SOME RESULTS ON COHERENT RINGS II

by MORTON E. HARRIS†

(Received 16 August, 1966)

According to Bourbaki [1, pp. 62–63, Exercise 11], a left (resp. right) A-module M is said to be pseudo-coherent if every finitely generated submodule of M is finitely presented, and is said to be coherent if it is both pseudo-coherent and finitely generated. This Bourbaki reference contains various results on pseudo-coherent and coherent modules. Then, in [1, p. 63, Exercise 12], a ring which as a left (resp. right) module over itself is coherent is said to be a left (resp. right) coherent ring, and various results on and examples of coherent rings are presented. The result stated in [1, p. 63, Exercise 12a] is a basic theorem of [2] and first appeared there. A variety of results on and examples of coherent rings and modules are presented in [3].

In this note, all rings contain an identity, all modules are unitary, and all ring homomorphisms "preserve" identities. If the underlying ring is non-commutative, all definitions and results will be given for the left side; the "right side" case will be immediate.

The first results presented here concern a ring A with an ideal I which as a left ideal is finitely generated and an A/I-module M. They are used to derive necessary and sufficient coherence conditions on A/I and I for A to be left coherent. This theorem is used to show that the direct product of finitely many left coherent rings is left coherent and another application of this theorem is sketched.

A result of [3] states that, if S is a multiplicative system in the commutative coherent ring A, then A_s must also be coherent. Here we show that, if every localization at a maximal ideal of a semi-local ring is coherent, then A is also coherent. Then an example of a commutative non-coherent ring is given whose localization at any maximal ideal is noetherian and hence coherent. Finally, some results on coherent modules over commutative rings are presented.

LEMMA 1. Let A be a ring, let I be a two-sided ideal of A which is finitely generated as a left ideal, and let M be a finitely generated left A/I-module. Then M is a finitely presented left

A-module under pull back along the canonical ring homomorphism $A \xrightarrow{p} A/I$ if and only if M is a finitely presented left A/I-module.

Proof. Suppose that $M = \sum_{i=1}^{n} (A/I)m_i$; hence we obtain an exact sequence of left A/I-modules:

$$0 \to K \xrightarrow{n} (A/I)^n \xrightarrow{\pi} M \to 0,$$

where $\pi(a_1+I, ..., a_n+I) = \sum_{i=1}^n (a_i+I)m_i$. We have also the exact sequences of left A-modules

$$0 \to I^n \to A^n \to (A/I)^n \to 0,$$

† This research was supported in part by National Science Foundation Grant Number GP-5276.

where $\alpha(a_1, ..., a_n) = (a_1 + I, ..., a_n + I)$ and

$$0\to L\xrightarrow{k} A^n\xrightarrow{\pi\alpha} M\to 0.$$

Thus we get the commutative diagram

 $\begin{array}{cccc} 0 & 0 \\ \downarrow & \mathrm{id} & \downarrow \\ 0 \to I^n \to & I^n \to 0 \\ \downarrow & k & \downarrow & \pi \alpha \downarrow \\ 0 \to L \to & A^n & \to M \to 0 \\ \downarrow & h & \downarrow^{\alpha} & \pi \downarrow^{\mathrm{id}} \\ 0 \to K \to (A/I)^n \to M \to 0 \\ \downarrow & \downarrow & \downarrow \\ 0 & 0 & 0 \end{array}$

where id always denotes the identity map. Viewing M, $(A/I)^n$ and K as A-modules by pull back along $A \xrightarrow{p} A/I$, we see that all maps are obviously A-homomorphisms of left A-modules. Moreover, all rows and columns are exact. If M is a finitely presented left A/I-module, then K is a finitely generated left A/I-module and hence a finitely generated left A-module. Since I^n is a finitely generated left A-module, the exactness of the first column implies that L is a finitely generated left A-module, whence M is a finitely presented left A-module. Conversely, if M is a finitely presented left A-module, then L and hence K are finitely generated left Amodules. Thus K is a finitely generated left A/I-module and so M is a finitely presented left A/I-module.

