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THE STRUCTURAL COMPLEXITY OF MODELS OF ARITHMETIC

ANTONIO MONTALBÁN AND DINO ROSSEGGER

Abstract. We calculate the possible Scott ranks of countable models of Peano arithmetic. We show that
no non-standard model can have Scott rank less than � and that non-standard models of true arithmetic
must have Scott rank greater than �. Other than that there are no restrictions. By giving a reduction via
Δin

1 bi-interpretability from the class of linear orderings to the canonical structural �-jump of models of
an arbitrary completion T of PA we show that every countable ordinal α > � is realized as the Scott rank
of a model of T.

§1. Introduction. The structural complexity of countable structures has been an
active and deep area of research at the intersection of model theory, descriptive set
theory, and computability theory for more than half a century. One of the early
results responsible for the interest in this area is Scott’s theorem [20] that every
countable structure has a sentence defining it up to isomorphism among countable
structures in the infinitary logic L�1� . Combining this with Vaught’s work [22] on
the Lopez-Escobar theorem [14] one gets a connection with descriptive set theory.
Vaught showed that the sets of models of Πin

α formulas (we refer the reader to [3,
Section 6.4] for a definition of quantifier complexity in L�1�) are precisely the ΠΠΠ0

α

isomorphism-invariant sets in the Borel hierarchy on the space of structures. Thus,
not only is every isomorphism class of a countable structure Borel, but calculating
the quantifier complexity of a structure’s Scott sentence gives a measure of the
complexity of its isomorphism class in the Borel hierarchy.

Computability theorists use another approach to measure the complexity of
countable structures. Say a structure A is uniformly ΔΔΔ0

α-categorical if there is a
Turing operator Φ and an oracle X ⊆ � such that for all B, C isomorphic to A,

Φ(X⊕B⊕C)(α)
is an isomorphism between B and C. It follows from results of Ash [5]

that a structure is uniformly ΔΔΔ0
α-categorical if and only if its automorphism orbits

are definable by Σin
α formulas. The usual proof of Scott’s theorem builds a Scott

sentence for a structure out of the defining formulas of its automorphism orbits.
This shows that such a structure must have a Πin

α+1 Scott sentence. On the other
hand, Montalbán [17] showed that a structure with a Πin

α+1 Scott sentence must
have all automorphism orbits Σin

α definable. This unifies the two approaches and
gives a robust notion of Scott rank.
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1704 ANTONIO MONTALBÁN AND DINO ROSSEGGER

Theorem 1 [17]. The following are equivalent for countable A and α < �1.

(1) Every automorphism orbit of A is Σin
α -definable without parameters.

(2) A has a Πin
α+1 Scott sentence.

(3) A is uniformly ΔΔΔ0
α-categorical.

(4) The set of copies of A is ΠΠΠ0
α+1 in the Borel hierarchy.

(5) No tuple in A is α-free.

The least α satisfying the above is the (parameterless) Scott rank of A.

Apart from the parameterless Scott rank several other notions of Scott rank can
be found in the literature. Scott [20] used a notion of rank based on symmetric
back-and-forth relations, Ash and Knight [3] defined two notions of rank based on
infinitary equivalence of tuples, and Montalbán [17] also proposed a parameterized
version of the above rank. All of these ranks differ by a small ordinal constant. While
Montalbán’s parameterized Scott rank shares the robustness of the parameterless
Scott rank, we focus on the latter in this article as it allows for a slightly finer
complexity analysis.

We already gave a quick introduction to all of the notions appearing in Theorem 1
except Item 5. This is a combinatorial condition that is useful in arguments. It is
based on the asymmetric back-and-forth relations, a variation of the back-and-forth
relations first introduced by Barwise [6] and often used in computable structure
theory. See [3, Chapter 15] for a development of their theory and applications. Let
us define the asymmetric back-and-forth relations formally. Our definitions follow
Montalbán’s upcoming book [18] and we refer to it for a thorough treatment of the
back-and-forth relations and other notions used here.

Definition 1. Fix a relational vocabulary �. Given an ordinal α, �-structures
A and B and tuples ā ∈ A<� , b̄ ∈ B<� define the ≤α back-and-forth relations
inductively as follows:

(A, ā) ≤α (B, b̄) ⇐⇒ (∀� < α)∀d̄ ∈ B<�∃c̄ ∈ A<�(B, b̄d̄ ) ≤� (A, āc̄).

For the base case let (A, ā) ≤0 (B, b̄) if ā and b̄ � |ā| satisfy the same quantifier-free
�|ā|-formulas.

Karp [12] showed that, forα > 0, (A, ā) ≤α (B, b̄) if and only if every Πin
α -formula

that is true of ā in A is true of b̄ in B.
In this article we will mostly look at the case in the above definition when A = B.

In this case we will write the shorthand ā ≤α b̄ for (A, ā) ≤α (A, b̄).

Definition 2. A tuple ā in A is α-free if

(∀� < α)∀b̄∃ā′b̄′(āb̄ ≤� ā′b̄′ ∧ ā 
≤α ā′).

One of the main questions about structural complexities is how complicated
structures in natural classes can be. More formally, we want to calculate the possible
Scott ranks in natural classes of structures. Makkai [15] defined the following.

Definition 3. Let T be an L�1�-sentence. The Scott spectrum of T is the set

ScottSp(T ) = {α < �1 : α is the Scott rank of a countable model of T}.
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THE STRUCTURAL COMPLEXITY OF MODELS OF ARITHMETIC 1705

While this definition is about models of L�1�-sentences we can also use it for
measuring the complexity of structures in elementary classes, as every first-order
theory can be viewed as a sentence of L�1� by taking the conjunction of all the
sentences in the theory.

