
FIXED POINTS OF QUASI-NONEXPANSIVE MAPPINGS x

W. G. DOTSON, Jr.

(Received 17 December 1969)

Communicated by B. Mond

A self-mapping T of a subset C of a normed linear space is said to be non-
expansive provided \\Tx — Ty\\ ^ ||JC—y\\ holds for all x, y e C. There has been a
number of recent results on common fixed points of commutative families of non-
expansive mappings in Banach spaces, for example see DeMarr [6], Browder [3],
and Belluce and Kirk [1 ], [2]. There have also been several recent results concerning
common fixed points of two commuting mappings, one of which satisfies some
condition like nonexpansiveness while the other is only continuous, for example
see DeMarr [5], Jungck [8], Singh [11], [12], and Cano [4]. These results, with the
exception of Cano's, have been confined to mappings from the reals to the reals.
Some recent results on common fixed points of commuting analytic mappings in
the complex plane have also been obtained, for example see Singh [13] and
Shields [10].

Our purpose in this paper is to show that similar results can be obtained,
in the general setting of a normed linear space, even when the hypothesis of
nonexpansiveness is considerably weakened. Essentially, we show that part of
the analysis (which is involved in some of the above mentioned results) does
not require the full force of nonexpansiveness, but requires only the existence
of at least one fixed point together with nonexpansiveness only about each fixed
point.

DEFINITION. A self-mapping T of a subset C of a normed linear space is said
to be quasi-nonexpansive provided T has at least one fixed point in C, and if p e C
is any fixed point of Tthen 117*-p|| ^ \\x-p\\ holds for all xeC.

This concept which we have labeled quasi-nonexpansiveness was essentially
introduced (along with some related ideas) by Diaz and Metcalf [7]. One notes
that a nonexpansive mapping T: C -> C with at least one fixed point in C is
quasi-nonexpansive, and that a linear quasi-nonexpansive mapping on a subspace
is nonexpansive on that subspace; but there exist continuous and discontinuous
nonlinear quasi-nonexpansive mappings which are not nonexpansive, e.g. the

') Presented to the American Mathematical Society at the Annual Meeting, 1969; see ab-
stract in Notices of the American Mathematical Society 16, No. 1, p. 231.
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mapping T from the reals to the reals defined by T(x) = (x/2) sin(l/jc), x # 0,
r(0) = 0. If T is a self-mapping of a set C, we use F(T) to denote the set of all
points in C which are fixed points of T.

THEOREM 1. If C is a closed convex subset of a strictly convex normed linear
space, and T: C -* C is quasi-nonexpansive, then F(T) = {p :p e C and Tp = p}
is a nonempty closed convex set on which Tis continuous.

PROOF. It follows immediately from the definition of quasi-nonexpansiveness
that F(T) ¥= 0 and that T is continuous at each p e F(T). Suppose F(T) is not
closed. Then there is a limit point x ofF(T) which is not in F(T). Since Cis closed,
xeC; and so x$F(T) implies Tx ^ x. Let r = (±)\\Tx-x\\ > 0. There exists
y e F(T) such that ||JC— y\\ < r. Since Tis quasi-nonexpansive we have

||rx-j|| ^ \\x-y\\ < r,
and hence we get

3r = ||7x-x|| ^ \\Tx-y\\ + \\y-x\\ < 2r.

This contradiction establishes that F(T) is closed.
We now prove that F(T) is convex. Suppose a, be F(T), a # b, and 0 < t < 1.

Then
c = (l-

since C is convex. Since T is quasi-nonexpansive we have

||Tfc—«|| ^ \\c-a\\ and \\Tc-b\\ ^ \\c-b\\.

Noting that c — a = t{b — d)&ndc — b = (1 — t)(a — b), we have

Hence, we get
\\(b-Tc) + (Tc-a)\\ = ||A-

-Tc = 0, then 11 r e - a | | = | |6-a | | ^ | |c-a | | = t\\b-a\\, whence 1 ^ /which
is not true. Similarly, Tc—a — 0 implies 1 ̂  1 — t, whence t ^ 0 which is not true.
Thus, since the space is strictly convex, there exists r > 0 such that Tc — a =
r(b — Tc); whence Tc = (1— s)a+sb where s = r/(l+r). We have Tc — a =
s(b — a), and so

s\\b-a\\ = | | rc -a | | ^ | |c-c | | = /||6-fl||,

which gives s :g t.
Using Tc—b = (l—s)(a—b), a similar argument gives s ^ t.
Thus s = t, and so Tc = (l-t)a + tb = c, i.e. c e F(T).

