h2) as h -* 0 (5)
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du u(x + h,t)- u(x - h, t)
+ O(h2) as h -»• 0, respectively.
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(6)
3.x 2h

3. Treatment of the non-local boundary condition

The integral in (3) may be approximated using a quadrature rule such as Simpson's
rule to give

Jo

h*
—

'=' I=1

O(hA),

in which h* = b/J. Thus, the boundary conditions «(1, t) and M(0, t) may then be
determined using (2) with (6) and (3) with (7) respectively.

Applying (1) to all the interior mesh points within £2 at time level tn = nl, with the
space derivative replaced by (5), leads to a system of N first-order, linear, ordinary
differential equations of the form

dV(t)
dt = AU(0 + f(t), t > 0, U(0) = f, (8)

in which the matrix A is of order Af and is given by

A = J.-2

oti a2 cc3

1 - 2 1
OCj 0 \

(9)

where at = —6, a2 = — 1 and a, =

1 - 2 1
2 - 2 /

- 4 for i = 3(2)7 - 1

- 2 for / = 4(2)7 - 2

- 1 fori = 7.
In (8), the vector fit) arises from the use of the boundary conditions H(0, t) and
«( l ,0 in (5).

Solving the system of ODEs (8) subject to the initial condition U(0) = f, gives [11,
p. 136],

U(0 = exp(M)f + f exp[(r - s)A]fis) ds, t > 0, (10)

which satisfies the recurrence relation

U(r + t) = exp(£A)U(0 + / exp[(f + 1 - s)A]fis)ds, t = 0,1,21
1 (11)
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4. The parallel algorithm

The integral in (11) may be approximated by a quadrature formula of the form
t

exp[(f + £ — k)A]xfr(k) dk % W\\jf(k\) + W2t//(k2), ki ^ k2, (12)i
in which the weights Wj = Wt(£A) and W2 = W2(M). Following Lawson [7]
and Swayne [9], the vector yj/(k) in (12) is successively given the values \[r(k) =
[ 1 , 1 , - . . , 1] and T/^(/:) = [k,k, ..., k]' (with T denoting transpose) to give

in which 0! = Gi(€A) = A"1 exp(*A)-A-' and Q2 = Q2{tA) = A~l[-(
f exp(£A) — A"1 + A"1 exp(£A)], where / is the identity matrix of order N. Solving
(13) for distinct abscissae k\ and k2 gives

„, k2Ql-Q2 k1Q1-Q2Wi = — — and W2 = — — . (14)
k2 — k\ k\ — k2

Substituting (13) and (14) into (12) and using kx = t and k2 = t + I leads to the
recurrence relation

A-1 - A"1 exp(iA)]\[r(t)

+ (M)- ' [A- ' exp(iA) -11- A~x]f{t + €); * = 0, t, 21,...

The development of numerical methods will be based on making appropriate approx-
imations to the exponentials in this recurrence relation. Higher-order Pade approxi-
mants [8] are popularly employed (see, for instance, [4, 5, 11]) for such exponentials.
Methods based on the use of these approximants are of high accuracy in time and, in
the case of the subdiagonal Pades, have good stability properties. However, a major
drawback associated with the efficient implementation of these methods is that com-
plex arithmetic is required in the numerical computation. This is because the poles of
the higher-order Pades occur in complex conjugate pairs.

In order to circumvent this drawback, a second-order rational approximant given
by [4]

R(iA) % (I - elA + (e - ]- j 12A2\ [/ + (1 - e)lA],
— 1

(16)

with e % 0.54, will be used for the matrix exponentials in the recurrence relation
(15). A useful feature of R(IA) is that its denominator has real distinct poles thus
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guaranteeing the use of real arithmetic (only) in the computation. It is easy to see that
the numerical method resulting from the use of (16) in (15) is second-order accurate.
Assuming the eigenvalues of the matrix A are real and have negative real parts, a
linearised stability analysis of the von Neumann type suggests that the numerical
method arising from the use of (16) in (15) is L0-stable. The merits of these schemes
over A0-stable methods such as the Crank-Nicholson method (arising from the use of
the (1, 1) Pade approximant in (18)) and the Peaceman-Rachford method for solving
problems with discontinuities between initial conditions and boundary conditions are
emphasized in [6].

Using (16) in (15) gives

U(r + l) = R(lA)V(t) + Us{lA)yfr{t) + T(lk)\lr(f + £)]; t = 0, I, 21,... ,
(17)

in which

S(lk) = \l- elk + (e - 1) i2A2]( ) (18)

and

T(lk) = \l- elA + (e~\) ^ ' 1 ["/ - 2 (e - ^\ lk\ . (19)

In order to implement (17) in parallel, the functions/?(M), S(tA) and T(t,A) are
decomposed into their partial-fraction forms given by

R(lk) = *,(/ - ryiAy1 + s2U - r2lk)-\ (20)

S(lk) = s3(I - rxlk)~x + s4(I - r2lk)-\ (21)

T(lk) = ss(I - nlky1 + s6(I - r2lA)-\ (22)

with

\ — f -\- r, 1 — e + r>
s2 = — — , (23)

(24)

, 2

r, - r2 r2- rx

r , - /-2 r2 - /-i

and

l-2e + ri l-2e + r2
s5 = , s6 = , (25)

r, - r2 r2- r,
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where

2e - 1 2e - 1
r2 = , (26)

/(2 4 + 2)r2 ,
2 - 4e + 2) e - y/(e2 -4e

The solution vector U(/ + £) in (17) may now be obtained in parallel using two
processors running concurrently as follows:

Processor 1 : (/ — rxlA)zx =

(/ - rx£A)z3 =

(I -rx£A)z5 =

Processor 2 : (/ - r2LA)z2 = s2U(t), (27)

(I - r2lA)zt = s41r(t),

Then U(r + I) = zy + z2 + \ [z3 + z4 + z5 + z6].

