
Glasgow Math. J. 47 (2005) 425–438. C© 2005 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089505002685. Printed in the United Kingdom

ON A CONVEXITY THEOREM OF RUSKAI AND WERNER
AND RELATED RESULTS

HORST ALZER
Morsbacher Str. 10, 51545 Waldbröl, Germany

e-mail: alzerhorst@freenet.de

(Received 6 May, 2004; accepted 20 April, 2005)

Abstract. We show that the function

Vq(x) = 2ex2

�(q + 1)

∫ ∞

x
e−t2

(t2 − x2)q dt (−1 < q ∈ R; 0 < x ∈ R),

which has applications in the study of atoms in magnetic fields, satisfies certain
monotonicity and convexity properties as well as inequalities. In particular, we prove
that 1/Vq is convex on (0,∞) if and only if q ≥ 0. This extends a recent result of
M. B. Ruskai and E. Werner, who established the convexity for all integers q ≥ 0.

2000 Mathematics Subject Classification. 33E20, 26D15.

1. Introduction. In an interesting paper published in 2000, M. B. Ruskai and
E. Werner [8] discuss in detail the function

Vq(x) = 2ex2

�(q + 1)

∫ ∞

x
e−t2

(t2 − x2)q dt (−1 < q ∈ R; 0 < x ∈ R) (1.1)

and its extensions. Vq(x) is also defined for x = 0, if q > −1/2. The authors point out
that their work was motivated by the fact that for an integer q this function ‘arises
naturally’ [8, p. 436] in the study of atoms in magnetic fields. Indeed, Vq can be regarded
as one-dimensional regularization of the Coulomb potential. See [3], [4], and [8] for
details and references.

The special case q = 0 leads to Mills’s ratio

1√
2

V0

(
x√
2

)
= ex2/2

∫ ∞

x
e−t2/2 dt,

which has applications in statistics. Inequalities for this and related functions are given
in [7, Section 2.26].

A remarkable number theoretic property of

Vq(0)√
π

= 2−2q
(

2q
q

)
= 1 · 3 · 5 · . . . · (2q − 1)

2 · 4 · 6 · . . . · (2q)
(0 ≤ q ∈ Z),

known as normalized binomial mid-coefficient, can be found in [2].
A central role in [8] is the study of convexity properties of Vq(x). The authors show

that the arithmetic mean of V0(x), . . . , Vn−1(x) (n ≥ 1) is convex on (0,∞) with respect
to x. In particular, x �→ Vq(x) is convex for q = 0. But, this is not true, if q > 1/2. In
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1993, M. Wirth [10] established that 1/V0 is convex on (0,∞). Ruskai and Werner
provide a substantial extension of this theorem. They prove that for all integers q ≥ 0
the function x �→ 1/Vq(x) is convex on (0,∞). An application of this result reveals
that 1/Vq is subadditive, that is,

1
Vq(x + y)

≤ 1
Vq(x)

+ 1
Vq(y)

(x, y > 0; 0 ≤ q ∈ Z). (1.2)

The ratio Vq+1(x)/Vq(x) (1 ≤ q ∈ Z) is of importance in the proof of the convexity of
1/Vq. This ratio has an interesting monotonicity property: it is increasing with respect
to x. The authors also study Vq(x) as function of q. They establish that q �→ Vq(x) and
q �→ −qVq(x) (x > 0) are decreasing.

It is our aim to continue the work of Ruskai and Werner. In Section 3, we determine
all real parameters p and q such that x �→ Vp(x) and x �→ 1/Vq(x) are convex on (0,∞).
Moreover, we give an answer to the question: for which q is x �→ Vq(x) completely
monotonic on (0,∞)? And, we prove that for every x > 0 the function q �→ Vq(x) is
convex on (−1,∞). In Section 4, we extend and complement inequality (1.2). Further,
we provide all parameters q such that x �→ Vq(x) is supermultiplicative on (0,∞),
and we present a differential inequality involving (V (k)

q (x))n and (V (n)
q (x))k. Finally,

we study the monotonicity behaviour of the functions x �→ Vp(x)/Vq(x) and x �→
Vp(x) − Vq(x).

