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Abstract

Taylor’s model of dispersion simply describes the long-term spread of material along a
pipe, channel or river. However, often we need multi-mode models to resolve finer details
in space and time. Here we construct zonal models of dispersion via the new principle
of matching their long-term evolution with that of the original problem. Using centre
manifold techniques this is done straightforwardly and systematically. Furthermore, this
approach provides correct initial and boundary conditions for the zonal models. We expect
the proposed principle of matched centre manifold evolution to be useful in a wide range
of modelling problems.

1. Introduction

This paper is an exploration and development of the principle of matched centre
manifolds in constructing low-dimensional models of dynamical systems. By using
the well-studied example of shear dispersion in pipes and channels, we demonstrate
the utility of the new principle.

G. L Taylor {14] considered the dispersion of contaminant in a pipe. He derived
an advection-diffusion model for the longitudinal transport and dispersion. This
model predicts a transport of contaminant with the average velocity and with an
effective diffusivity depending on the velocity profile and cross-pipe diffusivity. Since
then there have been a variety of approaches to analysing dispersion, for example
[13, 4, 6]. There have also been several studies [7, 15, 8] using centre manifold theory
to derive such low-dimensional models of the dispersion; the basics are summarised
in Section 1.1. Centre manifold theory usefully provides these models with initial
and boundary conditions, and also caters for the presence of spatial and temporal
variations in the flow.
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However, there are difficulties encountered in using these results to predict con-
taminant dispersion. These problems include restricted spatial resolution, limited
transient predictions and difficulties in coding high order derivatives (especially in
the boundary conditions). Many of these problems are at least partially overcome
by using an invariant manifold approach (see [15]) but such analysis is considerably
more difficult, especially for boundary conditions and for nonlinear problems.

In this paper, we show how to overcome some of the difficulties. In Section 2 we
construct models of shear dispersion by requiring that a model has the “same” centre
manifold evolution, to some order, as that for the original problem. This method
of matching centre manifolds is a new notion in the low-dimensional modelling of
dynamical systems. (In some ways it is similar to the idea of embedding a centre
manifold, as discussed in [12].) In this application the constructed models may be
called zonal as we identify a mode of slow advection with the near bank zone, and a
mode of fast advection with the mid-stream zone.

Recently Chickwendu et al. [4] heuristically developed a similar zonal model of
dispersion in rivers and channels; the model involved a mode to model the “slow
zone” near the banks and bed, and a mode to model the “fast zone” in the channel
centre. However, a difference is that here the parameters of the model are determined
systematically via centre manifold theory.

Furthermore, to construct a complete model we also need initial and boundary con-
ditions to supplement the evolution equation of the zonal model. Appropriate initial
conditions of the zonal model, given the initial conditions of the original system, are
found in Section 3 by matching the initial conditions of both centre manifolds. Tech-
niques described by Roberts [10] give these initial conditions. Similarly, boundary
conditions for the centre manifold models, obtained using techniques described in
Roberts [12], are matched in Section 4 to provide correct inlet and outlet boundary
conditions for the zonal model.

Thus this principle of matched centre manifolds systematically generates models
of arbitrary order complete with initial and boundary conditions.

1.1. The centre manifold of channel dispersion As a prelude to this exploratory
work, we here summarise the most basic centre manifold model of shear dispersion
in a channel.

Consider the flow of a contaminant in a channel of constant width, modelled by the
advection-diffusion equation

dc
m +V-(gc) = V- (xVc),

where c is the concentration of the contaminant, g is the advection velocity and « is
the constant diffusivity. No flux of contaminant through the banks of the river requires
that dc/dy = O at y = +b, where b is the half-channel width.
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We assume that the fluid is incompressible and the advection is along the channel

(the x-direction) according to the velocity profile
3 y?
=i =izU|1-3],
=iutn =20 (1-2)

where U is the average velocity. As noted many times, see [15] for example, down-
stream diffusion can be neglected without affecting more than a few minor details.
Doing this, x and y can be rescaled independently, y with respect to b and x with
respect to Ub?/«, so that in effect « = 1 and U = 1. Thus the nondimensional
equation to analyse is

¢y

As the cross-stream diffusion operator 32/3y? has one neutral mode and all other
modes decay, centre manifold techniques may be applied to analyse the long-term
behaviour of this system (as explained more fully by Mercer and Roberts [7]). The
analysis is valid when the longitudinal gradients, 3/dx, are small. Centre manifold
theory [2] assures us that the system (1) evolves exponentially quickly to a low-
dimensional state which is dominated by the neutral mode. The system then evolves
slowly. To describe this low-dimensional, long-term evolution Mercer and Roberts
[7] assume that the system is dependent only on this neutral mode, say

oC
¢ =V(y,C) suchthat o = G(0), )
where C(x, t) is defined to be the cross-stream average of c(x, y, t) and is therefore
a measure of the “amplitude” of the neutral mode.