COROLLARY 1.1. If I is a two-sided ideal in the ring A such that I is finitely generated as a left ideal, and if M is a left A/I-module, then M is a pseudo-coherent (resp. coherent) left A/I-module if and only if M is a pseudo-coherent (resp. coherent) left A-module under pull

back along the canonical ring homomorphism $A \xrightarrow{p} A/I$.

THEOREM 2. If A is a ring with a two-sided ideal I which is finitely generated as a left ideal, then A is left coherent when and only when A/I is a left coherent ring and I is a coherent left A-module.

Proof. Consider the exact sequence of left A-modules: $0 \rightarrow I \rightarrow A \xrightarrow{p} A/I \rightarrow 0$. If A is a coherent ring, then I is a left coherent module and A/I is a left coherent A-module by Exercise 11a on p. 62 of [1]. Consequently A/I is a left coherent ring. For the converse, if A/I is a left coherent ring, then A/I is a left coherent A-module. Assuming that I is a left coherent A-module we conclude that A is a left coherent ring by Exercise 11a on p. 62 of [1].

COROLLARY 2.1. Let $\{A_i \mid 1 \leq i \leq n\}$ be a finite set of left coherent rings; then the product ring $R = \prod_{i=1}^{n} A_i$ is also left coherent.

124

Proof. By induction it suffices to treat the case in which n = 2. Let $a_1 = \{(\alpha, 0) \mid \alpha \in A_1\}$ and $a_2 = \{(0, \beta) \mid \beta \in A_2\}$. Now A_1 left coherent implies that a_1 is a left coherent R/a_2 -module. Hence a_1 is a left coherent *R*-module. But $R/a_1 \cong A_2$ is a left coherent ring and thus *R* is left coherent.

By the same method, it is easily seen that, if A is a commutative coherent ring with coherent module M, then the ring $A^* = A \oplus M$, where (a, m)(a', m') = (aa', a'm + am') is also a commutative coherent ring.

COROLLARY 2.2. Let A be a commutative (quasi) semi-local ring with maximal ideals $m(1), m(2), \ldots, m(n)$ such that each localization $A_{m(i)}$ at m(i) for $1 \le i \le n$ is coherent; then A must itself be coherent.

Proof. Since the product ring $\prod_{i=1}^{n} A_{m(i)}$ is coherent and is a faithfully flat A-module by Proposition 10 on p. 111 of [1], we conclude that A is coherent by means of Corollary 2.1 of [3].

However, the assumption that the number of maximal ideals is finite is essential for

THEOREM 3. There exists a commutative ring A which is not coherent such that, for each maximal ideal m of A, the localization A_m at m is noetherian and consequently coherent. (Each A_m may even be an integral domain.)

Proof. We utilize the results of [4]. Accordingly, let $\{R_{\lambda}\}$ be a set of noetherian local rings which contain a common field K (for example the R_{λ} 's may be power series rings K[[x]]). Let A be an infinite set for which there is a map ϕ onto the set $\{R_{\lambda}\}$ and let B be another infinite set. Let $C = A \times B$ and let Ω be the set of functions defined on the disjoint union $A \cup C$ such that if $a \in A$ then $f(a) \in \phi(a)$, and if $c \in C$ then $f(c) \in K$. Let M be the subset of Ω consisting of those f such that f(c) = 0 for every $c \in C$, f(a) = 0 for all but a finite number of elements a of A, and f(a) is in the maximal ideal of $\phi(a)$ for every $a \in A$. Let K* be the subset of Ω consisting of those f such that f(a) = 0 for all $a \in A$ and f(c) = 0 for all but a finite number of elements $c \in C$. Elements $k \in K$ are identified with elements $f \in \Omega$ such that f(x) = k for every $x \in A \cup C$. For each $a \in A$ let e_a denote the element of Ω such that $e_a(x) = 1$ if $x \in \{a\} \cup (\{a\} \times B)$ and zero otherwise, and for each $c \in C$ let e_c denote the element of Ω such that $e_c(x) = 1$ if x = c and zero otherwise. Finally, let T denote the commutative subring of Ω generated by M, K*, K and the Ke_a. Then, as shown by Nagata in [4], $T = K + K^* + M$ $+\sum Ke_a$ and is such that the total quotient ring of T is T itself; also the localization T_m of T at any maximal ideal m is isomorphic either to K or to one of the R_{λ} , and for each R_{λ} there is a maximal ideal $m(\lambda)$ of T such that $T_{m(\lambda)} \cong R_{\lambda}$. Thus it suffices to show that T is not coherent. In fact, let $a' \in A$ be some fixed element of A and let $\mu \in M$ be such that $\mu(a') \neq 0$ but $\mu(x) = 0$ for all $x \neq a'$; then we will complete the proof by showing that $c = \operatorname{ann}(\mu) = \{f \in T \mid f\mu = 0\}$ is a non-infinitely generated ideal of T. Now $f = k + k^* + m + \sum k_a e_a \in c$ ($k_a = 0$ except for a finite number of $a \in A$) when and only when