The purpose of this article is to study the complexity of models of Peano arithmetic
(PA) where, as usual: PA is the theory consisting of the axioms for discrete ordered
semirings and the induction scheme. An easy argument shows that the Scott rank
of the standard model N is 1. We show that N is the only model of PA that has Scott
rank 1 and that all other models must have Scott rank at least �. In particular, the
non-standard prime models of PA have Scott rank� and non-homogeneous models
of PA must have Scott rank greater than �. For non-standard models of the theory
of the natural numbers, true arithmetic, we obtain a stronger lower bound. Every
such model must have Scott rank greater than �. Giving a reduction from the class
of linear orderings via Δin

1 bi-interpretability to the structural �-jump of models of
an arbitrary completion of PA we obtain that every Scott rank greater than � is
realized by a model of PA and thus the following.

Theorem 2. Let T be a completion of PA.
(1) If T = Th(N), then ScottSp(T ) = {1} ∪ {α < �1 : α > �}.
(2) If T 
= Th(N), then ScottSp(T ) = {α < �1 : α ≥ �}.

Thus, ScottSp(PA) = {1} ∪ {α < �1 : α ≥ �}.

In Section 2 we formalize the back-and-forth relations in PA to obtain the
aforementioned lower bounds for the Scott ranks of non-standard models. In
Section 4 we analyze results by Gaifman [9] to recover a reduction from linear
orderings to models of PA. It turns out that this reduction actually provides a
reduction from linear orderings to the structural�-jumps of models of PA. This and
the properties of the structural α-jump are reviewed in Section 3. At last we combine
all of our results to obtain a proof of Theorem 2 and state some open problems.

§2. Back-and-forth relations and Peano arithmetic. Throughout this article we
assume that M and N are non-standard models of PA, and M and N are their
respective universes. We will write N for the set of standard natural numbers in a
given model and ṁ for the formal term representing the natural number m in PA.
We can code bounded subsets of a model M, M-finite sets, using elements of M.
Informally we let 0̇ be the code for the empty set and given anM-finite set A,

∑
a∈A 2a

is its code. Using this and Cantor’s pairing function 〈x, y〉 = 1
2 ((x + y)2 + 3x + y)

we can code sequences ā ∈M<� by the M-finite set {〈i, ai〉 : i < |ā|}. The length of
sequences and concatenation can be defined in the obvious way. We refer the reader
to [21] for formal definitions.

Let TrΔ0
1

be the truth predicate for bounded formulas, i.e., a predicate satisfying

for all bounded formulas φ(x)

PA � ∀x (TrΔ0
1
(�φ�, x) ↔ φ(x)).

We define a version of the standard asymmetric back-and-forth relations where we
bound the length of the tuples involved. The idea is that we want to be able to
talk about the back-and-forth relations within models of PA, and the problem is

https://doi.org/10.1017/jsl.2023.43 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.43


1706 ANTONIO MONTALBÁN AND DINO ROSSEGGER

that we don’t want to have to consider tuples of non-standard length. Inductively
define bounded asymmetric n-back-and-forth relations with bound a, denoted ≤an , for
all n ∈ � as follows:

ū ≤a0 v̄ ⇔ (∀x ≤ |ū|)(TrΔ0
1
(x, ū) → TrΔ0

1
(x, v̄)),

ū ≤an+1 v̄ ⇔ ∀x̄∃ȳ
(
|x̄| ≤ a → v̄x̄ ≤an ūȳ

)
.

We view ū ≤an v̄ as a formula on three variables ū, v̄, and a that refer to elements of
the model, and an outside parameter n ∈ � that is just part of the notation. Note
that the a parameter in the definition of ≤a0 is technically superfluous. We just use it
to emphasize that ≤a0 is a relation in the language of PA. Thanks to the availability
of codes for strings we regard the above formulas as ternary predicates that are false
if for some elements ū, v̄, a ∈M , ū and v̄ are not codes for sequences. Defined like
this, the bounded back-and-forth relations behave as expected.

Proposition 3. The bounded back-and-forth relations ≤xn satisfy the following
properties for all n ∈ �:

(1) PA � ∀ū, v̄, a, b((a ≤ b ∧ ū ≤bn v̄) → ū ≤an v̄).
(2) PA � ∀ū, v̄, a(ū ≤an+1 v̄ → ū ≤an v̄).

Proof. Item 1 can be shown using induction on n ∈ �. The case n = 0 follows
easily. For the n + 1 case, take a ≤ b, and ū and v̄ in the model. Then

ū ≤bn+1 v̄ ⇐⇒ ∀x̄∃ȳ
(
|x̄| ≤ b → v̄x̄ ≤bn ūȳ

)

=⇒ ∀x̄∃ȳ
(
|x̄| ≤ a → v̄x̄ ≤bn ūȳ

)

=⇒ ∀x̄∃ȳ
(
|x̄| ≤ a → v̄x̄ ≤an ūȳ

)
⇐⇒ ū ≤an+1 v̄,

where the second line uses that |x̄| ≤ a =⇒ |x̄| ≤ b, and the third line uses the
induction hypothesis.

Item 2 follows from the definition by an easy induction. �
Proposition 4. Let a, b ∈M . Then

a ≤n b ⇐⇒ (∀m ∈ �)M |= a ≤ṁn b.

Furthermore, if there is c ∈M \ N such that M |= a ≤cn b, then a ≤n b.
Proof. That a ≤n b =⇒ M |= a ≤ṁn b for m ∈ � follows by the same argu-

ment as in the previous proposition using |x̄| < � instead of |x̄| ≤ b.
ThatM |= a ≤cn b =⇒ a ≤n b for c ∈M \ N also follows by the same argument

as in the previous proposition now using |x̄| < c instead of |x̄| ≤ b, and |x̄| < �
instead of |x̄| ≤ a.

