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SOME ORBITAL INTEGRALS AND A TECHNIQUE FOR
COUNTING REPRESENTATIONS OF GL,(F)

T. CALLAHAN

Introduction. Let F be a local field of characteristic zero, with ¢ elements in
its residue field, ring of integers ¢, uniformizer @ and maximal ideal % ;.
Let Gy = GL2(F). We fix Haar measures dg and dz on Gy and Z, the centre
of Gy, so that

meas(K) = meas Z(0p) = 1

where K = GLy(O ) is a maximal compact subgroup of Gr. If T is a torus in
Gr we take dt to be the Haar measure on 7 such that

meas(7™) =1

where 7% denotes the maximal compact subgroup of 7.
For any nonnegative integer ¢ we define

R

Let ¢, denote the characteristic function of K,. In §1 we compute the following
orbital integrals:

\I’c(T: t) = L\G‘I/C(g_ltg)dg'

In [5, §3], Langlands computes these integrals for ¢ = 0. He makes use of the
Bruhat-Tits building of Gr, and we use the same tools. Perhaps the details
contained in §1 will be helpful to those studying [5].

Let n{c, F) denote the number of irreducible, unitary, admissible representa-
tions, w, of Gz such that

1) 7 is special or supercuspidal,

i) c(w) = ¢,

i) & = 1,
where ¢(w) is the conductor of 7 (see [1]), and ¢, is the central character of .
In Section 2 we describe a method for computing #(c, F) and we undertake
explicit computations when ¢ is odd.

I would like to thank R. Langlands and R. Kottwitz for their assistance
with this work.
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1. The orbital integrals. There are several conjugacy classes of tori in
Gr. A split torus is one which is conjugate to

i~ nser)

The other conjugacy classes are in a one-to-one correspondence with quadratic
extension fields of F. If 7" is a nonsplit torus in G, then the set of eigenvalues
of elements of 7 is the multiplicative subgroup of a quadratic extension of /.
Two tori in Gr are conjugate if and only if they are isomorphic (see [3, §7].

LEmMA 1. Let H be an open subgroup of Gp and N\ a funclion on Gr such that
N(h=igh) = N(g)
forall h € H. Then, for all a« € A4,
f\ Mg lug)dg = meas (H) Ag ag)dg
ANG,

- c\Gp/ZH

where

AL ey

If T is any nonsplit torus in Gy and t € T, then

f Ng g)dg = [T: T Z] ' meas (H) f Mg the)dg.
7\Gp GplHZ

In particular, these formulae hold for H equal to K. and \ equal to ..
Proof. Let T be a nonsplit torus and ¢ € 7.

- - Heg")
g tg)dg = f N lrg) —meas (e )
fT\cp (e te)de T \Gp /H (g7te) meas (TN gHg™") “e

meas (H)

s (H)_ 1y ___meas (1)
meas (7%) T\GF,HMg g) meas (T M gHg ') dg

= meas (H)[T: T™Z]} f Ag tg)dg.

CplHZ
In the split case we proceed in the same way but use 4 = ¢ X AYZ.

Let V' be some 2-dimensional vector space over I' and let X be the set of
classes of ¢ p-lattices in 1. We say L, and L, are in the same cluss if Ly is an
F-multiple of L,. Consider X as the set of points of a graph. We join two points
M, and M, by a line of unit length if there are lattices L; ¢ M, and L, € M,
such that L; has index ¢ as a subgroup of L,. Xy is called the Bruhat-Tits
building of Gr. Bruhat and Tits have defined the building of much more
general groups, but we need only this simple case (see [6]). If m € Xp, there
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are exactly ¢ + 1 points joined to m by a line of unit length. It is not hard to
verify that any two points in X are joined by some path and that there is a
unique path of minimal length. This makes the building of G particularly
easy to work with, but it does not hold true in general; in fact, even for GLj;
the situation is much more complicated (see [4]). If m;, my € Xy, we define
disty, (mi1, ms) in the obvious way.