Mercer and Roberts then developed asymptotic expansions

& "C 2 3°C
wgvn(y)axn and G~;gn§ 3)
for these quantities where, for example,

v(y) =1, C))

& =-1, (%)

v (y) = — (15y* — 30y* + 7) /120, (6)

g = 2/105, @)

v2(y) = (675y° — 2940y° + 3570y* — 1020y — 29) /201600, 8)

g3 = 4/17325. ©

These expansions were computed to high order and shown to converge for large scale
structures, wave number |k| < 0.47.
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2. Multi-mode models of channel dispersion

We construct models of dispersion in channels (1) based on the new proposed
principle of matched centre manifolds. A multi-mode low-order model is sought
which has the same centre manifold evolution as the original system—the agreement
is to high order. This principle is rather like that employed in Padé approximation
(and related schemes [1, Ch. 8]) where to improve the convergence of a Taylor series
a rational function is constructed which has the same Taylor series to a specified
order. Here we improve the resolution of a centre manifold model by constructing
a multi-mode model with the same long term evolution, to some order in spatial
derivatives.

Here we consider a two-component model. It eventuates that in effect one com-
ponent is slow and the other is fast as in the zonal models of Chickwendu ez al. (3, 4].
In this multi-mode model, we posit conservative exchange between the modes, and
advection and diffusion within each mode, but no intermodal advection or diffusion.
This is shown schematically in Figure 1, where the two modes are interpreted as two
zones of different “widths” or “capacities”. A model system with these properties is

du = Au — Ba—u + Daz—u,
at dx dax?

where u = (u,, u,), and where

_|[—a a s 0 |4 O
a= 5] e=lo o) e=[0 i)

Observe that bu, +au, is conserved; if u, and u, are considered to be “concentrations”
in the zones, then the “width” of the zones is in the ratio of b : a (see Figure 1).

To determine the six constants of this model we match the long-term evolution of
(1), as occurs on the centre manifold (3), with the long-term evolution of this model,
as expressed on its centre manifold.

(10)

2.1. The centre manifold of the model As before, to construct the centre manifold
we take derivatives with respect to x to be a small parameter. Dominantly, then

du

i
and so the “concentrations” equilibrate between the zones with transients approxim-
ately like e=@*®* The centre manifold is then described in terms of the cross-zone
weighted-average C = (bu; + au;)/(a + b). As usual [9], the centre manifold is
constructed by assuming

Au,

u = ¥ (C) suchthat %—f =¥%(C),
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FIGURE 1. A schematic representation of the zonal model showing the three mechanisms of the
channel-exchange, advection and diffusion.

and then seeking asymptotic expansions for ¥ and ¢ of the form

> 9C >~ 9"C
VL ) e

Substituting these into the model equation (10), and collecting like longitudinal de-
rivatives 8"C/dx", gives a hierarchy of equations

Av, = Zv,,_,,,g,,, + Bv,_, — Dv,_,. 1
m=1
These together with amplitude conditions are easily solved to high order via the
same form of the REDUCE program as used for the original system. For example, to
second order, the evolution on the centre manifold is

ac _-dC  —S9C
ar | “ax "%
where
T = (bs; +asy)/(a + b) (12)

is the appropriately weighted mean advection velocity, and the effective diffusivity is
d = ab(s; — )’/ (a + b)’ + (bd) + ady)/(a + b). (13)

This effective diffusivity is the superposition of the weighted-mean diffusivity,
(bd, + ad,)/(a + b), and the shear-dispersion term, ab(s, — s,)?/(a + b)?, which is
proportional to the square of the velocity difference in the two zones. Using REDUCE
we easily compute higher-order terms in the expansions.
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2.2. Matching for the advection model The objective is to find a zonal model (10)
whose evolution is “close” to the original system (1) of shear dispersion. Thus we
must find good parameters to make the connection. A straightforward way, given
that the evolution on both centre manifolds is known, is to assert that the long-term
evolution on each manifold is the same to some order. As there are six degrees of
freedom in the zonal model, those being the as yet undetermined parameters a, b, s,
52, dy and d;, we determine an agreement up to sixth order in 3/9x.

First, for comparison, we match both models for the case where there is no diffusion
in the zonal model (d, = d, = 0). This reduces the number of parameters by two and
so we only seek agreement to fourth order.