Finally, suppose that (∀m ∈ �)M |= a ≤ṁn b. The set of all m ∈M for which
M |= a ≤mn b is definable in M (by a finitary Π0

2n formula), and it contains all
m ∈ �. Since M satisfies induction, this set must overspill and contain some c ∈
M \ N. So we have a ≤cn b. It follows from the previous paragraph that we then have
a ≤n b. �

Lemma 5. For every ā, b̄ ∈M<� , ā ≤� b̄ if and only if tp(ā) = tp(b̄).
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Proof. The left to right direction follows since ā ≤� b̄ implies that every Πin
�

sentence true of ā is true of b̄. To see the other direction assume that tp(ā) = tp(b̄).
Then there is N � M and � an automorphism of N with �(ā) = b̄, so in particular
(N , ā) ≤� (N , b̄). For every n,m ∈ � we have that N |= ā ≤ṁn b̄ and thus also
M |= ā ≤ṁn b̄. Thus, by Proposition 4, for every n ∈ �, (M, ā) ≤n (M, b̄) and
(M, ā) ≤� (M, b̄) as required. �

2.1. Homogeneous models. Recall that a model M is homogeneous if every
partial elementary map M →M extends to an automorphism. This implies that
the automorphism orbits of elements in homogeneous models are equal to their
types. Some of the best known examples of homogeneous models are atomic and
recursively saturated models.

Lemma 5 already implies that models of PA that are not homogeneous must have
Scott rank larger than �. To see this recall that if M is not homogeneous, then
there are ā, b̄ ∈M<� such that tp(ā) = tp(b̄) and ā and b̄ are not automorphic. If
SR(M) ≤ �, then the automorphism orbit of b̄ is Σin

� definable and thus ā 
≤� b̄, a
contradiction with Lemma 5.

Lemma 6. If M is not homogeneous, then SR(M) > �.

Given a formula �(y1, ... , yn) = ∃xφ(x, y1, ... , yn), a model M, and a1, ... , an ∈
M recall that a Skolem term sφ(a1, ... , an) is the least element b ∈M satisfying
φ(b, a1, ... , an). If M is a model of PA, then b is uniquely determined if M |=
�(a1, ... an). If M 
|= �(a1, ... , an) we use the convention that b = 0. In the special
case where� is parameter-free we refer to b as Skolem constant and denote it bymφ .
Consider the subset

N = {mφ : φ an L-formula}.

One can prove, using the Tarski–Vaught test, that N is an elementary substructure
of M. Furthermore N is unique up to isomorphism among models of T = Th(M):
This is because for all formulas �(y1, ... , yk), we have that T decides whether
�(mϕ1 , ... , mϕk ) holds or not. Since N is a sub-model of all models of T, it is the
prime model of T. Furthermore, for any M � N if n ∈ N , then the automorphism
orbit of n in M, autM(n), is a singleton as every element of N is definable in M.

Theorem 7. Let N be a non-standard prime model of PA, then SR(N ) = �.

Proof. Every prime model is atomic and thus has Scott rank at most �, as the
defining formulas of the automorphism orbits are given by the isolating formulas of
the types. To see that SR(N ) ≥ � consider any non-homogeneous model M � N .
Then by Lemma 6, SR(M) > �. Thus, for every n there are ā0, ā1 ∈ M<� such
that, ā0 ≤n ā1 but ā0 
∈ autM(ā1). Fix n. For every m ∈ �,

M |= ∃x̄0, x̄1
(
x̄0 
= x̄1 ∧ x̄0 ≤ṁn x̄1

)

and by elementarity N |= ∃x̄0, x̄1
(
x̄0 
= x̄1 ∧ x̄0 ≤ṁn x̄1

)
. Consider the set

Xn = {b ∈ N : N |= ∃x̄0x̄1

(
x̄0 
= x̄1 ∧ x̄0 ≤bn x̄1

)
}
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which is a definable subset ofN containing all ofN. Therefore, asN is non-standard,
it must overspill and contain an element b∗ ∈ N \ N. Consider ā0, ā1 ∈ N<� such
that ā0 ≤b∗n ā1. Then, by Proposition 4, ā0 ≤n ā1 but ā0 
= ā1. Since all the elements
of N are definable, all automorphism orbits are singletons. It follows that the
automorphism orbit of a1 is not Σin

n definable (as every Σin
n formula true of a1 is also

true of a0). Hence SR(N ) > n. Thus, N does not have Scott rank less than �. �

Theorem 8. Let M be a model of PA such that M 
|= Th(N), then SR(M) ≥ �.

Proof. Let N be the elementary sub-model of M consisting of all Skolem
constants in M. In particular, N is the prime model of Th(M). Towards a
contradiction, suppose that SR(M) = n < �. Then every automorphism orbit of
M is Σin

n definable, and therefore whenever ū ≤n ā, we get that ū ∈ aut(ā). Fix
ā ∈ N<� . Since ā is definable in M, whenever we have ū ≤n ā, we have ū = ā.

Consider the set

Xā = {c ∈M : M |= ∀ū(ū ≤cn ā → ā = ū)}.

This definable set contains all c ∈M \ N, and hence it must contain some k ∈ N. By
elementarity, we get that N |= ∀ū(ū ≤k̇n ā → ā = ū), and in particular whenever we
have (N , ū) ≤n (N , ā), we have ū = ā. This is true for all ā ∈ N<� , contradicting
Theorem 7. �

For non-standard models of true arithmetic we get an even better lower bound.

Theorem 9. Let M |= Th(N) be non-standard. Then SR(M) > �.

Proof. Assume that M |= Th(N). Then the elementary submodel N � M
consisting of all Skolem constants in M is isomorphic to N. Because N is standard
and SR(N) = 1 it satisfies ∀āā′(∀x(ā ≤x1 ā′) ↔ ∀x(ā ≤xn ā′)). Furthermore, no
tuple in N is 1-free. In particular, N satisfies the following version of 1-freeness for

the bounded back-and-forth relations: ∀ā∃b̄∀ā′b̄′∃x
(
āb̄ ≤x0 ā′b̄′ → ∀y(ā ≤y1 ā′)

)
.

