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Abstract

Fix α > 0. Then by Fejér’s theorem (α(log n)A mod 1)n≥1 is uniformly distributed if
and only if A > 1. We sharpen this by showing that all correlation functions, and hence
the gap distribution, are Poissonian provided A > 1. This is the first example of a
deterministic sequence modulo 1 whose gap distribution and all of whose correlations
are proven to be Poissonian. The range of A is optimal and complements a result of
Marklof and Strömbergsson who found the limiting gap distribution of (log(n) mod 1),
which is necessarily not Poissonian.

1. Introduction

A sequence (x(n))n≥1 ⊆ [0, 1) is uniformly distributed modulo 1 if the proportion of points in
any subinterval I ⊆ [0, 1) converges to the size of the interval: #{n ≤ N : x(n) ∈ I} ∼ N |I|, as
N → ∞. The theory of uniform distribution dates back to 1916, to a seminal paper of Weyl
[Wey16], and constitutes a simple test of pseudo-randomness. A well-known result of Fejér (see
[KN74, p. 13]) implies that for any A > 1 and any α > 0 the sequence

(α(log n)A mod 1)n>0

is uniformly distributed, while for A = 1 the sequence is not uniformly distributed. In this paper,
we study stronger, local tests for pseudo-randomness for this sequence.

Given an increasing R-valued sequence, (ω(n)) = (ω(n))n>0, we denote the sequence modulo 1
by

x(n) := ω(n) mod 1.
Furthermore, let uN (n) ⊂ [0, 1) denote the ordered sequence, thus uN (1) ≤ uN (2) ≤ · · · ≤
uN (N). With that, we define the gap distribution of (x(n)) as the limiting distribution (if it
exists): for s > 0,

P (s) := lim
N→∞

#{n ≤ N : N‖uN (n) − uN (n+ 1)‖ < s}
N

,

where ‖ · ‖ denotes the distance to the nearest integer, and uN (N + 1) = uN (1). Thus, P (s)
represents the limiting proportion of (scaled) gaps between (spatially) neighboring elements in
the sequence which are less than s. We say that a sequence has Poissonian gap distribution if
P (s) = 1 − e−s, the expected value for a uniformly distributed sequence on the unit interval.
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(a) (b) (c)

Figure 1. From left to right, the histograms represent the gap distribution density at time N of
(log n)n≥1, ((logn)2)n>0, and ((logn)3)n>0 when N = 105 and the curve is the graph of x 
→ e−x.
Note that (logn) is not uniformly distributed, and the gap distribution is not Poissonian.

Our main theorem is the following result.

Theorem 1.1. Let ω(n) := α(log n)A for A > 1 and any α > 0. Then x(n) has Poissonian gap
distribution.

In fact, this theorem follows (via the method of moments) from Theorem 1.2 (below) which
states that for every m ≥ 2 the m-point correlation function of this sequence is Poissonian. By
that we mean the following. Let m ≥ 2 be an integer, and let f ∈ C∞

c (Rm−1) be a compactly
supported function which can be thought of as a stand-in for the characteristic function of a
Cartesian product of compact intervals in Rm−1. Let [N ] := {1, . . . , N} and define the m-point
correlation of (x(n)), at time N , to be

R(m)(N, f) :=
1
N

∗∑
n∈[N ]m

f(N‖x(n1) − x(n2)‖, N‖x(n2) − x(n3)‖, . . . , N‖x(nm−1) − x(nm)‖),

(1.1)

where
∗∑

denotes a sum over distinct m-tuples. Thus, the m-point correlation measures how
correlated points are on the scale of the average gap between neighboring points (which is N−1).
We say that (x(n)) has Poissonian m-point correlation if

lim
N→∞

R(m)(N, f) =
∫

Rm−1

f(x) dx =: E(f) for any f ∈ C∞
c (Rm−1). (1.2)

That is, if the m-point correlation converges to the expected value if the sequence was uniformly
distributed on the unit interval.

Theorem 1.2. Let ω(n) := α(log n)A for A > 1 and any α > 0. Then x(n) has Poissonian
m-level correlations for all m ≥ 2.