Equating the coefficients of the first four derivatives of each evolution equation,
namely (12) with (5), (13) with (7) and so on, gives four nonlinear equations in four
unknowns. These equations have the solution

= ‘;—71159 - gzg(smz 4.9511,
b= 18711—29 + 4;1;?6W ~ 6.6721,
sp = % + %;Ow_fo@ ~ 1.4053,
$; = % - 2—(1);—)«/% ~ 0.4539.

As the parameters a and b are in essence the capacity of each zone, these results
suggest that the fast zone should be thought of as nearly one and a half times as wide
as the slow zone. Physically, we may imagine that the fast zone occupies the middle
three-fifths of the channel, whereas the slow zone corresponds to the two outer fifths.
However, this identification is refined in Section 3.4 when initial conditions are found.

Also, the second eigenvalue of the interaction matrix A, approximately the decay
rate onto the centre manifold, is —(a + b). Here this is —4719/406 ~ —11.62, which
is comparable (perhaps fortuitously, but discussed later) to —r2 &~ —9.8696, the decay
rate of the first neglected symmetric mode of the original system (1), a difference of
about 18%. Thus, not only is the long-term evolution nearly identical, but also the
rate of approach to the shared long-term evolution is similar in both the model and the
original.

2.3. Matching with diffusion Including the diffusion term in the zonal model makes
the matching more difficult. Thus the equations are not solved analytically, but
numerically. The solution obtained has ¢ = 4.5669 and b = 5.6569 and values
for sy, 5, d, and d, listed in Table 1. For comparison the coefficients found by
Chickwendu [3] and the previous diffusionless model are also listed. The coefficients
of the three models are very similar.
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Without diffusion | With diffusion | Chickwendu
n 0.5740 0.5533 0.5774
M2 0.4260 0.4467 0.4226
5 1.4053 1.3829 1.3333
5> 0.4539 0.5257 0.5447
d; - 0.5043x10~3 | 0.7055 x 1073
d, - 2.2426x 1073 | 1.4903 x 1073

TABLE 1. A comparison of the parameters for each of the three zonal models, where n, = b/(a + b)
and n, = a/(a + b) as used by Chikwendu.

Note the presence of a pleasing physical feature in this zonal model. The low value
of effective diffusivity in the fast zone, d,, neatly corresponds to the limited shear of
the fast flow in the centre of the channel, whereas the comparatively high value in the
slow zone, d,, matches the high shear found near the channel banks.

Lastly, the decay rate onto the centre manifold, —(a@ + b) = —10.2238, is again
remarkably close to —72, a difference of about 3.6%. This closeness may be explained
by noting that a centre manifold analysis is similar to that of a perturbed eigenproblem
where here the derivative, 0/9x, is the perturbing parameter. Typically, in a perturbed
eigenproblem the different eigenvalues are analytic continuations of each other and
are identifiable as different branches, or Riemann sheets, of the one analytic function
[1, Section 7.5]. Thus the expansion for any one eigenvalue, here the neutral mode
corresponding to the centre manifold, is affected by the other eigenvalues through
their continuation in the complex plane. Hence it is plausible to expect that the
exponentially decaying transients of the model, here dominantly exp[—(a + b)t],
do correspond to physical dynamics in the original problem. However, due to the
symmetry of the original problem about the channel centreline, the symmetric and
antisymmetric Riemann sheets are completely decoupled. Hence the zonal model can
only be affected by the symmetric channel modes.

2.4. A comparison of our two zonal models There are relatively minor differences
between the widths and advection velocities for the models with and without diffusion:
with diffusion the fast zone is a little “thicker”” and slower while the slow zone is a
little “smaller” and faster. For a further comparison between our two zonal models,
we investigate how well the evolution on the centre manifold agrees between the two
zonal models and the original system. Consider the asymptotic expansions for the
evolution on the centre manifolds, of the form

>, 9"C
G~ gg,, Y
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As discussed in Mercer and Roberts [7, Appendix], the validity of these expansions
is related to the radius of convergence of the series. By using Roberts’ generalisation
of the Domb-Sykes formula

2 8k+18k-1 — g,f
B, = ————,
8k8k-2 — 8i—1
the radius of convergence is given as
1/r. = lim B,.
k—>00
Plotting B, versus 1/k, we extrapolate to find the radius of convergence, r,, of each
expansion. For the zonal model without diffusion, the radius of convergence is about
12.15. For the model with diffusion and the original system, both have a radius
of convergence of about 11.8. (See Figure 2; note that the original system and the
diffusive zonal model are almost indistinguishable.)

By

0.08 gﬂ' """ ’mmaa
- 8g
Bg
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0.1 0.2 03 0.4 0.5 1/k

FIGURE 2. Generalised Domb-Sykes plot of the series of the B,’s, for the original system and both
zonal models, showing the close match of the evolution on the centre manifolds at high order. The
original system is the dotted circle, the zonal model with diffusion is the empty squares, and the zonal
model without diffusion is the filled squares.