Combining these two observations we get that N satisfies the following form of non-
freeness:

∀ā∃b̄∀ā′b̄′∃x
(
āb̄ ≤x0 ā′b̄′ → ∀y(ā ≤yn ā′)

)
. (1)

Say SR(M) = α with 1 < α ≤ �. In the case where α = � we have that all
automorphism orbits are Σin

� definable. Notice that this implies that for every
automorphism orbit there is n ∈ � such that the orbit is Σin

n definable and that
the complexity of the defining formulas of the automorphism orbits is cofinal
in �. Furthermore, recall that a tuple has Σin

n definable automorphism orbit if
and only if it is not n-free [18, Lemma II.65]. In any case, since α > 1 and α is
the least such that no tuple is α-free we get that there is a tuple ā that is 1-free
but not n-free for some n < �. So, M satisfies ∀b∃ā′b̄′(āb̄ ≤0 ā

′b̄′ ∧ ā 
≤1 ā
′) and

(∃� < n)∃b̄∀ā′b̄′(āb̄ ≤� ā′b̄′ → ā ≤n ā′). In particular, by the nestedness of the
back-and-forth relations M does not satisfy ∃b̄∀ā′b̄′(āb̄ ≤0 ā

′b̄′ → ā ≤n ā′). This
implies that M does not satisfy Equation (1), contradicting that M |= Th(N).

It remains to show that SR(M) 
= 1. Assume the contrary and let a ∈M \ N
with automorphism orbit defined by the Σin

1 formula φ. Then by elementarity there is
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n ∈ � such that ṅ satisfies one of the disjuncts ofφ and thus ṅ is in the automorphism
orbit of a. But this is a contradiction, since ṅ’s automorphism orbit is a singleton. �

It is easy to see that every homogeneous model has Scott rank at most � + 1,
as every automorphism orbit is definable by the infinitary conjunction over the
formulas in its type. In the case where T is not true arithmetic we do not know
whether there are non-atomic homogeneous models of T with Scott rank �.

§3. The canonical structural α-jump and bi-interpretability. One way to obtain
a characterization of the Scott Spectrum of PA is to find a reduction from
a well-understood class of structures to models of PA. One particularly well-
understood class is the class of linear orderings. It follows from results of Ash [5]
that ScottSp(LO) = {α < �1}. Theorem 8 shows that we cannot find a reduction
from linear orderings that preserves Scott ranks. Instead we need a reduction that
preserves Scott ranks up to an additive factor of �. We will do this by giving a
reduction via Δin

1 bi-interpretability from the class of linear orderings to the class of
canonical structural � jumps of models of a given completion of PA in Section 4.
Before that we need to discuss infinitary bi-interpretability and canonical structural
�-jumps.

3.1. Reductions via infinitary bi-interpretability. Infinitary bi-interpretability
between structures, studied by Harrison-Trainor, Miller, and Montalbán [11],
is a weakening of the model-theoretic notion of bi-interpretability. Let us recall
these notions.

Definition 4 ([11]). A structureA = (A,PA
0 , ... ) (wherePA

i ⊆ Aa(i)) is infinitar-
ily interpretable in B if there are relations DomA

B ,∼, R0, R1, ... , each L�1� definable
without parameters in the language of B such that:

(1) DomB
A ⊆ B<� ,

(2) ∼ is an equivalence relation on DomB
A,

(3) Ri ⊆ (DomB
A)a(i) is closed under ∼,

and there exists a function fB
A : DomB

A → A which induces an isomorphism:

fB
A : AB = (DomB

A, R0, R1, ...)/∼ ∼= A.

We say that A is Δin
α interpretable in B if the above relations are both Σin

α and Πin
α

definable in B.

Definition 5 ([11]). Two structures A and B are infinitarily bi-interpretable if
there are interpretations of each structure in the other such that the compositions

fA
B ◦ f̃B

A : Dom(DomB
A)

B → B and fB
A ◦ f̃A

B : Dom(DomA
B )

A → A

are L�1� definable in B, respectively, A. If A and B are Δin
α interpretable in each

other and the associated compositions are Δin
α definable, then we say that A and B

are Δin
α bi-interpretable.
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1710 ANTONIO MONTALBÁN AND DINO ROSSEGGER

The following definition is a generalization of reducibility via effective bi-
interpretability. See [19] for a thorough treatment of effective bi-interpretability.

Definition 6. A class of structures C is reducible via infinitary bi-interpretability
to a class of structures D if there are infinitary formulas defining domains, relations,
and isomorphisms of an infinitary bi-interpretation so that every structure in C is
bi-interpretable with a structure in D using this bi-interpretation. If all the formulas
are Δin

α then we say that C is reducible via Δin
α bi-interpretability to D.

Two structures that are infinitary bi-interpretable behave in the same way. A
particularly striking testimony of this is the following result.

Theorem 10 ([11]). Two structures are infinitary bi-interpretable if and only if their
automorphism groups are Baire-measurably isomorphic.

It is easy to see that two Δin
1 bi-interpretable structures have the same Scott

sentence complexity and thus also the same Scott rank. However, this observation
is not true for infinitary bi-interpretability in general. Furthermore, Theorem 8
shows that there is no hope in having a reduction from linear orderings to Peano
arithmetic that preserves the Scott rank. Instead, our goal is that given a linear
ordering L we produce a model NL such that L and NL are bi-interpretable and
SR(NL) = � + SR(L). Infinitary bi-interpretations of two structures A and B such
that SR(A) is equal to α + SR(B) have some interesting properties. As we will see
in Corollary 15 they give Δin

1 bi-interpretations between A and B(α), the structural
α-jump of B.

3.2. The canonical structural α-jump. The canonical structural α-jump is an
extension of the ideas developed by Montalbán [16] (see [19] for a more up-to-
date exhibition including recent developments). The canonical structural jump of a
structure A is obtained by adding relation symbols for the Πin

1 types of tuples in A
to its vocabulary. It is Πin

1 definable in A and Δin
1 bi-interpretable with the jump of

A. When trying to generalize to the α-jump, it is not immediately clear how these
definability properties carry over. After all, for α > 1, there might be continuum
many formulas in the Πin

α -type of a tuple. However, surprisingly we will see that
these properties do carry over.

Definition 7. Given a �-structureA and a countable ordinalα > 0 fix an injective
enumeration (āi)i∈� of representatives of the α-back-and-forth equivalence classes
in A. The canonical structural α-jump A(α) of A is the structure in the vocabulary
�(α) obtained by adding to � relation symbols Ri interpreted as

b̄ ∈ RA(α)
i ⇐⇒ āi ≤α b̄.