THEOREM 2. If C is a compact convex subset of a strictly convex normed linear
space, and T is a quasi-nonexpansive self-mapping of C, and S is a continuous self-
mapping ofC, and TS = ST, then F(T) n F(S) # 0.
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PROOF. By Theorem 1, F(T) is a nonempty closed convex subset of the
compact set C. Since TS = STwe have S(F(T)) <= F(T). Hence, by the Tychonoff
fixed point theorem, S has a fixed point in F(T).

REMARK 1. As special cases, Theorem 2 contains two theorems of Singh
[11] and part of a result of DeMarr [5].

REMARK 2. We here give an example to show that strict convexity is neces-
sary in Theorem 2 even when S is nonexpansive. This is of some interest since
DeMarr [6] has shown that if both S and Tare nonexpansive then strict convexity
is not necessary (to insure the existence of a common fixed point). In the (not
strictly convex) Banach space /°° (with ||{xn}|| = supjxj) let C be the compact
convex set

{{*„} : - 1 ^ Xj ^ 3, - 1 ^ x2 g 1, xn = 0 for all n > 2}.

Define S : C -> C by S({xn}) = (2-x1,x2,0, • • •) for all {*„} e C, and define
T: C -> C by

T(xl,x2,0, • • • ) = (xlt -x2,0, • • • ) f o r x 2 ^ 0 ,

( x l J | x 1 - 2 | , 0 , - - - ) for 1 ^Xl ^ 3.

Then S is nonexpansive, 7" is quasi-nonexpansive, and TS = ST. We have F(T) =
{(0, 0, 0, •••) , (2, 0, 0, • • • )} , and F(S) = {(1, x2, 0, • • •) : - 1 £ x2 ^ 1}, so
that F ( r ) n f ( S ) = 0.

THEOREM 3. If C is a closed bounded convex subset of a uniformly convex
Banach space, and T is a quasi-nonexpansive self-mapping of C, and S is a self-
mapping of C which is either nonexpansive or weakly continuous, and TS = ST,
then F(T) n F(S) # 0.

PROOF. Since uniform convexity implies strict convexity, we have by Theorem 1
that F(T) is a nonempty closed convex subset of the bounded set C. Since TS = ST,
we have S(F(T)) <= F(T). If S is nonexpansive then by the Browder-Kirk fixed
point theorem (Browder [3], Kirk [9]) S has a fixed point in F(T). Suppose now
that S is weakly continuous. Since uniformly convex Banach spaces are reflexive,
F(T) is weakly compact. Since the weak topology is locally convex Hausdorff,
the Tychonoff fixed point theorem gives us that S has a fixed point in F(T).

Our final result is closely related to results of DeMarr [6], Browder [3], and
Belluceand Kirk [1].

THEOREM 4. IfC is a weakly compact convex subset of a strictly convex normed
linear space, and {Tx} is a commutative family of quasi-nonexpansive self-mappings
of C, then H . F(Ta) * 0.
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PROOF. By Theorem 1, each ^(7^) is nonempty, closed, and convex; hence
each F(TX) is weakly closed. Thus, since C is weakly compact, it will be sufficient
to show that the collection {F(Ta)} has the finite intersection property. With the
inductive hypothesis that any n of these sets have nonempty intersection, consider
any n+\ of the sets F{TX), F(T2), • • ; F(Tn + 1). Let D = ( % i F(Tt) * 0.
Clearly D is weakly closed (since closed and convex), and therefore, since D <= C,
D is weakly compact. Since Tn + lTt = TlTn+1, i = 1, 2, • • •, n, we have
Tn+1(F(Tt)) c F(Ti), i = 1, 2, • • • , « , and hence Tn+1(D) c D. Choose any point
p in the nonempty set F(Tn+l). Since D is convex and weakly compact, and since
our normed linear space is strictly convex, there is a unique point q e D nearest
to p. Since Tn+1 is quasi-nonexpansive, we have \\Tn + 1q— p\\ <̂  \\q — p\\; and
q e D implies Tn+1q e D. Thus Tn+1q = q, and so (Xi=l F(Td => {?}•
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