This shows that by just matching evolutions at low order, important properties of
the evolution on the centre manifold, such as convergence, are also closely matched
at higher order: the model without diffusion is a good approximation; the model with
diffusion an even closer approximation. However, this does not imply that the models
will give identical behaviour inside their common radii of convergence. But it does
imply that higher-order corrections to the zonal models are likely to be small because
the high order behaviour is already closely matched to that of the centre manifold
evolution of the original system.
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3. Initial conditions

By centre manifold theory [2], for every trajectory starting near the centre manifold
there is guaranteed to be a specific solution on the centre manifold which is approached
exponentially quickly. Thus, for any initial distribution of contaminant, c°, of the
original system, there is an initial condition, C°, for starting on the manifold so
that the centre manifold solution approaches the exact solution exponentially quickly.
Traditionally it has been assumed that C? is just the cross-sectional average of the initial
concentration. This is roughly correct, but is initially in error, and the errors persist for
all time. Dynamically based arguments to derive the correct initial condition, given an
original exact initial condition, were described by Roberts[10] for a general nonlinear
system. For a linear system, such as the dynamics of shear dispersion, the derivation
may be simplified as described by Watt and Roberts [15, Section 3]. It is the later
formulation that is adopted here.

However, here we need to find an appropriate projection from the initial condition
of the original system to the zonal model, as indicated by the dotted line labelled ¢
in Figure 3. This is found using the projection from the original system to the centre
manifold, z on the figure, and that from the zonal model to the centre manifold, Z on
the figure. Then ( is determined by requiring that the composition of the projection
from the original system to the zonal and thence onto the centre manifold, is the same
as that directly from the original system to the centre manifold; that is, we find ¢ so
that Z o { is the same, to some order, as z. To obtain the correct initial condition for
the centre manifolds (solid arrows in Figure 3) we use the arguments and formulae
developed by us [15, Section 3.1], and summarised below.

3.1. Summary of the general linear analysis Consider a general linear system
u=Ju, (14)

where & is some particular linear operator (implicitly including boundary conditions
if a differential operator), and the evolution on a low-dimensional invariant subspace
u = ¥c¢, where ¥ is a linear operator spanning the subspace. To be invariant under
the evolution, this subspace must be spanned by a set of eigenvectors of &. The
evolution on the subspace may then be described by some low-dimensional evolution
equation ¢ = Y¢

As previously argued [15, Section 3], there is a projection operator which will take
any solution of the original system down onto a solution on the manifold, namely, that
solution on the manifold which is approached exponentially. This operator (Z, ... )
may be expressed as

(Z, u(t)) = c(1), (15)
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Zonal model 4 Full system

Co =G
Center manifold

FIGURE 3. Diagram showing how the initial conditions of the zonal model are found given the initial
condition of the original system, done by matching the initial condition on both centre manifolds.

for some inner product. For example, in the original system we use the inner product

1 1
(u,v)= 5_/ uvdy = uv, (16)

1
and in the zonal model, use
(u,v) =u"v. (17
From [15], the projection Z is the solution of
AV Ay (18)
and the orthogonality equation
Z,7)y=.2. 19

3.2. Initial condition from the original system For the centre manifold of the
original system, (1), we identify

0 n

> a" d
~ n 3 g’\' n N d=$ -,
z ;z W3 DY e +u g

n=1

where . = 3%/8y? with boundary conditions of no flux across the channel boundaries.
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Substituting these into (18) and collecting terms of the same order together yields

n

Lz, = Z Zn-m8m + U(¥)Zn_y.

m=1

Since & is self-adjoint, this is in exactly the same form as (2.12) in [7], which was
solved for the centre manifold of the original system. There are also the subsidiary
conditions

n

m=1 and ) 7 ,79,=0,

m=0
as a consequence of the orthogonality constraint (19).
To the first few orders, the initial condition is

_ 30 320 330
CO"’ZOCO+21L+22—'C—+ <

_— 20
dx 9x? z ax3 (20)

where

zo(y) =1,
z1(y) = — (15y* — 30y + 7)/120,
2,(y) =(675y® — 2940y°® + 3570y* — 1020y? — 413)/201600,
z3(y) = — (675y'2 — 4642y" + 10725y* — 8316y°)/17740800
+ (10705695y* ~ 23060310y” + 4076777)/24216192000.

as recorded by Mercer and Roberts [7]. Higher orders were also computed in order to
perform the matching.