2. Lemmas. In this section, we collect some lemmas, which we need to prove our
theorems. First, we present integral representations for Vq(x) and its first and second
derivatives with respect to x.

LEMMA 1. For all q > −1 and x > 0 we have

Vq(x) = 1
�(q + 1)

∫ ∞

0
e−(sx+s2/4)(sx + s2/4)q ds, (2.1)

Vq(x) = xq+1/2

�(q + 1)

∫ ∞

0
e−xs sq

(x + s)1/2
ds, (2.2)

V ′
q(x) = − xq+1/2

�(q + 1)

∫ ∞

0
e−xs sq

(x + s)3/2
ds, (2.3)

V ′′
q (x) = xq−1/2

�(q + 1)

∫ ∞

0
e−xs (2x − s)sq

(x + s)5/2
ds. (2.4)

Proof. We substitute in (1.1) t = x + s/2 and t = √
x2 + xs, respectively, and

obtain (2.1) and (2.2), respectively. Next, we set s = u/x in (2.2). This yields

Vq(x) = 1
�(q + 1)

∫ ∞

0
e−u uq

(x2 + u)1/2
du. (2.5)

Further, if we differentiate (2.5) once and twice, respectively, and substitute u = xs,
then we get (2.3) and (2.4), respectively. �

Proofs for the next two lemmas are given in [8].

https://doi.org/10.1017/S0017089505002685 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002685


A THEOREM OF RUSKAI AND WERNER 427

LEMMA 2. Let q > −1 and x > 0. The function a �→ aVq(ax) is strictly increasing
on (0,∞).

LEMMA 3. Let q > −1. Then we have the asymptotic formula

Vq(x) = 1
x

− q + 1
2x3

+ 3(q + 1)(q + 2)
8x5

+ O
(

1
x7

)
. (2.6)

The following integral inequality was first proved by P. L. Tchebyschef. References
for this and related results can be found in [7, Section 2.5].

LEMMA 4. Let f, g : [a, b] → R be both increasing or both decreasing and let p :
[a, b] → [0,∞) be integrable. Then

∫ b

a
p(x)f (x) dx

∫ b

a
p(x)g(x) dx ≤

∫ b

a
p(x)f (x)g(x) dx

∫ b

a
p(x) dx.

Moreover, we need an inequality for convex functions due to M. Petrović
[7, pp. 22–23].

LEMMA 5. Let f : [0, a] → R be convex. If xj ∈ [0, a] (j = 1, . . . , n) and
x1 + . . . + xn ∈ [0, a], then

f (x1) + . . . + f (xn) ≤ f (x1 + . . . + xn) + (n − 1)f (0).

A function f : (0,∞) → R is called completely monotonic, if f has derivatives of
all orders and satisfies (−1)nf (n)(x) ≥ 0 for all x > 0 and n = 0, 1, 2, . . . . In particular,
completely monotonic functions are decreasing and convex. These functions have
numerous applications in probability theory, physics, and other branches. We refer
to [1], where details and references can be found. The basic properties of completely
monotonic functions are collected in [9, Chapter IV].

LEMMA 6. If f is completely monotonic on (0,∞), then we have for all real numbers
x > 0 and integers n, k with n ≥ k ≥ 0:

(−1)nk(f (k)(x)
)n ≤ (−1)nk(f (n)(x)

)k
(f (x))n−k.

A proof of Lemma 5 is given in [5].

3. Complete monotonicity and convexity. Our first theorem provides all
parameters q such that Vq is completely monotonic on (0,∞).

THEOREM 1. Let q > −1 be a real number. The function x �→ Vq(x) is completely
monotonic on (0,∞) if and only if q ∈ (−1, 0].