We identify Gr with GL(V). Thus Gr (and Gz/Z) acts on Xp. There is a
unique point py € X which is fixed by K. Let C be as in Lemma 1. Then the
line A formed by the orbit of p, under the action of C is called the standard
apariment of Xp with respect to 4. The connection with 4 is that  is the set
of points of X fixed by AY. In fact, if T is any split torus on G, then the stan-
dard apartment of X with respect to 7 is the line of points fixed by T™. For
c € Z welet

_ (DFC O
be = [ 0 1]“

If my, ms € Xp, we let (my, me) denote the minimal path from m,; to m2; we
distinguish between (m1, m2) and (ms, m,). We say g fixes (my, ms) if g fixes
each point of (my, m2) or, what is the same thing, if g fixes m; and m..

LEMMA 2. The subgroup of G which fixes (po, p—.) is equal to K . Z.

Proof. The group which fixes py is KZ, and so the group which fixes p_, is

o e -l TN e

The intersection of the two groups is K Z.

Let g be a diagonalizable element of Gg; i.e., g is conjugate, in Gp, to a
diagonal matrix. We define

rog) = VF(“a‘ﬁB)

where «, 8 are the eigenvalues of ¢ and vy is defined by

e = q7r®
for all v € F with | |z the usual absolute value on F.

LEMMA 3. Let g be a diagonalizable element of Gp contained in some split torus
D. Let & be the standard apartment with respect to D. If p € Xp, then gp = p
if and only if

distx,(p, D) = rr(g).
Proof. This is Lemma 3.2 of [5].

For r and ¢ nonnegative integers, we define . (c, ) to be the number of lines
(m,, m2) of length ¢ such that
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(i) disty,(m; A) <7 fori=1,2,
(ii) dist (m1, %) = disty, (1, o).

LEMMA 4. For ¢ # 0, c even and r = ¢/2,

Le,r) = (g + L)g*

For ¢ odd and r = [c/2],
KL (c, r) = 2q7+ie/,

For¢c # 0 and r < [c/2],
L, r) = 2¢%".

Forallr = 0,
L0, r) =q".

Proof. We must count the lines of length ¢ in Figure 1 which start at a point

level
3 o) o)
2
1
0 ---8— < ®--- 3
[)_2 1)_1 1)() 1)1 ])‘.Z
FFIGURE 1

marked by an open dot (Figure 1 is the diagram for ¥ (2, 3) with ¢ = 3). The
base line is the standard apartment . There are (¢ — 1)¢"! starting points at
level n for 0 < n = r;i.e., there are (¢ — 1)¢*! points, p, such that

disty, (p, A) = dist(p, po) = n.

Suppose that cisevenand » = c¢. A line starting at level » must proceed towards
I for ¢/2 steps and then any one of ¢ directions may be taken at each of the
next ¢/2 steps. Thus from each point at level r originate ¢¢/? lines of the required
type. At the opposite end, a line starting from the level 0 point has (¢ + 1)
initial directions and then ¢ — 1 choices of ¢ directions. In this manner we

obtain the following table:
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Level No. of Points  Lines per Point Total
0 1 (g + 1)g=! q°+ q!
1 (¢—1) (¢ + g gt + ¢!
2 (¢g— 1) (¢ + g ¢+
r—c—1 (g — 1)g— (g + gt g+ g
r—c : (g + D)g*? g +q*
r—c—+1 . q°! g+ q!
r—c+2 get gt + ¢
r—c+3 : qe 7+ q
r—c+4 (g — D)g=* q? gt 4 g
r —3 (q - 1)q1—4 q0/2+1 gf+c/2—2 + qr+c/2—3
y — 9 . qC/2+1 qr+c/2—1 + qr+0/2—2
r —1 X qc/2 qf+c/2—1 + gr+c/2—2
pe (q — l)qT—l qv/2 q7+0/2 + gr+c/2-1

If we add all this together, we get the promised result. All the other cases are
just as simple—and just as tedious!

THEOREM 1. Let D be a split torus in Gp and let a be a regular element of DM.
Then

meas(K).Z (c, r(a)),

‘I’c(.Dy a) = {0 1f Idetall" =1

if |det a|z #= 1.

Proof. Without loss of generality we may take D to be equal to 4. Let S
denote the set of lines in X of length ¢. From Lemma 1 it follows that

Gr/K.Z — S
gK . Z — (gpo, gp-c)

is a bijection. Let Sq be the subset of lines (m;, m,) in S such that
distx, (m1, A) = distx, (m1, po).