We will use the convention that A(0) = A.

Notice that the canonical structural α-jump of a structure is only unique up to
choice of enumeration of all the Πin

α types. When working with the jump we always
have a fixed enumeration in mind. This does not impose a strong restriction as for
two enumerations the two resulting candidates for the canonical structural α-jump
are Δin

1 bi-interpretable.
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Proposition 11. Let A be a �-structure and φ be a Σin
α+1 �-formula. Then there is

a Σin
1 �(α)-formula � such that

A(α) |= ∀x̄ (φ(x̄) ↔ �(x̄)).

Proof. Since a Σin
α+1 �-formula is a disjunction of existentially quantified Πin

α

�-formulas, it is enough to prove that every Πin
α �-formula ϕ is equivalent to a Σin

1
�(α)-formula �. Let (āi)i∈� be the enumeration of representatives of α-back-and-
forth classes used to generate A(α). Given φ let Iφ = {i : A |= φ(āi)}. We claim that
� =

∨∨
i∈Iφ Ri is as required.

The proof of the claim follows easily from the definition of �. Suppose first
that A |= φ(ā). Then ā ≡α āi for some i ∈ I . It follows that A(α) |= Ri(ā) and
so A(α) |= �(ā). Conversely, if A(α) |= �(ā), then A(α) |= Ri(ā) for some i ∈ I . It
follows that āi ≤α ā. Since A |= ϕ(āi) and ϕ is Πin

α , we have that A |= ϕ(ā) too. �

Let Γ be a set of formulas. Then Γ is Πin
α -supported in A if there is a Πin

α formula
φ such that

A |= ∃x̄φ(x̄) ∧ ∀x̄

⎛
⎝φ(x̄) →

∧∧

∈Γ


(x̄)

⎞
⎠.

A proof of the following fact appeared in [18].

Proposition 12 ([18, Lemma II.62]). For every ordinal, every structure A, and
every tuple ā ∈ A<� , Πin

α -tpA(ā) is Πin
α -supported in A.

Note that in Proposition 12 the supporting formula φ is indeed equivalent to
the Πin

α -tpA(ā) as it is itself Πin
α . In other words, A |= φ(b̄) ⇐⇒ ā ≤α b̄. As

a consequence we get a syntactic definition for the canonical structural α-jump,
similarly to the structural 1-jump.

Corollary 13. For any structure A and non-zero ordinal α, A(α) is Δin
α+1

interpretable in A.

Proof. All the relations R
A(α)
i are Πin

α definable in A. These definitions
together with DomA

A(α)
= A and ∼ the graph of the identity function yield a Δin

α+1

interpretation of A(α) in A. �

Proposition 12 also lets us proof the dual of Proposition 11.

Proposition 14. Let A be a �-structure and let φ be a Σin
1 �(α)-formula. Then there

is a Σin
α+1 �-formula � such that for all ā ∈ A<�

A |= �(ā) ⇐⇒ A(α) |= φ(ā).

Proof. To obtain � from φ simply replace each occurrence of the relation Ri
with the supporting formula of the Πin

α type of āi . Clearly the resulting formula is
Σin
α+1 and A(α) |= φ(ā) if and only if A |= �(ā). �

Combining everything we have proven about the structural α-jump so far, the
following corollary may not be very surprising. It is, however, quite useful as we will
see in Section 4.
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Corollary 15. For all countable ordinals α and 
, the following are equivalent.
(1) A(
) is Δin

1 bi-interpretable with B(α).
(2) A is infinitary bi-interpretable with B such that:

(a) the interpretation of A in B and fA
B ◦ f̃B

A are Δin
α+1 in B,

(b) the interpretation of B in A and fB
A ◦ f̃A

B are Δin

+1 in A,

(c) for every ā ∈ DomB
A, {c̄ : (AB, c̄) |= Πin


 -tpA
B

(ā)} is Δin
α+1 definable in B,

(d) for every b̄ ∈ DomA
B , {c̄ : (BA, c̄) |= Πin

α -tpB
A

(b̄)} is Δin

+1 definable in A.

Proof. Assume that A(
) is Δin
1 bi-interpretable with B(α). From Corollary 13

we get that B(α) is Δin
α+1 interpretable in B and hence if A(
) is Δin

1 interpretable in
B(α), then it is Δin

α+1 interpretable in B. In particular, A is Δin
α+1 interpretable in B.

Similarly, as fA
B ◦ f̃B

A is Δin
1 definable in B(α), it is Δin

α+1 in B. Thus, we get Item 2a
and Item 2c. Item 2d and Item 2d follow by a symmetric argument.

Assuming all the items in Item 2 we get that A(
) is Δin
α interpretable in B and B(α)

is Δin

 interpretable in A. By Proposition 11 we get that A(
) is Δin

1 interpretable in

B(α) and vice versa, that fA
B ◦ f̃B

A is Δin
1 definable in B(α), and that fB

A ◦ f̃A
B is Δin

1
definable in A(
). Thus, A(
) and B(α) are Δin

1 bi-interpretable. �
Using Lemma 5 we get that the canonical structural �-jump of models of Peano

arithmetic has a model theoretic flavor.

Proposition 16. For N |= PA, the structure (N , (Sn)n∈�), where (Sn)n∈� is a
listing of the types realized in N , is the canonical structural �-jump of N .

At last we need to relate the Scott rank of a structure with the Scott rank of its
jump. For this we need to study how the back-and-forth relations interact.

Proposition 17. Let A be a structure and α, � < �1 where � > 0. Then
(A(α), ā) ≤� (A(α), b̄) ⇐⇒ (A, ā) ≤α+� (A, b̄).

Proof. The proposition is proven by transfinite induction on � . The successor
and limit cases are actually trivial, and the only case that matters is the base case
� = 1.

Say (A, ā) ≤α+1 (A, b̄), then Σin
α+1-tpA(b̄) ⊆ Σin

α+1-tpA(ā). By Propositions 11
and 14, Σin

1 -tpA(α) (b̄) ⊆ Σin
1 -tpA(α) (ā) and thus (A(α), ā) ≤1 (A(α), b̄).