$$f(a')\mu(a') = k\mu(a') + m(a')\mu(a') + k_{a'}\mu(a') = 0.$$

MORTON E. HARRIS

But $k + k_{a'} \neq 0$ implies that $\mu(a') \in N_{\phi(a')}\mu(a')$, where $N_{\phi(a')}$ is the maximal ideal of $\phi(a')$; this cannot occur. Hence

$$f = k + k^* + m + \sum k_a e_a \in \mathcal{C}$$

if and only if $k_{a'} = -k$ and $m(a')\mu(a') = 0$, and we conclude that

$$c = K(1 - e_{a'}) + K^* + M' + \sum_{a \neq a'} Ke_a,$$

where $M' = \{m \in M \mid m(a')\mu(a') = 0\}$. Assume that $c = ann(\mu)$ is generated as an ideal by a finite set $\{t_1, ..., t_r\}$; therefore c is certainly generated by $\{1 - e_{a'}, t_1, ..., t_r\}$, where we may assume that

$$t_i = k_i^* + m_i' + \sum_{j=1}^{3} k_{a(j)}^i e_{a(j)},$$

where $a(j) \neq a'$ and $m'_i \in M'$. Since $\{k_1^*, \ldots, k_r^*\}$ has only finite support, c must vanish on all but a finite subset of $\{a'\} \times B$; but $c \supseteq K^*$, which gives the desired contradiction.

We conclude with some results on coherent modules over commutative rings.

THEOREM 4. If a commutative ring A has a faithful coherent module M, then A must be coherent.

Proof. Let
$$M = \sum_{i=1}^{n} am_i$$
; then the mapping $f: A \to \prod_{i=1}^{n} (Am_i)$ defined by $f(a) = (am_1, ..., am_i)$

 am_n) is an A-homomorphism of A-modules, which is an injection. But $\prod_{i=1}^{n} (Am_i)$ is the direct sum of the coherent modules (Am_i) for $1 \le i \le n$, and hence by Exercise 11c on p. 62 of [1] is coherent. Thus A is a coherent ring.

COROLLARY 4.1. If M is a coherent module over the commutative ring A, then

$$(0: M) = \{a \in A \mid aM = (0)\}\$$

is a finitely generated ideal of A and A/(0: M) is a coherent ring.

Proof. Let $M = \sum_{i=1}^{n} Am_i$ and consider the A-homomorphism of A-modules $f: A \to M^n$, where $f(a) = (am_1, ..., am_n)$. Since M^n is a coherent A-module, we conclude that ker(f) = (0: M) is a finitely generated ideal. Finally, M is a coherent faithful A/(0: M)-module.

REFERENCES

1. N. Bourbaki, Algèbre commutative, Chapitres 1-2, Hermann (Paris, 1961).

2. S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473.

3. M. E. Harris, Some results on coherent rings, Proc. Amer. Math. Soc. 17 (1966), 474-479.

4. M. Nagata, Some remarks on prime divisors, Mem. Coll. Sci. Univ. Kyoto Ser. A 33 (1960), 297-299.

THE UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE

126