If L € S, then CL, the orbit of L under the action of C, has exactly one element
in S¢. Therefore, Lemma 1 yields

V. (4, a) = meas(K,) f V(g ag)dg
C\Gp/KcZ

= Z %(g_l(lg)-

(gpy>9p—c)€S0

It is clear that ¢ (g~!ag) is zero for all g if |det a| 5% 1, and so we assume
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|det a|z = 1. We have, from Lemma 2, that

Ye(glag) =1
& glag € K, o glag fixes (po, p—.) < a fixes (gpo, g¢p.). Lemma 3 finishes
the proof.

In order to compute ¥,.(7, {) for nonsplit tori we must work in a field large
enough so that the matrices of 7" are diagonalizable, and then embed X, in
the larger building. Let E be a quadratic extension of I. We view £ as a
2-dimensional vector space over F. If a ¢ EX, then

a:E—FE

X — aX

defines an element of GLr(E). We identify GLr(E) with Gg. The subgroup,
T», corresponding to EX is a nonsplit torus. The lattices of I are ¢ -sub-
modules of E and two lattices are in the same class if one is an /™-multiple of
the other. Thus we have a model of X, consisting of classes of lattices in £,
on which Tz acts in a natural way. If L isa lattice in E, we let [L] denote the
class containing L.

LEMMA 5. If E/F is unramified and Ty = EX, then [ O i) is the only point in
Xy fixed by T/, If E/F is ramified, then | O ) and (o O &) are the only points
iﬂ Xp ﬁxed by TFA[.

Proof. If [L] is fixed by 73*, then it is easy to check that L must be a frac-
tional ideal in @ . The rest is straightforward.

We now want to embed X in Xz. Let X consist of classes of & g-lattices of
L2 X E. It is not hard to show that £ @z £ = E X I as I2 vector spaces
under the map

(1) EQrE—-EXX
a ® b (ab, ab)

where b is the conjugate of b with respect to £/F. If [L] is a point in X, then
we obtain a point in X by

@) [L]1—[L @op Ol.

Actually, the right-hand side is a lattice class in £ ® » F£, but (1) allows us to
consider it as a point in Xg. In this way, we view X as a subset of X . If I/ F
is unramified, then each point of X has ¢*> + 1 points distance one from it,
and the embedding preserves distances. If £/F is ramified, then there are still
g + 1 points distance one from each point in X, but between any two points
of X there is a point of X g, not in X. In this case distance is not preserved;
in fact, if m,, my € Xp,

distx, (m1, my) = 2 disty, (my, ms).
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Next, we define the action of Gz on X to be compatible with (2), the injec-
tion of Gp into Gy and the previously defined action of Gz on Xy. In other
words, we identify Gz with GL(E X E) so that the following diagram com-
mutes:

GFQ————)GE

|

GL#(E) — GLyz(E X E).

The top map is injection, the left side has been defined above and the bottom
line is defined by (2); i.e.,

(gL Qop ﬁE] = g[L Qop ﬁE]

In particular, if @ € E*, then a corresponds to a diagonalizable element of
GLy(E X E) with eigenvalues @ and &. If p € Xp and g € Gr, then p is fixed
by g acting on X if and only if it is fixed by g acting on X . The torus T# C G
is mapped into a split torus 7z in Gz. The apartment Az is the line fixed by
T

LemMA 6. Let my = (O ®op Og) and my = (00 g ®op Og). If E/F is
unramified, then m; = my and Az N Xp = {m}. If E/F is ramified, then
my # My and

(1) Az M Xy is empty;

(2) distx, (Xp, Ap) = distx,(my, Ag) = 6(E/F),
where §(E/F) = vy (different of E/F) and © = 1, 2. Furthermore, if m 1s any
other point of Xp, then distyx,(m, Ag) > §(E/F).

Proof. Suppose that E/F is unramified. Then
(3) TEA[ = TI.M‘Z(ﬁE).

Therefore, a point of X is fixed by 7" if and only if it is fixed by 7. Lemma
5 says that the only point in X which is fixed by T/ is [0 z], and so the only
point of Xz in X fixed by T/ is m;.

Suppose that E/F is ramified. We no longer have (3), but any point on A
must still be fixed by 7%*. Thus, Lemma 5 implies

?IE ﬂ XF g {ml, 7712}.