Proof. Let q ∈ (−1, 0] and x > 0 be real numbers. Further, let n ≥ 0 be an integer.
Using the Leibniz rule for the n-th derivative of a product we conclude from (2.1):

(−1)nV (n)
q (x) = 1

�(q + 1)

∫ ∞

0
e−s(x+s/4)

n∑
ν=0

(
n
ν

)
sq+n−ν

(
x + s

4

)q−ν ν−1∏
j=0

(j − q) ds > 0,
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which implies that Vq is completely monotonic on (0,∞). Next, we show: if q > 0, then
Vq is not convex and, thus not completely monotonic on (0,∞). We consider three
cases.

Case 1: 0 < q < 1/2.
Let

λq(x, s) =
(

s
x + s

)q

and µq(x, s) = s − 2xex

(x + s)5/2−q
,

where s ∈ [0, 1] and x > 0 is sufficiently small. The function s �→ λq(x, s) is increasing
on [0, 1], so that we get

λq(x, s)µq(x, s) ≥ λq(x, 2xex)µq(x, s).

Hence,∫ 1

0
λq(x, s)µq(x, s) ds ≥

(
2ex

1 + 2ex

)q ∫ 1

0

s − 2xex

(x + s)5/2−q
ds

=
(

2ex

1 + 2ex

)q 1
(3/2 − q)(1/2 − q)

[
xq−1/2(1 + ex(2q − 1))

− (x + 1)q−3/2(x + xex(2q − 1) + 3/2 − q)
]
.

Since 0 < q < 1/2, we conclude that the expression on the right-hand side tends to ∞,
if x tends to 0. This yields

0 <

∫ 1

0

sq

(x + s)5/2
(s − 2xex) ds. (3.1)

Using (3.1) we obtain

2x
∫ 1

0
e−xs sq

(x + s)5/2
ds < 2x

∫ 1

0

sq

(x + s)5/2
ds < e−x

∫ 1

0

sq+1

(x + s)5/2
ds

<

∫ 1

0
e−xs sq+1

(x + s)5/2
ds.

Thus,

�(q + 1)x1/2−qV ′′
q (x) <

∫ 1

0
e−xs (2x − s)sq

(x + s)5/2
ds < 0

for all sufficiently small x.

Case 2: q = 1/2.
We define

W (x2) =
√

π

2
V ′′

1/2(x) =
∫ ∞

0
e−tt1/2 2x2 − t

(x2 + t)5/2
dt.

Let y ∈ (0, 1/2). We get

W (y) ≤ 2y
∫ 1

0
e−t t1/2

(y + t)5/2
dt −

∫ 1

0
e−t t3/2

(y + t)5/2
dt

≤ 2y
∫ 1

0

t1/2

(y + t)5/2
dt − 1

e

∫ 1

0

t3/2

(y + t)5/2
dt.
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Since

lim
y→0

y
∫ 1

0

t1/2

(y + t)5/2
dt = lim

y→0

2
3(y + 1)3/2

= 2
3

and lim
y→0

∫ 1

0

t3/2

(y + t)5/2
dt = ∞,

we conclude that W (y) is negative for sufficiently small y.

Case 3: q > 1/2.
The substitution s = t/x in (2.3) leads to

V ′
q(x) = − x

�(q + 1)

∫ ∞

0
e−t tq

(x2 + t)3/2
dt

This implies limx→0 V ′
q(x) = 0. Since V ′

q(x) < 0 for x > 0, we conclude that V ′
q is not

increasing on (0,∞). �
REMARK 1. In particular, we have proved: the function x �→ Vq(x) is convex on

(0,∞) if and only if q ∈ (−1, 0].

REMARK 2. Since a completely monotonic function is log-convex, and a log-convex
function is convex, we obtain: the function x �→ Vq(x) is log-convex on (0,∞) if and
only if q ∈ (−1, 0].

Next, we study the convexity of 1/Vq. Ruskai and Werner [8] conjecture that for
all real numbers q > −1 the function x �→ 1/Vq(x) is convex on (0,∞). The following
theorem reveals that this is true for all q ≥ 0, but false for all q ∈ (−1, 0).