3.3. Initial condition from the zonal model For the zonal model we identify

R T S 5 @
~ Y lg I sy F=A-B A Do

Substituting these into (18) and collecting terms of the same order together, yields

A'2,= Zymgn+B"Z,.,—D'Z,.,.

m=1

As can be seen, this is in the same form as (11). The differences are that the matrices
are transposed and that now an orthogonality constraint,

Zivy=1 and Y Z, v,=0,

m=0
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- needs to be satisfied.
Solving this hierarchy of equations to the first few orders, we deduce that the initial
condition for the centre manifold of the zonal model is approximately

T.,0 Ta 0 Ta2 Ta3 0
~ Z _ Z s
C'~Ziu’+ o Thga T2 s 1)
where
1 b
Z, = )
T a+b [a]
ab(s;, —s,) [—1
Zl - i
(a+b) |1
7 — ab(sy —)? [a—2b abld,—dy) [ 1
2T T @+by |b—2a (@a+b [-1)°
__ab(sy — 52)° [—a® + 6ab — 3b? ab(s; — s))(dy — dy) [a —2b
T @+by [ 3a*—6ab+b? (@+ by 2a—b]’

Higher orders were also calculated to be used for the matching.

3.4. Matching without diffusion We now find the u° for which the zonal model
matches a given ¢® by equating the expressions (20) and (21) for the two initial
conditions found on the centre manifold.

Suppose #° is given by a projection of the form

u°=¢()c°+<;()8—c(i (22)
Oy ly 8x7

where the as yet unknown 2 x 1 matrices ¢, and ¢, are to be determined by matching.
Now the initial condition on the centre manifold direct from the original system
is (20), whereas that for the centre manifold of the zonal model after the as yet
unknown projection (22) from the original system onto the model is

0

— 3C

3260
+ZTCO a +ZTC1 a 2

92¢0 T 93¢0
+ZZC082 C]a'_).

These two expressions for C° must be equal for all initial distributions ¢°, so we equate

coefficients of ¢® and its derivatives. Equating the four integrands up to 3" order, we
get four scalar equations in the unknown ¢, and (,:
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7o(y) = cho’

2(y) = 256, + Z{ o,
2(y) = erC1 + ZzTCOv
z3(y) = erg +23TC0-

Solving these linear equations gives
1.2580 21.28 —157.40 6493
Co= [0.6524] ot [—28.68] A +[ 212.0 ]z”' [—17498] &
¢ = —0.03588] | [17420]  [-26.76] = [4528]
71006332 |7 [ 2348 |71 18.708 [ 2 T (82247

These functions are shown graphically in Figure 4. Observe from Figure 4(a) that
any contaminant released near the channel centre is assigned to the fast zone mode,
whereas any released near the banks is assigned to the slow zone mode. However,
there is no sharp boundary between the physical zones; the transition is smooth. Also
observe that the corrections ¢,, shown in Figure 4(b), are about 1% of ¢,, hence
only steep gradients in the initial concentration alter the leading order in the initial
condition (22).

3.5. Matching with diffusion Following the same method as in the previous sub-
section, we find u° given c°, except now we suppose u° is of the form

- 3c0 32,0
2° = o + cl(y)i + cz(y>-axi2.

Equating the integrands up to 5" order, we get six equations in the unknown ¢,
functions:

20(y) = Z§ ¢,

21(y) = 256, + Z{ ¢,

2(y) = Z§¢, + Z{¢, + 27 ¢,
z3(y) = ZITC2 + Z;Q + Z;CO’
2(y) = Z;¢, + Z3¢, + Z7 €y,
z5(3) = Z3$, + Z5 ¢, + Z1 <.
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3

(a)

R

0.02]

(b)

-0.011

-0.02 1

FIGURE 4. Graphs of the initial condition functions as a function of y for the zonal model without
diffusion: (a) &o; (b) &1. The solid line (—) is for the fast zone, ¢,;, and the dotted line (- - - - - - ) is for
the slow zone, &,;.

Solving these linear equations, we find
14928 21.56 ~0.3796
Coln) = [0.4144] ot [—26.70] at [ 0.4702 ] &
25636 156000 7121926
+ [ 31756 ]23 + [—96616] fat [ 8821738 ]25’
~0.06074 1.7638 21.50
GO = [ 0.11436 ]z" + [2.292] at [—26.66] &

L[-76367, |, [16194] | [-174428
—1716.8 |2 7| 3856 | T | —523658 | **’
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.y = | 000100587 T 000009333 1.7612)
20 =1 _0.002914 | [ —0.00010574 | %' T | 2.290 | Z

—61.08 649.6 —9646
+ [ 90.70 ]23 + [303.2] 2t [20038] -

These functions are shown graphically in Figure 5. As in Figure 4(a), most of the
contribution to the initial condition of the fast zone comes from the middle of the
channel, the location of the fast zone, and most of the initial condition of the slow
zone comes from near the banks, the location of the slow zone.