This algorithm is denoted by PRL. The intermediate vectors z,-(i = 1 , . . . , 6) need
not be stored once U(r + I) is computed at each time step. The coefficient matrices
(7 — rxlA) and (7 — r2tA) are decomposed into lower and upper (LU) triangular forms
only once. These LU products are then "fed" to the two processors in order to compute
the intermediate vectors z,(i = 1, . . . , 6) using forward and backward substitutions.
In the case of the simple heat equation, i/r = 0 and thus z3 = z4 = z5 = z6 — 0 in
(27).

5. Numerical experiments

In order to test the behaviour of the L0-stable scheme (17), four problems from the
literature were considered. Comparisons were made, in terms of accuracy, with the
discrete Galerkin (DG) scheme developed in [2] and the finite difference scheme DFD
reported in [3].

PROBLEM 1. Following Cannon et al. [3], the PDE (1) subject to (2) and (3) with

git) = 1, (28)

.M(r) = 0.75r + i(0.75)3

and with theoretical solution

u(x, t) = \*2 + t (29)
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TABLE 1. Relative errors at various time lengths with h = t= 0.0025.
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Time length
t = 0.01
t = 0.025
t = 0.1

DG
1.93£-3
9.93£ - 4
1.8E-3

DFD
2.40£ - 5
1.27£-4
4.93£ - 4

PRL
1.61£-6
8.81£-5
8.07 £ - 4

Theoretical Solution
4 .125E-2
5.625£ - 2

0.13125

is solved. The absolute relative errors |(w - U)/u\ computed at various time lengths
with h = 0.0025 and time-step I = 0.0025 are tabulated in Table 1.

PROBLEM 2. Here

with theoretical solutions

f(x) =cos(x),

g(t) = -exp(-0sin(1.0),

M(t) = exp(-f) sin(0.75),

u(x, t) — exp(—t)cos(x).

(30)

(31)

TABLE 2. Relative errors at various time lengths with h = I = 0.0025.

Time length
t = 0.01
t = 0.025

r = 0.1

DG
8.90£ - 5
6.00£ - 5
2 . 8 1 £ - 4

DFD
2.75£ - 5
1.05£-4
5.27£ - 4

PRL
3.73£-8
2.82£ - 6
6.29£ - 5

Theoretical Solution
0.9593
0.9450
0.8767

Table 2 contains the absolute relative errors at various time lengths using h = t —
0.0025.

PROBLEM 3. In this experiment,

f(x) = sin(7r*),

g(t) = -7rexp(-7T2O, ( 3 2 )

M(t) = - (4= + l) exp(-7r2r)

and the theoretical solution is

u{x, t) = exp(—n2t) sin(nx). (33)

The computed results at various time lengths with h = £ = 0.0025 are shown in
Table 3.
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TABLE 3. Relative errors at various time lengths with h = I = 0.0025.

[8]

Time length
t = 0.01
t = 0.025

t = 0.1

DG
4.00E - 6
3.00E - 6
7.00E - 6

DFD
2.44£ - 5
1.06E-4
8.36E-4

PRL
2.95 £ - 6
2 .81E-7
3 .55E-5

Theoretical Solution
0.6407
0.5525
0.2635

PROBLEM 4. Following Cannon et al. [3], the effect of time-steps on the numerical
method (27) is investigated by solving Problem 3 with three different time-steps,
namely £ = 0.01,£ = 0.05, and £ = 0.025. The relative errors at t = 0.1 are given
in Table 4.

TABLE 4. Relative errors at t = 0.1 with h = 0.0025 using various time-steps.

Time step
l-
£ =
£ =

= 0.01
= 0.05
: 0.025

1
1

DG
. 3 3 E -
.63E-

—

4
2

DFD
1.51E-
1.13E-
8.36E -

3
4
4

PRL
3.99E -
1.28E-
3.55E -

4
2
5

Theoretical Solution
0.2635
0.2635
0.2635

Clearly, discontinuities between initial conditions and boundary conditions exist in
all the four problems. Tables 1 to 4 confirm that the L0-stable scheme (27) is very
accurate and thus that it is suited for solving problems of this nature.

6. Conclusion

An O(h2 + £2) Lo-stable parallel algorithm has been developed for the simple heat
equation with non-local boundary specifications. The algorithm was found to be more
accurate in comparison with two existing algorithms from the literature, and may be
implemented in parallel using a machine with two processors.
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