THEOREM 2. Let q > −1 be a real number. The function x �→ 1/Vq(x) is convex on
(0,∞) if and only if q ≥ 0. Moreover, if q ≥ 0, then 1/Vq is strictly convex on (0,∞).

Proof. Let q ≥ 0 and x > 0. Differentiation with respect to x yields

(Vq(x))3
(

1
Vq(x)

)′′
= 2(V ′

q(x))2 − Vq(x)V ′′
q (x). (3.2)

Using (2.2)–(2.4) and the convolution theorem we get

(�(q + 1))2

2x2q+1
[2(V ′

q(x))2 − Vq(x)V ′′
q (x)] =

∫ ∞

0
e−xt�q(x, t) dt, (3.3)

where

�q(x, t) =
∫ t

0

[s(t − s)]q

[(x + s)(x + t − s)]5/2
[(x + s)(x + t − s) − (1 − s/(2x))(x + t − s)2] ds.

Let t > 0. We define

�q(x, t) = 8x
(

2
t

)2q+2

�q(x, t). (3.4)

Next, we substitute s = t(1 + y)/2. This leads to

�q(x, t) =
∫ 1

−1
�q(x, t, y)[α(t)y3 + β(x, t)y2 + γ (x, t)y + δ(x, t)] dy,

where

�q(x, t, y) = (1 − y2)q
[(

x + t
2

)2

−
(

ty
2

)2]−5/2

,

α(t) = t2, β(x, t) = −12xt − t2, γ (x, t) = 20x2 + 8xt − t2, δ(x, t) = (2x + t)2.
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Since y �→ �q(x, t, y) is even, we obtain

�q(x, t) = 2
∫ 1

0
�q(x, t, y)[β(x, t)y2 + δ(x, t)] dy.

We put t = 2a (a > 0) and x = ra (r > 0). Then we get

(
a
2

)3

�q(ra, 2a) =
∫ 1

0
(1 − y2)q (r + 1)2 − (6r + 1)y2

[(r + 1)2 − y2]5/2
dy.

Applying Lemma 4 with f (y) = (1 − y2)q, g(y) = (r + 1)2 − (6r + 1)y2, and p(y) =
[(r + 1)2 − y2]−5/2 yields

(
a
2

)3

�q(ra, 2a) ≥
∫ 1

0 p(y)f (y) dy
∫ 1

0 p(y)g(y) dy∫ 1
0 p(y) dy

.

Since
∫ 1

0
p(y) dy > 0,

∫ 1

0
p(y)f (y) dy > 0, and

∫ 1

0
p(y)g(y) dy = r1/2

(r + 1)2(r + 2)3/2
> 0,

we conclude that �q(ra, 2a) is positive. Thus, (3.2)–(3.4) imply that (1/Vq(x))′′ > 0 for
x > 0.

It remains to show that if −1 < q < 0, then 1/Vq is not convex on (0,∞). First,
let −1/2 < q < 0. We have for x > 0:

∫ ∞

0

e−sxsq

(x + s)3/2
ds ≥

∫ x

0

e−sxsq

(x + s)3/2
ds ≥

∫ x

0

e−x2
xq

(x + s)3/2
ds = xq−1/2e−x2

(2 −
√

2),

so that (2.3) yields limx→0(−V ′
q(x)) = ∞. Since Vq(0) = �(q + 1/2)/�(q + 1), we get

lim
x→0

(
1

Vq(x)

)′
= lim

x→0

−V ′
q(x)

(Vq(x))2
= ∞.

This implies that (1/Vq)′ is not increasing on (0,∞).
Next, let −1 < q ≤ −1/2. We assume that 1/Vq is convex on (0,∞). Then we have

1
Vq((x + y)/2)

≤ 1
2

(
1

Vq(x)
+ 1

Vq(y)

)
(x, y > 0). (3.5)

Since limy→0 Vq(y) = ∞, we obtain from (3.5):

1
Vq(x/2)

≤ 1
2Vq(x)

(x > 0).