3.6. Comparative results Using these initial conditions for both zonal models, we
compare the original system with the approximate models via some numerical simu-
lations. As well as comparing the two zonal models with the original system (1), we
also include predictions for the centre manifold model (2) with initial condition (20).

The numerical simulations employed simple finite difference schemes for each
model and the original system. The channel is long enough so that neither the inlet
nor the outlet had any influence on the contaminant field.

The initial contaminant field chosen for the comparison was a mid-channel release
of the form

Ax, y) = exp[—(2x)"? - 4y)"?],

which approximates a box of length 1 and width 0.5 at the centre of the channel. The
property chosen to base the comparison on was the average concentration across the
channel, as a function of downstream position. This is shown in Figure 6 at time
t=0.1.

From this figure, it can be seen that both zonal models are very good approximations
for this small time, indeed they are both nearly indistinguishable from the exact
solution, with the zonal model with diffusion better than the model without diffusion
(see inset). Importantly, the matching process used to guarantee a long-term agreement
between model and original, here also produces excellent short-term predictions.

Observe that all three models predict a concentration which is negative in a very
small region at the “tail” of the profile, near x &~ —0.5. This is due to the corrections of
the initial conditions and the fact the contaminant is conserved. As shown in [15] such
negative concentrations are a necessary condition for long-term agreement between
model and original system.

We also ran the model to obtain solutions for time ¢ = 1 to show a little of the long-
term agreement between the dynamics. In Figure 7, the errors in the zonal models
are shown to be typically less than 10~*, with the higher-order diffusion model being
the better. The centre manifold model has errors which are two orders of magnitude
larger — still small because correct initial conditions ensure a long-term agreement,
but not as good as the zonal models.

https://doi.org/10.1017/50334270000000497 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000000497

116 S. D. Watt and A. J. Roberts [16]
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FIGURE 5. Graphs of the initial condition functions as a function of y for the zonal model with
diffusion: (a) &o; (b) &1; () &2. The solid line (: ) is for the fast zone, &,;, and the dotted line (--- - - - )
is for the slow zone, &,;.
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FIGURE 6. Comparison of the mean concentration of each model at time + = 0.1 where: the centre
manifold model (2) is the solid line ( ); the zonal model without diffusion is the short-dashed line
(----- ); the zonal model with diffusion is the dashed line (- — — -); and the original system (1) is shown
by the discs (.). Each model simulation started from the initial conditions determined in this section.

log | diff |

-4j

-5 —

FIGURE 7. The log (to base 10) of the difference between a model and the original system at time
t = 1: the centre manifold model of Section 1.1 is the solid line ( ); the zonal model without
diffusion of Section 2.2 is the small-dashed line (- - - -); and the zonal model with diffusion of Section
2.3 is the dashed line (——-). Each model simulation started from the initial conditions determined in this
section.

https://doi.org/10.1017/50334270000000497 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000000497

118 S.D. Watt and A. J. Roberts [18]

4. Boundary conditions

The zonal models (10) are partial differential equations in space and time. Hence
spatial boundary conditions need to be specified before the equations are solved. We
find boundary conditions via adaptations of the method developed by Roberts [11] for
centre manifold models.

4.1. Inlet boundary conditions First the inlet boundary condition of the zonal
model is found as a function of the inlet boundary condition of the original system. As
explained in [11], finding the appropriate boundary condition on the centre manifold
is similar to that of finding the initial ‘condition on the centre manifold, except that
here the governing equations are taken to describe the evolution in space given slow
time variations. The “initial” condition of the spatial evolution is equivalent to the
inlet boundary condition of the time evolution.

The equations for both the original system and the zonal model (without diffusion)
are rewritten respectively as

dc ac

L= —+ —,

c=uda
ou du
Au=B— + —,
" dx + ot

which are (1) and (10) (without the diffusion term), except that here the “advection’
coefficients, u(y) and B respectively, multiply what we now consider as the “time-
like” derivative.

We perform the same analysis as in Sections 1 and 2, to get the approximation to
the centre manifolds of the spatial evolution

c~ wyC+ + w 7 +
o T T ’
u~wyC+w +w 32—C +
0 1 at 2 8[2 s
where
wo(y) =1,
w,(y) = (15y* = 30y* + 7)/120,
wa(y) = (675y% — 2940y° 4 3090y* — 60y2 — 253)/201600,
and
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S — 85 a
YI'= @+ b)as, + bsy) [—b] ’
I Ol s2)2(a%s; — b’sy) [ a ]
27 @+ b)ias, +bs)d |-b]

where the evolution on the centre manifold of the original system is

aC ac 2 9°C
SO 23
ax Y15 T (23)

and the evolution on the centre manifold of the zonal model is

aC aC - 9%C
o~ = td— 4., 24
ax “ ot + at? + (24)

where
@ =(a+b)/(as+bs) and d = (ab(s; — 52)2)/((ass + bs))?).