Multiplication by o interchanges [ ;] and [wzO g]. Therefore, the diag-
onalizable element of GLz(E X E) corresponding to o interchanges m; and
mo. This transformation has eigenvalues oz and &g. Since disty, (m1, ma) = 1
there must be a point, m, of X, not in Xz, which is between m; and m, and
which is fixed by @z. From Lemma 3, it follows that

distXE(m, 2[1}) é VE (1 —_ @_@)

(23]
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and

diStXE(”’h, S)IE) > VE (1 — QE) .

(2)]
Since disty, (m, m;) = 1, we have
diStXE(Wll, QIE) = ]. + Vg (1 —_ E_Z_E)
E
= vy(op — @r)
= §(E/F).

For nonnegative integers ¢ and r, let #(c, r) denote the number of lines
(n1, n2) in Xz of length ¢ such that

disty,(n, n) < r, and disty,(ns, n) = 7.
where 7 is a fixed but arbitrary point in Xp.
LEMMA 7. ¢ # 0, c even and v = ¢/2,
c—1
Me,r) = AL (roenii g e gy
(¢@—1)
For ¢ odd and r = [¢/2] + 1,

M, r) = gic—ql(z‘ir‘ 1) (@ — 1),
Forr < ¢/2,

M(c,r) = 0.
For allr > 0,

MO, 7) = (¢ + 1)g"*

and

AM(0,0) = 1.
Proof. For ¢ = 3,.#(c, 3) is the number of lines of length ¢ in Figure 2. For

level
2

n

FIGURE 2
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¢ odd and [¢/2] < ¢ < r we can produce, as in the proof of Lemma 4, the
following table:

Lines per
Level No. of Poinis Point Total
0 1 0 0
1 qg+1 0 0
2 (¢ + 1)g 0 0
c—r—1 (¢ + 1)ge2 0 0
e (q + l)qc—r-1 T gc + qc—l
c—r+1 . qg ! q° + g1
c—r—+2 . qg! gt 4 gt
c —7 + 3 . qr—z qc+1 + gc—l
7 ; 2 q[c/.2]+l q7+[5/2]—1 + q7+[v/2]—2
r—1 ) glern+ qrtiern 4 griie/a—
’ (g + 1)g—? glers grHier 4 grie/a—1,

If we add all this up, and fiddle about for a bit, then we get the advertised
result. The other cases are just more of the same sort of thing.

The next two lemmas are standard results.

LemMA 8. If T is a torus in Gr, isomorphic to EX where E 1s a quadratic exten-
sion of F, then

(T: T™Z] = e(E/F)
where e(E/F) is the ramificalion index of E over F.
LEMMA 9. If ¢ is any positive integer, then
[K: K] =q¢'(g+1).

THEOREM 2. If B is a nounsplit torus in Gg, isomorphic lo an unramified
quadratic extension of F, and b € B, then

_ Jmeas(K,) (c.A, rz(®d)) if |detd|r =1
V(B ) = {0 if |det o] = 1.

Proof. Tt is clear that the integral is zero if |det b|r 5 1, and so we assume
|det b| = 1. Let .S be the set of lines in X of length ¢. Then thereisa 1 — 1
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correspondence with G/K Z given by
G/K.Z—S
chZ = (gPOr gp—c)-

Therefore, from Lemmas 1 and 8,

Il

meas(K,) f Y. (g bg)dg
G/KcZ

2 elgTbg).

(9pgrgp—) €S

Ye(B, D)

We embed Xy in X, and use Lemma 3, to obtain
Ye(gibg) =1
if and only if
disty, (¢po, Ax) = 1) and  disty, (gp—c Az) = rx (D).
But there is a unique point, m, in Xz M Ag. Therefore, for p € X,
disty, (p, Ax) = disty, (p, m).

For nonnegative integers ¢ and r, let_A4 (¢, r) be the number of lines, (%1, #2),
of length ¢ in X such that

disty,(nsy 1) £ v or disty,(n;, ) =7

for< = 1, 2, where [; and /5 are two arbitrary but fixed points in X such that
disty,(/1, 1) = 1. For ¢ = 3, 4 (¢, 2) is the number of lines of length ¢ in
Figure 3.