This contradicts Lemma 2. �
It is natural also to study properties of Vq(x) as function of q, where x > 0 is a

fixed number. We now give an affirmative answer to a question posed by Ruskai and
Werner [8]: is Vq(x) convex with respect to q?
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THEOREM 3. Let x > 0 be a real number. The function q �→ Vq(x) is strictly convex
on (−1,∞).

Proof. Let x > 0. Since Vq(x) is continuous with respect to q, it suffices to show
that

V(a+b)/2(x) <
1
2

(Va(x) + Vb(x)) (3.6)

for all real numbers a, b with b > a > −1. Using (2.2), the integral formula

1
xr

= 1
�(r)

∫ ∞

0
e−xttr−1 dt (r > 0; x > 0),

and the convolution theorem we get

�(a + 1)�(b + 1)x−(a+b+3/2)[Va(x) + Vb(x) − 2V(a+b)/2(x)]

=
∫ ∞

0
e−xssb ds

∫ ∞

0
e−xs sa

(x + s)1/2
ds +

∫ ∞

0
e−xssa ds

∫ ∞

0
e−xs sb

(x + s)1/2
ds

− 2�(a + 1)�(b + 1)
(�((a + b)/2 + 1))2

∫ ∞

0
e−xss(a+b)/2 ds

∫ ∞

0
e−xs s(a+b)/2

(x + s)1/2
ds

=
∫ ∞

0
e−xtσa,b(x, t) dt, (3.7)

where

σa,b(x, t) =
∫ t

0

1
(x + s)1/2

[
(t − s)bsa + (t − s)asb − 2�(a + 1)�(b + 1)

(�((a + b)/2 + 1))2
((t − s)s)(a+b)/2

]
ds.

Let t > 0. We substitute s = t(1 + y)/2 and obtain

σa,b(x, t) =
(

t
2

)a+b+1 ∫ 1

0
P(x, t, y)Qa,b(y) dy,

with

P(x, t, y) = (x + t(1 + y)/2)−1/2 + (x + t(1 − y)/2)−1/2

and

Qa,b(y) = (1 − y)a(1 + y)b + (1 − y)b(1 + y)a − 2�(a + 1)�(b + 1)
(�((a + b)/2 + 1))2

(1 − y2)(a+b)/2.

Next, we define for y ∈ (0, 1):

Ra,b(y) = (1 − y2)−(a+b)/2Qa,b(y) =
(

1 + y
1 − y

)(b−a)/2

+
(

1 − y
1 + y

)(b−a)/2

− 2�(a + 1)�(b + 1)
(�((a + b)/2 + 1))2

.
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Differentiation with respect to y gives

R′
a,b(y) = b − a

1 − y2

[(
1 + y
1 − y

)(b−a)/2

−
(

1 − y
1 + y

)(b−a)/2]
> 0,

which implies that y �→ Ra,b(y) is strictly increasing on (0, 1). The gamma function is
strictly log-convex on (0,∞), so that we obtain

Ra,b(0) = 2
(

1 − �(a + 1)�(b + 1)(
�((a + b)/2 + 1)

)2

)
< 0.

Further, we have limy→1 Ra,b(y) = ∞. Thus, there exists a number y0 ∈ (0, 1) such that
Ra,b(y) < 0 for y ∈ (0, y0) and Ra,b(y) > 0 for y ∈ (y0, 1). Since y �→ P(x, t, y) is strictly
increasing on [0, 1], we get:

if y ∈ (0, 1), y 
= y0, then P(x, t, y)Qa,b(y) > P(x, t, y0)Qa,b(y).