By equating the coefficients of the first four derivatives in the evolution equation (23)
with the first four coefficients in (24), we find that the parameters of the zonal model
a, b, s, and s, are exactly the same as those determined in Section 2.2. As the
temporal and spatial evolution equations are closely related, the reversion of each
other, it would be expected that the parameters will be the same. Thus, this is a useful
confirmation that the derived evolution equations are correct, but does not give any
new information.

By following the method outlined in Section 3, we find the inlet boundary condition
of the centre manifold corresponding to the inlet boundary condition of the original
system and the zonal model. The inner product used is a weighted average with
respect to the velocity, #(y) and B respectively, that is,

1! -
(@, B) = 5,/ u(y)e(y)B(yydy = uap,
-1
is the inner product for the original system, and

(o, B) = a” BB,

is the inner product for the zonal model. The inlet condition for the centre manifold
of the original system is found to be

C(0,¢) ~ upoc(0,1) +up1 (0 1) +upz (0 R (25)
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where

po(y) =1,
() = (105y* — 210y* + 17)/840,
p2(y) = (51975y® — 226380y° + 164010y* + 143220y* — 39001)/15523200.

The inlet condition of the centre manifold corresponding to the zonal model is

C(0,1) ~ P]Bu(0,t) + P'B —(o t)+PTBa =(0,1) + - (26)

where

1 b
Po=——|°]|,
0 as, + bS| [a:l

ab(s; — 53) as, —2as, — bs,
(a + b)(as, + bs))? [asz + 2bs, — bsl]

3ab(s, — s5,)? bsy(as, — 2as, — bs) ab(s, — s5,)? 1
(a + b)(as; + bs;)? [asl(bsl —2bs; — aSz)] (a + b)(as, + bs,)? [ ]

2=

Now we can proceed to find the inlet condition for the zonal model. Assume u(0, ¢)
is given from c¢(0, t) by an expression of the form

u(0, 1) = u(y)Cy(y)c(0, 1) +u(y)C.(y) (0 t). 27

Compare (25) with the results of the appropriate transform, (27) followed by (26) and
require that the coefficients of ¢(0, t) and its derivatives are equal to obtain

Po(y) = P B¢,

)= PgBCI +P1TBC0’
p2(y) = PerC1 +P2TBC0,
p3(y) = P} B, + P} B¢,.

The solution to these linear equations is
o) = 1.9242 + —20.40 + —1003.6 + —14490
o= 2858 [P0 | 8514 [P 4188 | P2 | 0466 | P>
0.010256 1.6112 31.02 229.2
GO = [—0.2642] po+ [5.418 ] P [213.4] P2t [3994] P

These functions are shown graphically in Figure 8. Note that the integral (27) has been
weighted by the advection velocity #(y). Thus they apply directly to the cross-channel
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distribution of the flux of contaminant at the inlet. The dominant contribution to the
fast zone is from the centre region of the channel, the dominant positive contribution
to the slow zone is from the sides of the channel. Note the negative contribution to the
slow zone from a mid-channel injection: a negative concentration travelling slowly
in the slow zone of the model, in effect, increases the speed and reduces dispersion
of the model’s predictions—as appropriate for an injection into the fast flow and little
shear of the channel centre.

2!

0.11

(b)

0057

@

% 0051

_0.1,

FIGURE 8. Graphs of the boundary condition functions as a function of y for the zonal model without
diffusion: (a) &o; (b) &;. The solid line ( ) is for the fast zone, ¢,;, and the dotted line (----- - )is
for the slow zone, &,;.

These two prescribed-inlet boundary conditions give enough boundary conditions
for the advection model to form a well-posed model.
The corrections to the boundary conditions are required so that the approximate
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models and original system are asymptotically equal, as described in [11]. However, if
the boundary conditions of the original system are independent of time, the boundary
conditions of the zonal models are just a weighted average of the inlet concentrations.

4.2. Physical boundary conditions For the model with diffusion, given the inlet
boundary conditions of the previous section (or a modification thereof), a further two
boundary conditions are needed to form a well-posed model.