V
E
KA

IFIGURE 3
LemMa 10. For ¢ # 0, ¢ ecven and v = ¢/2,

-/V(c, r) = 2(]0(_(](34-;-)1) (qT—c/2+1 —~1).
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For ¢ odd and r = [c/2],
c—1
N, r) = q2—q_—1— (¢ g — 1),

For all r > 0,

r+1
A7) = 2D

For r < [¢/2],
N(e,r) = 0.

Proof. We could prove this lemma in the same manner as Lemmas 4 and 7,
but there is a simpler way. If we bend Figure 3 at the point /;, then we get
Figure 4 (ignore the points marked by closed dots). Thus A4 (c, 7) is equal to
A (c, r) plus the number of lines with an end point at one of the ¢” points on
level » 4+ 1. If ¢ is odd, then a line of length ¢ can have at most one end point
at level » + 1 and so, for r = [¢/2],

N (e, r) =M(c,7) + 27+,

If ¢ is even, we must be careful not to count twice the lines with both end points
on level » + 1. For ¢ even and » = ¢/2, we get

N e, r) =M(c,r) + qg"+¢/2  g'+e/21,
Combining this with Lemma 7, we obtain the required formulae.

THEOREM 3. If T is a nonsplit torus in Gp, isomorphic to « ramified quadratic
extension E of F, and t € T, then

%meas(Kc)/V(c, [’L@—_—jm]) if |dett|p = 1

Y. (T,1) =
0 , if |dett]p #= 1.
Proof. We assume |det t| = 1. If S is the set of lines of length ¢ in X, then
Gy/K.Z — S

¢K.Z — (gpo, gp—o)

is a bijection. Therefore, from Lemmas 1 and 8

\I/c(:[‘v t) = ZmCaS(Kc) Z l//c(g—l[g)'

(gpgrop—)ES

We embed X in X, Let m, and ms be as defined in Lemma 6 and let m be the
point of X between m; and m. (see the proof of Lemma G). For p € Xp,
we have

disty, (p, Ar) = 6(E/F) — 1 + distg(p, m)

= 6(E/F) + min{2 distx, (p, m1), 2 distx, (p, m2)}.
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The situation is illustrated by Figure 4. The open dots are points of X and
the closed dots are points in X not in X . The base line is Az. Figure 3 must
be bent at m; to relate it to Figure 4.

level

3

2

1

1 S(E/F) — 1 0
m '

---@ l —@--- ?I[-

FIGURE 4

From Lemmas 2 and 3 we have
O Ygig) =1
if and only if
t fixes gpo and gp_,
if and only if
disty, (gpo, Ar) = re(t) and disty,(gp—o Ax) = re(t).
The theorem follows easily.

If we combine Theorem 1, 2 and 3 with Lemmas 4, 7, 9 and 10 we can
establish the following table of values of ¢ (T, ¢).
For 4 a split torus, a € AM and 7 = re(a)

2¢2 =+ (g + 1)~' forr < [¢/2]
Ve(d, a) = g forr = ¢/2, c even, ¢ # 0
2¢"-1¢/2 (g 4+ 1)t for r = [¢/2], ¢ odd.

For B =~ EX where E/F is an unramified quadratic extension, b ¢ B and

r = rg(b).
0 forr < c¢/2
Y, (B,b) =< (g — 1)~ g—** + ¢"=°/* — 2) forr = ¢/2, c even
2(q — 1)~"1(g™ /a1 — 1) forr = [¢/2] + 1, ¢ odd.

For T =~ EX where E/F is a ramified quadratic extension, ¢ ¢ 7™ and
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I=1[(re(t) = 8(E/F))/2],

0 for I < [¢/2]
V(T t) = <(qg — 1)~ g1 — 1) forl = ¢/2, c even
(¢ — 1)71(2¢tera+t — g — 1) forl = [¢/2], ¢ odd.

2. The computation of #n(c, ). We shall produce a function (Lemma 13),
S on Z\Gr, which is locally constant and has compact support such that

1 ife(nr) =cande =1
0 otherwise

@ ) - |

where 7 is any irreducible unitary admissible representation of Gz. There
exists a locally integrable class function X, for each m, such that (see [3, §7])

tr(ﬂ'(fc)) = fZ\G X?r(g)fc(g)dg

If we apply equation 7.2.2 of [3], we obtain

2 fZ\TA(t) fT \wa(g)fc(g‘ltg)dgdt

TES

Il
[N

fz\G x=(€)fe(¢)dg

(NI

TZEZS fz\TA(t)x,,(t)Fc(T, 1)dt

where S is a complete set of nonconjugate tori in Gr, containing 4,

(1 — )’
[e51e7)

Ag) =

F

with «; and a. the eigenvalues of g, and

F (T, 1) = fT AL

Let S' =.5 — {4}. We define a function F, on Uzes Z\1' = % by
F.(a) = F(A,a), a € Z\A4

and
F.(t) = meas(Z\T)F.(T,t) forT € S andt € T.