On the other hand assume that (A(α), ā) ≤1 (A(α), b̄). We have that (A, ā) ≤α+1

(A, b̄) if and only if for all d̄ there is c̄ such that (A, b̄d̄ ) ≤α (A, āc̄). Fix a tuple
d̄ and let āi be such that b̄d̄ ≡α āi . Then (A(α), b̄d̄ ) |= Ri(b̄d̄ ), and in particular
(A(α), b̄) |= ∃x̄Ri(b̄x̄). By assumption that (A(α), ā) ≤1 (A(α), b̄), also (A(α), ā) |=
∃x̄Ri(āx̄). Pick a witness c̄0 for x̄. Then Πin

α -tpA(āc̄0) ⊇ Πin
α -tpA(b̄d̄ ) and thus

(A, b̄d̄ ) ≤α (A, āc̄0) as required. �
Assume that a tuple ā from A is (α + �)-free where � ≥ 1. Then in particular for

all 
 < �

∀b̄∃ā′b̄′
(

(A, āb̄) ≤α+
 (A, ā′b̄′) ∧ (A, ā) 
≤α+� (A, ā′)
)

and hence by Proposition 17,

(∀
 < �)∀b̄∃ā′b̄′
(

(A(α), āb̄) ≤
 (A(α), ā
′b̄′) ∧ (A(α), ā) 
≤� (A(α), ā

′)
)
.
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So, ā is �-free in A(α). On the other hand if ā is �-free in A(α) we get by Proposition
17 that

(∀
 < �)∀b̄∃ā′b̄′
(

(A, āb̄) ≤α+
 (A, ā′b̄′) ∧ (A, ā) 
≤� (A, ā′)
)
.

Recall that the back-and-forth relations are nested, i.e., if for some ā, b̄, and � ,
ā ≤� b̄, then for all 
 < � , ā ≤
 b̄. Hence we get that the above equation holds for
all 
 < α + � and thus ā is (α + �)-free in A. Using Item 5 in Theorem 1 we obtain
the following.

Corollary 18. For any structure A and non-zero α, � < �1, SR(A) = α + � if
and only if SR(A(α)) = � .

§4. Reducing linear orderings to models of PA. The goal of this section is to
complete the proof of Theorem 2 by showing that for every completion T of PA and
every countable ordinal α bigger than �, α is the Scott rank of a model of T. The
main missing part is the following theorem which is the main result of this section.

Theorem 19. For any completion T of PA, the class of linear orderings is reducible
via Δin

1 bi-interpretability to the canonical structural �-jumps of models of T.

To prove Theorem 19 we use a classical construction of Gaifman [9]. The following
result is a special case of one of his results (see [13, Section 3.3] for more details).

Theorem 20 (cf. [9]). For every completion T of PA and every linear order L, there
is a model NL |= T such that the automorphism groups of L and NL are isomorphic.

In light of Theorem 10 this result suggests that there is an infinitary bi-
interpretation between L and NL. Coskey and Kossak [8] used Gaifman’s
construction to obtain a Borel reduction from linear orderings to models of T and
thus obtained that the isomorphism relation on the models of T is Borel complete.
Analyzing Gaifman’s construction we will see that this L is Δin

1 bi-interpretable with
the canonical structural �-jump of NL.

4.1. Gaifman’s L-canonical extension. This section follows Gaifman’s construc-
tion. We will outline his proof and refer the reader to [13, Section 3.3] for details.
We will work with a fixed completion T of PA. The main ingredient of Gaifman’s
construction are minimal types. A type p(x) is minimal if and only if p(x) is:

(1) unbounded: (t < x) ∈ p(x) for every Skolem constant, and
(2) indiscernible: for every modelM, and all increasing sequences of elements ā, b̄

in M of the same length with each element realizing p(x), tpM(ā) = tpM(b̄).

This is not Gaifman’s original definition, rather a convenient characterization. The
original definition was that a type p(x) is minimal if it is unbounded and whenever
M |= T and M(a) is a p(x)-extension of M, then there is no N such that M ≺
N ≺ M(a). See [13, Section 3.2] for this and other characterizations of minimal
types.

One other property of minimal types is that they are definable in the sense of
stable model theory. That is, for every formula φ(u, v), there is a formula �φ(u) such
that for all Skolem constants t, φ(t, v) ∈ p(x) ⇔ T � �φ(t). Gaifman used these
types to build L-canonical extensions of models M given a linear order L. We will
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build the L-canonical extension of the prime model N , denoted by NL. We will fix a
minimal type p(x) not realized in N . Gaifman [13, Theorem 3.1.4] used Ramsey’s
theorem to show that minimal types exist. Let us point out though that one can find
a minimal type recursive in T [13, Remark below Theorem 3.1.4].

Letp(x), q(y) be two definable types. Then we can define the productp(x) × q(y)
to be the type r(x, y) of (a, b) in M(a)(b) where M(a) is a p(x)-extension of
M and M(a)(b) is a q(y)-extension of M(a). Definability of q(x) guarantees
uniqueness of r(x, y), as φ(x, y) ∈ r(x, y) if and only if ∃xφ(x, y) ∈ q(y) and
�φ(x) ∈ p(x). Furthermore, if M(a1, ... , an) is a p1(x1) × ··· × pn(xn)-extension
and M(b1, ... , bk) is a pi1 (xi1) × ··· × pik (xik )-extension with all ik disjoint and
between 1 and n, then there is a unique elementary embedding that is the identity
on M and takes bj to aij . This allows us to iterate p(x)-extensions. Given a linear
ordering L, associate with every l ∈ L a variable xl and a minimal type p(xl ) (where
p(xl1) and p(xl2) only differ in the free variable). Fix the prime modelN of T and let
NL be the structure obtained by taking the direct limit of all p(xl1 ) × ··· × p(xlk )-
extensions of N for every ascending sequence l1 < ··· < lk in L. The structure NL
is commonly referred to as an L-canonical extension of N . We will refer to the
elements of L and their corresponding elements in NL as the generators of NL.