This leads to

σa,b(x, t) >

(
t
2

)a+b+1

P(x, t, y0)
∫ 1

0
Qa,b(y) dy. (3.8)

Using

∫ 1

0
[(1 − y)a(1 + y)b + (1 − y)b(1 + y)a] dy = 2a+b+1 �(a + 1)�(b + 1)

�(a + b + 2)
,

∫ 1

0
(1 − y2)(a+b)/2 dy = 1

2

√
π

�((a + b)/2 + 1)
�((a + b + 1)/2 + 1)

,

and the duplication formula

�(2x) = 1√
π

22x−1�(x)�(x + 1/2) (x > 0)

we obtain
∫ 1

0
Qa,b(y) dy = 0. (3.9)

From (3.7)–(3.9) we conclude that (3.6) holds. �

4. Inequalities and monotonicity. Applying Theorem 2, Lemma 2, and Lemma 5
we are able to extend and to complement inequality (1.2).

THEOREM 4. Let q ≥ 0 be a real number. Then we have for all x, y ≥ 0:

0 <
1

Vq(x)
+ 1

Vq(y)
− 1

Vq(x + y)
≤ �(q + 1)

�(q + 1/2)
. (4.1)

Both bounds are best possible.
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Proof. Let q, x, y ≥ 0. As remarked in [8], the convexity of 1/Vq and the inequality
Vq(x/2) < 2Vq(x) lead to

1
Vq(x + y)

<
2

Vq((x + y)/2)
≤ 1

Vq(x)
+ 1

Vq(y)
.

Also, Lemma 5 yields

1
Vq(x)

+ 1
Vq(y)

≤ 1
Vq(x + y)

+ 1
Vq(0)

= 1
Vq(x + y)

+ �(q + 1)
�(q + 1/2)

.

Let

wq = Vq(x) − 1
x

.

Then we get

1
Vq(x)

− 1
Vq(x + y)

= x(x + y)[wq(x + y) − wq(x)] − y
[1 + xwq(x)][1 + (x + y)wq(x + y)]

and

1
Vq(y)

− y = − y2wq(y)
1 + ywq(y)

.

Using (2.6) gives

lim
x→∞ x3wq(x) = −q + 1

2
.

This implies

lim
y→∞ lim

x→∞

(
1

Vq(x)
+ 1

Vq(y)
− 1

Vq(x + y)

)
= 0.

If we set x = y = 0, then equality holds on the right-hand side of (4.1). Thus, the
bounds given in (4.1) are sharp. �

Since x �→ Vq(x) is positive and strictly decreasing on (0,∞), we obtain

Vq(x + y) < Vq(x) + Vq(y) (x, y > 0). (4.2)

This means that for all q > −1 the function Vq is strictly subadditive on (0,∞).
However, there is no parameter q > −1 such that Vq is submultiplicative on (0,∞).
Otherwise, from

Vq(xy) ≤ Vq(x)Vq(y) (x, y > 0)

we get Vq(1) ≤ (Vq(1))2 or 1 ≤ Vq(1), which contradicts

Vq(x) = 1
�(q + 1)

∫ ∞

0
e−u uq

(x2 + u)1/2
du <

1
�(q + 1)

∫ ∞

0
e−u uq

x
du = 1

x
(x > 0).

(4.3)

This leads to the question: do there exist parameters q such that Vq is
supermultiplicative on (0,∞)? The following theorem gives an answer.
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THEOREM 5. Let q > −1 be a real number. The function x �→ Vq(x) is strictly
supermultiplicative on (0,∞), that is,

Vq(x)Vq(y) < Vq(xy) for all x, y > 0 (4.4)

if and only if q ≥ q0, where q0 = 0.72117... is the only solution of �(t + 1) = �(t + 1/2)
on (−1/2,∞).

Proof. Let q ≥ q0. We consider two cases. First, let 0 < y ≤ 1. Then we obtain

Vq(xy) ≥ Vq(x) and Vq(y) < Vq(0) = �(q + 1/2)
�(q + 1)

.

This implies

Vq(xy) − Vq(x)Vq(y) ≥ Vq(x)
(
1 − Vq(y)

)
> Vq(x)(1 − Vq(0)). (4.5)

The function q �→ 1 − Vq(0) is strictly increasing on (−1/2,∞). Hence, we get

1 − Vq(0) ≥ 1 − Vq0 (0) = 0. (4.6)

Combining (4.5) and (4.6) we obtain Vq(xy) > Vq(x)Vq(y).
Next, let y > 1. Applying Lemma 2 and (4.3) we get

Vq(xy) > Vq(x)
1
y

> Vq(x)Vq(y).