Then

1

tr(w(fo) = % 2 &WIZ\TAG)XWO)FC@ML

If 7€, then 7 — T (T is the set of regular elements of 7°) has measure
zero, and so

1

tr(w(fo)) =

% meas(Z\1)

[N

J AOXOF.0.

T

m
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As in [3, p. 480], we define a measure on %’ = Ures T, by

ff(s)ds i:rew meas(Z\T) A(t)f(l)dt

This defines an inner product which we denote by (, ) and we let L2(%’)
denote the corresponding space of functions on %’. From [3, Chapters 15, 16]
we known that the characters y, are an orthonormal basis of L2(%’) where
runs over D, the set of special and supercuspidal representations of Gy.

We now suppose that

(5) F0<A) a’) =0

for all « € A. This will be shown to be true in the case ¢ is odd. Then

tr(”’(fc)) = <Fcy 5(7r>

Therefore,
F, = Z AxXr
TED
where
aT = <I;C1Xﬂ>
= tr(”‘(fc))
_J1 ife(m) =cand e =1
~ 10 otherwise.
Hence
(F,F.)= 2 at= Y a = nlc F).

TeD TeD

We have shown

TuaEOREM 4. If F (4, a) = 0, for all @ € A, then

n(, F) = (F,F.) =1 > meas(Z\T)f \AA(l)FC(T, £)%dt.

TES'

The next lemma presents (5) in a more transparent way.

Lemma 11. Suppose that f is « locally constant function on Gp with com pact
support. Then tr(mw(f)) = 0 for all principal series represeniations w if and only
if F(A, a) = 0 for all « ¢ A where

F(d,a) = f S ag)dg.
A\G
Proof. From [3, Proposition 7.6] it follows that tr(«(f)) = 0 for all principal

series representations « if and only if all the Fourier coefficients of 7(4, )
are zero.
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LEMMA 12. If ¢ 15 odd, then ¥, is identically zero on 4.

Proof. Let = denote a principal series representation of Gz. If ¢, = 1, then
c(w) is even, and so, by Lemma 11, tr(x(F,)) = 0.

It is now time to construct the functions f.. We observe that
tr(w((meas K.)~'¥.)) is equal to the number of times that = contains the
trivial representation when restricted to K .. Therefore, if ¢, is not identically 1,
then tr(r(f.)) = 0 for all ¢. Suppose that ¢, = 1. Then (see [1] or [2])

(6) (meas(K,)) tr(z(y.)) = {O if ¢ < c(xw)
c—c(@)+1 if0 =c(m) =Ze.
LeEmMMA 13. Let

f() = IPO!
fl —2\00 + (meas K})'—llpl,

and for ¢ = 2,
fe= (meas K, 2)7",» — 2(meas K. ;)" 1 + (meas K.)~'¥..
Then f. satisfies (4).

Proof. 1t is a simple exercise to verify the lemma by means of (6).

One could now verify Lemma 12 directly because F, is a linear combination
of the integrals computed in §1.

Let 7" € .S and let E be the corresponding quadratic extension of F. We
shall write §7 to mean 6(E/F). Since the eigenvalues of any element, ¢, of T°
must be conjugate with respect to E/F, |det {|z = 1 forces the eigenvalues of ¢
to be units. Therefore, the set of ¢ € 7" such that |det {|, = 1 corresponds to
O g*. We define, for # a nonnegative integer,

Hy(n) = {t € Tlrg(i) = nand |det | = 1}.

For fixed 7" € .S, the function F (7', ) depends only on 7 (t) and so we shall
write Fo (T, t) = F (T, rz()).

LemMA 14, If E/F is unramified and n = 0, then

(@q—D@+ D" nz1
qlg + 1)1 , n=0.