4.2. Interpreting L in NL. The prime model N of any completion T of PA has a
copy whose elementary diagram—the set

⊕
i,j∈�{〈a1, ... , aj〉 : N |= φji (ā1, ... , āj)}

where φji is the ith formula in the language of arithmetic with j free variables—is
T-computable. We say that such N is T-decidable.

Something similar can be observed for the modelsNL. Fix an enumeration (si)i∈�
of the Skolem terms of T. Let Var = {xi : i ∈ L}, and, given L, let � : Var<� →
Var<� be the function taking tuples of variables and outputting them such that
their indices form an L-ascending sequence. The canonical copy of NL is given by
the quotient of the Skolem terms with parameters being the generators under the
equivalence ∼ given by

sm(x̄) ∼ sn(x̄′) ⇐⇒

⎛
⎝ ∧
i<|x̄|+|x̄′|

p(�(x̄�x̄′)i)

⎞
⎠ |= sm(x̄) = sn(x̄′).

For any first-order formula φ and elements s1(x̄1), ... , sm(x̄m) in NL we have that

NL |=φ(s1(x̄1), ... , sm(x̄m))

⇐⇒

⎛
⎝ ∧
i<|x̄1|+···+|x̄m |

p(�(x̄�1 ...
� x̄m)i)

⎞
⎠ |= φ(s1(x̄1), ... , sm(x̄m)).

We will interpret this canonical presentation of NL in L using relations in
� ×N<�L . We use � ×N<�L instead of N<�L for conceptual reasons. Given R ⊆
� ×N<�L we can effectively pass to a relation R′ ⊆ N<�L and vice versa by let-
ting R′ = {a ... a︸ ︷︷ ︸

n times

bc̄ : a, b ∈ NL, (n, c̄) ∈ R}. We let DomL
NL

= L ∪ {〈n, l1, ... lm〉 :

sn(xl1 , ... , xlm ) ∈ NL} and the relation symbols and ∼ to be interpreted in the
obvious way from NL. It is not immediate that the so defined relations are
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Δin
1 -definable in L. We will use the relativization of a result obtained by Ash, Knight,

Manasse, Slaman [4], and, independently, Chisholm [7]. A proof for the version that
we are using can be found in [19].

Lemma 21 ([19], cf. [4, 7]). Let A be a structure, R ≤ � × A<� a relation on A,
and X ⊆ �. The following are equivalent:

(1) R is uniformly relatively intrinsically X-c.e., that is in every copy Â ∼= A, the
relation RÂ is X-c.e. in Â, uniformly in the copies.

(2) R is definable by an X-computable Σin
1 formula in the language of A.

Using this lemma one easily sees that the elementary diagram of NL is Δin
1

interpretable in L.
In order to prove Theorem 19 we want to use Item 2 of Corollary 15. Towards

that we show that the Πin
� types of tuples in NL are Δin

1 definable in L. By Lemma 5
it is sufficient to show that all first-order types realized in NL are Δin

1 definable
in L. Since the full first-order structure of NL is Δin

1 interpretable in L, the sets

{b̄ : b̄ |= tpNL
L

(ā)} for ā ∈ NL are clearly Πin
1 definable in L. We will show that

they are also Σin
1 definable.

Lemma 22. For every ā ∈ (DomL
NL

)<� , the set {b̄ : b̄ |= tpNL
L

(ā)} is Σin
1 -

definable in L.

Proof. First note that if ā is an n-tuple of generators of NL, then tpNL
L

(ā) =∧
i<n p(xi) and the elements satisfying this type are all in the ∼-closure of the

generators of length n from L. It is therefore trivially Σin
1 definable in L. Every

other element is a Skolem term with generators as parameters. We will view these
elements as such. Recall that in a model of PA we can represent every finite sequence
of elements by a single element, its code. Given ā, recall that its code is the element
c(ā) =

∑
i<|a| 2〈i,ai 〉. It is then not hard to see that b̄ |= tp(ā) if and only if c(b̄) |=

tp(c(ā)). Thus, it is sufficient to establish the lemma for 1-types.

Claim 22.1. Let s be a Skolem term and a = s(l1, ... , ln) where l1 < ··· < ln ∈ L.
If b = s(k1, ... , kn) for some k1 < ··· < kn ∈ L, then b |= tp(a).

Assuming the claim, we have that every type inNL
L is a countable union of Skolem

terms with parameters being all ordered L-tuples. Let (si)i∈� be an enumeration of
these Skolem terms. Then it is definable by a Σin

1 formula of the form

y ∈ tp(a) ⇔
∨∨
i∈�

∃x1, ... , xm(i) y = si(x1, ... , xm(i)),

where the si can be viewed as a formula in the language of PA and thus are Δin
1

interpretable in L.

Proof of Claim 22.1. Note that (k1, ... , kn) |= tp(l1, ... , ln). Say b = s(k1, ... , kn)
and that b 
|= tp(a), then there is � such that NL

L |= �(b) and NL
L 
|= �(a). So

NL
L |= ∃x(x = s(l1, ... , ln) ∧ ¬�(x)) and NL

L |= ∃x(x = s(k1, ... , kn) ∧ �(x)), a
contradiction as (k1, ... , kn) |= tp(l1, ... , ln). �

We have thus shown the following.
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Lemma 23. For every linear ordering L, (NL)(α) is Δin
1 interpretable in L.

4.3. Interpreting L in NL. Our goal is to show that L is Δin
�+1 interpretable in NL.

This follows from the following lemma which can be extracted from various results
of Gaifman.

Lemma 24. For any L, {a : tpNL(a) = p(x)} = L. In particular, ({a :
tpNL(a)) = p(x)},≤NL) ∼= L.