It remains to show: if (4.4) holds, then q ≥ q0. Again, we consider two cases. Let
q > −1/2. We set x = y in (4.4) and let x tend to 0. This leads to Vq(0) ≤ 1 = Vq0 (0).
Thus, q ≥ q0.

Now, we assume that −1 < q ≤ −1/2. We prove that the inequality

Vq(x/2) < Vq(1/2)Vq(x) (4.7)

is valid for all sufficiently small x. Using (1.1) we conclude that (4.7) is equivalent to

0 <

∫ ∞

x
(t2 − x2)q[Vq(1/2)e3x2/4−t2 − 2−2q−1e−t2/4] dt = Iq(x), say.

We define

z(q) = − log(4qVq(1/2))
log(4)

.

From (2.5) we obtain

2�(q + 1)[4qVq(1/2) − 1/2] =
∫ ∞

0
e−s/4 sq

(1 + s)1/2
ds −

∫ ∞

0
e−ssq ds.

Since e−s/4/(1 + s)1/2 > e−s for s > 0, we get

4qVq(1/2) > 1/2 for q > −1. (4.8)
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This implies z(q) < 1/2. Let ω = ω(q) be a real number such that

z(q) < ω < 1/2. (4.9)

We have

Iq(x) =
∫ ∞

x
Aq(x, t)Bq(x, t) dt,

where

Aq(x, t) = (t2 − x2)q+ω and Bq(x, t) = (t2 − x2)−ω
[
Vq(1/2)e3x2/4−t2 − 2−2q−1e−t2/4].

Since q + ω ≤ −1/2 + ω < 0, we conclude that t �→ Aq(x, t) is strictly decreasing on
(x,∞). Moreover, the function

t �→ bq(x, t) = (t2 − x2)ωet2
Bq(x, t)

is strictly decreasing on [x,∞) with limt→∞ bq(x, t) = −∞. Applying (4.8) yields
bq(x, x) > 0. Thus, there exists a number t0 > x such that bq(x, t) is positive for
t ∈ (x, t0) and negative for t ∈ (t0,∞). This implies

Aq(x, t)Bq(x, t) > Aq(x, t0)Bq(x, t) for x < t 
= t0.

Hence, we obtain

Iq(x) > Aq(x, t0)
∫ ∞

x
(t2 − x2)−ω

[
Vq(1/2)e3x2/4−t2 − 2−2q−1e−t2/4] dt = Aq(x, t0)Jq(x),

say. (4.10)

We have

2Jq(0) = �(1/2 − ω)
[
Vq(1/2) − 4−(q+ω)]. (4.11)

Since Vq(1/2) > 4−(q+ω) is equivalent to ω > z(q), we conclude from (4.9) and (4.11)
that Jq(0) > 0. This implies that there is a number ε > 0 such that Jq(x) is positive
for x ∈ (0, ε). From (4.10) we get Iq(x) > 0 for x ∈ (0, ε). The proof of Theorem 5 is
complete. �

REMARK 3. Comments on the relevance of sub- and supermultiplicative functions
in various fields as well as references on this subject can be found in [6].

REMARK 4. Inequality (4.2) can be improved. In fact, from

2
((x + y)2 + u)1/2

<
1

(x2 + u)1/2
+ 1

(y2 + u)1/2
(x, y, u > 0)

and (2.5) we obtain for all q > −1:

2 <
Vq(x) + Vq(y)

Vq(x + y)
(x, y > 0). (4.12)
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Let q > −1/2 and x = y. If we let x tend to 0, then the ratio on the right-hand side
of (4.12) converges to 2. Thus, (at least) for q > −1/2 the lower bound 2 cannot be
replaced by a larger term, which is independent of x and y.

We now present an inequality which reveals a connection between (V (k)
q (x))n and

(V (n)
q (x))k.