If E/F is ramified, then Hr(n) is empty if n is not of the form 2m + &, Jor some
nonnegalive inleger m, and

meas(Hr(2m + é7)) = ¢ "V (g — 1).
Proof. We have

(1%

meas(Hr(n)) = {

meas(Hr(n)) = measia € OgX|vy(a — a) = n}.

Suppose that E/F is ramified. Let J be a complete set of representatives of
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0 % /ag0 < such that 0 € Jand J — (0} C 0¥ If a € 0%, we can write

[eo}
o = Z (e2m + €ami1@x)ar"

m=0

where €, € J and ¢ 0. Thus

@
a = Z €2m+1(c—v)E —_ (T!E)(I)pm.
m=0

If €941 is the first odd numbered coefficient which is not zero, then

vple — @) = vyp((®p — &r)a@r™)

= 6(E/F) + 2m.
The rest is straightforward and we omit it. The unramified case is similar.
The function A(¢) has the following explicit values:

A) = g2 e if B/ F is unramified
T g 7Eif E/F is ramified.

Let B denote the unique unramified torus in S’, and let S” =S — {4, B}.
We can put the last few facts into the formula in Theorem 4 and, for odd ¢,

obtain
(F,F.,)=1%> meas(Z\T)f AW F (T, 1) dt
TES! z\?
= 1> meas Hy(n)g "F(To, n)*
n=0
+1> 02 Z meas H,(2m + BT)g—Qm—aTIf (1, 2m + 67)°
TS m=0
=1 Zo (g — Dlg+ )¢ " F(To,n)’
@) + 2 q'r Z g " Ng = V)7L, 2m + §r)”
7S m=0
We shall need
LeEMMA 15.
—or = 9g7Y,
TeS™—(T0)

Proof. This lemma is a special case of a more general theorem due to Serre.
It can be proved in several ways. It can be proved by the same techniques we
have been using. One has only to use the Weyl integration formula to obtain

1 = fG Yo(g)dg = ;g fTA(t)\I/O(T, 1)dt.
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If we put explicit values of ¥, (7, ¢) into the above, then the identity drops out.
THEOREM 5. If ¢ is an odd integer, then

~ _ J2¢°0 (g — 1) forc =2
”<C’F)_{2 for ¢ = 1.

Proof. Suppose that 7 is a supercuspidal representation of Gp. Thenc¢(w) = 2.
Therefore, for ¢ = 1, we need only count the special representations with trivial
central character. It is not hard to show that there are exactly 2 of these.

We now take ¢ to be at least 2. To make the computation we have to put
explicit values for IF.(T,¢) into (7). We start with the unramified torus B.
We shall use the results of §1 without giving specific references.

Je = (meas(K. ) ", 2 — 2(meas(K,;))"W.1 + (meas(K,)) ..
Therefore, if r = 7(D)

Fo(B,b) =M(c—2,r) —2Mc—1,7) +4(c,7).
A bit of computation shows that

pwgw):{gzw—lvw% ifr = (c—1)/2

>
ifr < (c—1)/2.
Hence,

afA<mww»me
Z\To

=4 2 (g— D@+ (=20~ g’

n=(c—1) /2
_ 207" q =D = 1)
¢ +q+1

Now suppose that 7" € S and let m = (rz(t) — 67)/2 (in view of Lemma
14, m is a positive integer). Then

F T, 1) = YN (c —2,m) — 2N (c —1,m) +N(c, m)}.
It follows that
—q¢3(g* — 1) forl> (¢ —1)/2

Fo(T,t) = qq° forl = (c—1)/2
0 forl < (¢ — 1)/2.
Therefore,
f AQ) (F(T, 1)) dt
Z\T
= (q— DG g 3 N — DT (=g — 1)
m=(c—1)/2
_ g - g +2)

¢ +q+1
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Applying Lemma 15, we get

ZLLWA@wxﬂnﬂﬂ

7Es

(c 1) /2
s (g = n@+m)
7;~q 7( ¢ +qg+1

20 P g~ Dig+2)
¢ +q+1

Adding this to the unramified term produces the advertised values of n(c, I).

To make this method work for ¢ even it is necessary to construct functions
which behave like f. but whose orbital integrals vanish on the split torus.
While this can probably be done, it is not clear what form these functions
should take. Recently J. Tunnell [7] has found a completely different method
which imposes no restrictions on ¢ or e,.
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