Consider the zonal model

du du ’u
— =Au—-B—+D—.
ot " dax + dx?
Converting the zonal model (10) to a system of first-order partial differential equations

with space- as the time-like variable gives

du

— =, 28
rriadd (28)
av ou

Substituting
u Ax
["] (=U) ~ke

into (28-29) leads to a perturbed eigenvalue problem if the time derivative, 3/0¢, is
assumed to be a “small” perturbation. The eigenvalues of this system are A, =~ 2745,
Ay R 244, )y = 0and A, =~ —13.

e The approximate zero eigenvalue corresponds to the slow evolution in the interior
of the domain.

o Near the inlet, there will be transients behaving like e~'**. These are acceptable as
they correspond to the not-so-fast relaxation from the two inlet conditions (27) to
the slowly-varying interior dynamics.

e However, near the exit, there are two rapid exponential transients arising from
modes corresponding to the large positive eigenvalues A, and A,. These modes
must not be present and boundary conditions are here found to eliminate them.

-13x

Suppose the system (28-29) has eigensolutions {A,; z;; 4} where A, is the ei-
genvalue, z; is the left eigenvector corresponding to A;, 4, is the right eigenvector
corresponding to A, and z,.Tuj = §;;. Now the solution at the exit, x = L, is

4
ULty =) o;(t)u;,
i=1
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where a;(t) = z/ U(L, t). To eliminate the modes corresponding to A, and A, at the
exit, we thus require

4
a U=0 atx=1L.

This gives two boundary conditions in the four unknowns.
At leading order
du |-3.2862 3.2862
ax [ 10.177 —10.177] “

which asserts that any concentration difference between the fast and slow zone must
correspond to a specific spatial gradient in the zones. These allowed spatial gradients
correspond to the relatively slow dynamics, roughly e and e~'**, in the model which
have some physical basis.

5. Conclusion

We have combined some of the best features of two different approaches to mod-
elling shear dispersion into a single approach. The first approach is that of using
centre manifold theory to derive a generalised Taylor description of dispersion. The
advantage of this particular approach is that it is a straightforward mechanistic pro-
cess to find high-order approximations. Its disadvantage is its limited spatio-temporal
resolution. The second approach is to derive a zonal mode! of dispersion. Here we
developed a two-zone model, the two zones corresponding to a fast zone and a slow
zone. Previously [3], the coefficients of such a model have been obtained by heuristic
arguments. Here centre manifold techniques are used to form a description of the
long-term behaviour of this model, then by matching it is possible to find the various
parameters of the interaction, advection and diffusion in the zonal model. In essence,
this is the same principle as that employed in constructing Padé approximations of a
power series.

That the principle can work is shown by the excellent agreement exhibited in
Section 3.6 between the predictions of the zonal model and the solutions of the
original system. Although we have not been able to quantify the spatial resolution of
the zonal models (as has been done for other dispersion models [7, 15, 8]), nonetheless,
Figure 6 indicates that the resolution is significantly improved.

As noted in Section 2, we reasonably expect the exponential transients of such
a zonal system to approximately model actual physical dynamics; this is because
physical transients are a continuation of the centre manifold expansion through the
complex plane by being different branches of the one analytic function. However, in
this problem the Riemann sheets of the symmetric and asymmetric modes are entirely
disjoint-due to symmetry of the problem there is no interaction between the two
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types of modes. Thus a zonal model constructed by matching centre manifolds can
never “know” about dynamics of the asymmetric modes, and is thus deficient in the
asymmetric dynamics. To construct a zonal model that resolves some asymmetric
dynamics, perhaps we would need to introduce some asymmetry in order to couple
the symmetric and asymmetric modes.

By using asymptotically correct initial conditions, we compared the various models
in Section 3.6. This demonstrated the close agreement of the zonal models with
the original system at small time. By changing the view of the evolution from
temporal to spatial [11], we followed the same matching procedure to obtain inlet
conditions of the zonal model given the inlet boundary conditions of the original
system. Outlet boundary conditions were obtained, as in [11], by requiring that there
be no unphysically rapid transients at the outlet.

This new method of matching centre manifolds allows us to systematically derive
low-dimensional models, complete with initial and boundary conditions. Furthermore,
the derivation, based on centre manifold analysis, is significantly simpler than the
comparable invariant manifold analysis [15].

There are a few ways in which this model could be extended. The first is to find the
inlet condition of the zonal model with diffusion. It was not done here as it is more
complicated, and should not give any qualitatively different results. A second is to
include more general interactions such as interzonal diffusion into the zonal model.
This is possible as all we would dois to calculate the evolution on each centre manifold
to another couple of orders. A final extension would be to introduce a third zone (as
was briefly discussed in [4]), but this would not by itself introduce asymmetry into
the zonal model-a new idea is needed to overcome this deficit.
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