THEOREM 6. The inequality

(−1)nk
(

V (k)
q (x)

Vq(x)

)n

≤ (−1)nk
(

V (n)
q (x)

Vq(x)

)k

(4.13)

holds for all real numbers x > 0 and integers n, k with n ≥ k ≥ 0 if and only if q ∈ (−1, 0].

Proof. Let q ∈ (−1, 0], x > 0, and n ≥ k ≥ 0. Applying Theorem 1 and Lemma 6
we conclude that (4.13) is valid. Conversely, we assume that (4.13) holds for all x > 0
and n, k with n ≥ k ≥ 0. We set n = 2 and k = 1 and obtain

(V ′
q(x))2 ≤ Vq(x)V ′′

q (x).

This means that Vq is log-convex on (0,∞), so that Remark 2 implies q ∈ (−1, 0]. �
Finally, we study the monotonicity behaviour of the ratio Vp/Vq and the difference

Vp − Vq.

THEOREM 7. Let p, q > −1 be real numbers.
(i) The function x �→ Vp(x)/Vq(x) is increasing on (0,∞) if and only if p ≥ q.

(ii) The function x �→ Vp(x) − Vq(x) is increasing on (0,∞) if and only if p ≥ q.
If p > q > −1, then Vp/Vq and Vp − Vq are strictly increasing on (0,∞).

Proof. Since the proofs of (i) and (ii) are similar, we only establish part (i). First,
we assume that p > q > −1. Applying (2.2), (2.3), and the convolution theorem we get
for x > 0:

�(p + 1)�(q + 1)x−(p+q+1)(Vq(x))2
(

Vp(x)
Vq(x)

)′
= V ′

p(x)Vq(x) − Vp(x)V ′
q(x)

=
∫ ∞

0
e−xs sp

(x + s)1/2
ds

∫ ∞

0
e−xs sq

(x + s)3/2
ds

−
∫ ∞

0
e−xs sq

(x + s)1/2
ds

∫ ∞

0
e−xs sp

(x + s)3/2
ds =

∫ ∞

0
e−xt�p,q(x, t) dt, (4.14)

where

�p,q(x, t) =
∫ t

0

sq(t − s)q

(x + s)3/2(x + t − s)1/2
[(t − s)p−q − sp−q] ds.

The substitution s = t(1 + y)/2 leads to

�p,q(x, t) =
(

t
2

)p+q+1 ∫ 1

−1
φq(x, t, y)(x + t(1 − y)/2)[(1 − y)p−q − (1 + y)p−q] dy
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with

φq(x, t, y) = (1 − y2)q

[(x + t(1 − y)/2)(x + t(1 + y)/2)]3/2
.

Since y �→ φq(x, t, y) is even and y �→ (1 − y)p−q − (1 + y)p−q is odd, we obtain

�p,q(x, t) = −2
(

t
2

)p+q+2 ∫ 1

0
φq(x, t, y)y[(1 − y)p−q − (1 + y)p−q] dy > 0. (4.15)

From (4.14) and (4.15) we conclude that (Vp(x)/Vq(x))′ > 0 for x > 0.
We define

hq(x) = Vq(x) − 1
x

+ q + 1
2x3

.

Then, (2.6) gives

hq(x) = O
(

1
x5

)
. (4.16)

If x �→ Vp(x)/Vq(x) is increasing on (0,∞), then we get for all x > 0:

0 ≤ [Vp(2x)Vq(x) − Vp(x)Vq(2x)]x4

= [hp(2x)hq(x) − hp(x)hq(2x)]x4 + [−hp(x)/2 + hp(2x) + hq(x)/2 − hq(2x)]x3

+ [(q + 1)hp(x)/8 − (q + 1)hp(2x) − (p + 1)hq(x)/8

+ (p + 1)hq(2x)]x/2 + 3(p − q)/16.

Applying (4.16) we obtain that the expression on the right-hand side converges to
3(p − q)/16, if x tends to ∞. Thus, p ≥ q. �
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