Proof sketch. To obtain a proof of this lemma we need the definition of the gap
of an element. For fixed M |= PA, let F be the set of first-order definable functions
f :M →M for which x ≤ f(x) ≤ f(y) whenever x ≤ y. Then for any a ∈M let
gap(a) be the smallest set S with a ∈ S and if b ∈ S, f ∈ F , and b ≤ x ≤ f(b)
or x ≤ b ≤ f(x), then x ∈ S. Notice that the gaps of M partition M into ≤M-
intervals. We can thus obtain an equivalence relation a ∼ b ⇐⇒ gap(a) = gap(b)
and study the order type (M/∼,≤M), the order type of the gaps of M. Notice, that
if M is the prime model of T, then the order type of its gaps is 1 and unsurprisingly,
the order type of the gaps of NL is 1 + o(L) [13, Corollary 3.3.6].

Minimal types and gaps interact in interesting ways. Minimal types are rare, that
is no two elements in the same gap can realize the same minimal type [13, Lemma
3.1.15]. A different characterization of a rare type p(x) is that if a is an element
realizing it and b ∈ gap(a), then a is in the Skolem closure of b [13, Theorem 3.1.16].
So, in particular, if the type p(x) is non-principal, then in the first gap, the gap of
0, p(x) cannot be realized. Thus, we get that L and the ordering of the elements of
type p(x) in NL are isomorphic.

It remains to show that the elements of type p(x) are precisely the generators.
Clearly the type of every generator is p(x) by construction. To see that L ⊇ {a :
tpNL(a) = p(x)}, note that every b ∈ NL is of the form s(l1, ... , lm) where s is a
Skolem term and l1, ... , lm is a sequence of generators. Then b ∈ N (l1, ... , lm) and
thus by rarity, if b had type p(x), then gap(b) 
= gap(li) for i < m and gap(b) 
=
gap(0). But the order type of the gaps in N (l1, ... , lm) is 1 +m and every li and 0
sit in their own gap, so this is impossible. �

Lemma 24 yields a natural interpretation of L in NL given byDomNL
L = {a : a |=

p(x)}, ∼= id , and ≤LNL =≤NL . The only complicated relation is DomNL
L which

has a Πin
� definition given by the conjunction of all formulas in p(x). We thus obtain

the required interpretation.

Lemma 25. Every linear ordering L is Δin
�+1 interpretable in NL.

To finish the proof of Theorem 19 it remains to show that NL and L are infinitary

bi-interpretable, i.e., that the function fNL
L ◦ f̃L

NL
: L(NL)L → L is Δin

1 definable in

L and that fL
NL

◦ f̃NL
L : (NL)L

(NL) → NL is Δin
�+1 definable in NL. We have that

Dom
DomL

NL
L = {ā ∈ L<� : tp(NL)L(ā) = p(x)} = L. Thus, by Lemma 24, fNL

L ◦
f̃L

NL
= idL and so trivially Δin

1 definable in L.
On the other hand

Dom
Dom

NL
L

NL
= {〈n, a1, ... , am〉 : n ∈ �, (∀i < m)tpNL(ai) = p(x)}
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and

Graph
f
LNL◦f̃NL

L
=

{(〈n, a1 ... am〉, b) : 〈n, a1 ... am〉 ∈ Dom
Dom

NL
L

NL
&b = sn(a1, ... , am)}

which is easily seen to be Δin
�+1 definable in NL. We have thus shown that the

interpretations LNL and (NL)L satisfy all the conditions of Item 2 in Corollary 15.
Hence, we obtain Theorem 19 and can close by finishing the proof of Theorem 2.

Proof of Theorem 2. First, recall that by Theorem 8 no model of PA except the
standard model has Scott rank n < �. By Theorem 7 non-standard prime models
have Scott rank � and thus � is the least element of the Scott spectrum of any
completion of PA that is not true arithmetic. Similarly, for true arithmetic, by
Theorem 9 the only element of the Scott spectrum below � + 1 is 1.

To obtain models of Scott rank α for α > � we use Theorem 19 that says that
for every completion T of PA and every linear order L there is a model NL of
T such that L is Δin

1 bi-interpretable with NL(�). Hence, SR(NL(�)) = SR(L) and
thus, by Corollary 18, SR(NL) = � + SR(L). It remains to show that there are
linear orderings of every Scott rank. This follows from Ash’s characterization of
the back-and-forth relations [5]: SR(�α) = 2α, SR(�α · 2) = 2α + 1. For detailed
calculations, see [2, Proposition 19]. To obtain a linear ordering of Scott rank 1 one
can either consider finite linear orderings or �, the order type of the rationals. Both
are uniformly Δin

1 categorical. �

§5. Questions. While Theorem 2 completely characterizes the possible Scott
ranks of models of Peano arithmetic, there are possibilities to push this research
further. One question which we alluded to at the end of Section 2 concerns
homogeneous models.

Question 1. Is there a non-atomic homogeneous model M of Peano arithmetic
with SR(M) = �?

The Scott rank is a robust measure of complexity but a structure having
parameterless Scott rank α for α a success ordinal only tells us that it has a Πin

α+1
Scott sentence and no Scott sentence of complexity Πin

α . It is possible that it has
Scott rank α and, for example, a Σin

α Scott sentence. Thus, one could ask what is the
minimal complexity of a structure’s Scott sentence, its Scott sentence complexity.
The formal study of this notion was recently initiated by Alvir, Greenberg, Harrison-
Trainor, and Turetsky [1].

Question 2. Which Scott sentence complexities can be realized by models of Peano
arithmetic?

Our results in this article show that no Scott sentence complexities below Πin
�

can be realized by non-standard models of PA and that for every successor ordinal
α > �, there is a model of PA with Scott sentence complexity Πin

α+1. A thorough
study of our reduction from linear orderings to models of PA should yield an answer
to the above question, once one understands the possible Scott sentence complexities
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of linear orderings. In recent work, Gonzalez and Rossegger [10] obtained a partial
characterization of the possible Scott sentence complexities in that class.

If the parameterless Scott rank of a structure is a limit ordinal �, then it can
either have Scott sentence complexity Πin

� or Πin
�+1. For � = � the only models that

could potentially have either of these two complexities are homogeneous models by
Lemma 6. What about the atomic models?

Question 3. Let M be an atomic model of Peano arithmetic. Does M have a Πin
�

Scott sentence?
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