It should be noted that Theorem 1.2 is far stronger than Theorem 1.1. In addition to the
gap distribution, Theorem 1.2 allows us to recover a wide variety of statistics such as the ith
nearest neighbor distribution for any i ≥ 1.

For our analysis, it is more useful to have good control on the support of the Fourier transform
of f , and not crucial that f be compactly supported. Thus, we restate Theorem 1.2 here for this
class of f . We prove that Theorem 1.2 follows from Theorem 1.3 in § 8.
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Theorem 1.3. Let ω(n) := α(log n)A for A > 1 and any α > 0. Then, for any m ≥ 2, we have

lim
N→∞

R(m)(N, f) = E(f)

for any positive function f ∈ C∞(Rm−1), whose Fourier transform f̂ has compact support.

Here we use f̂ to denote the Fourier transform of f . To avoid carrying a constant through
we assume the support of f̂ is contained in (−1, 1).

Previous work
The study of the uniform distribution and fine-scale local statistics of sequences modulo 1 has
a long history which we outlined in more detail in a previous paper [LST24]. If we consider the
sequence (αnθ mod 1)n≥1, there have been many attempts to understand the local statistics, in
particular the pair correlation (when m = 2). It is known that for any θ �= 1, if α belongs to a set
of full measure, then the pair correlation function is Poissonian [RS98, AEM21, RT22]. However,
there are very few explicit (i.e. non-metric) results. When θ = 2 Heath-Brown [Hea10] gave an
algorithmic construction of certain α for which the pair correlation is Poissonian; however, this
construction did not give an exact number. When θ = 1/2 and α2 ∈ Q the problem lends itself
to tools from homogeneous dynamics. This was exploited by Elkies and McMullen [EM04] who
showed that the gap distribution is not Poissonian, and by El-Baz, Marklof, Vinogradov [EMV15]
who showed that the sequence (αn1/2 mod 1)n∈N\�, where � denotes the set of squares, does have
Poissonian pair correlation.

With these sparse exceptions, the only explicit results occur when the exponent θ is small.
If θ ≤ 14/41 the authors and Sourmelidis [LST24] showed that the pair correlation function is
Poissonian for all values of α > 0. This was later extended by the authors [LT21] to show that
these monomial sequences exhibit Poissonian m-point correlations (for m ≥ 3) for any α > 0 if
θ < 1/(m2 +m− 1). To the best of our knowledge the former is the only explicit result proving
Poissonian pair correlations for sequences modulo 1, and the latter result is the only result
proving convergence of the higher-order correlations to any limit.

The authors’ previous work motivates the natural question: what about sequences which grow
slower than any power of n? It is natural to hypothesize that such sequences might exhibit Pois-
sonian m-point correlations for all m. However, there is a constraint. Marklof and Strömbergsson
[MS13] have shown that the gap distribution of ((logn)/(log b) mod 1)n≥1 exists for b > 1, and is
not Poissonian (thus the correlations cannot all be Poissonian). However, they also showed that
in the limit as b tends to 1, this limiting distribution converges to the Poissonian distribution (see
[MS13, (74)]). Thus, the natural question becomes: what can be said about sequences growing
faster than log(n) but slower than any power of n?

With that context in mind, our result has several implications. First, it provides the only
example at present of an explicit sequence whose m-point correlations can be shown to converge
to the Poissonian limit (and thus whose gap distribution is Poissonian). Second, it answers the
natural question implied by our previous work on monomial sequences. Finally, it answers the
natural question implied by Marklof and Strömbergsson’s result on logarithmic sequences.

1.1 Plan of the paper
The proof of Theorem 1.2 adds several new ideas to the method developed in [LT21], which is
insufficient for the definitive results established here. Broadly, we argue in three steps, detailing
the difficulties and innovations in each step.
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In the remainder of this work we take α = 1; exactly the same proof applies to general α,
leaving straightforward adaptations aside. Fix m ≥ 2 and assume the sequence has Poissonian
j-point correlation for 2 ≤ j < m.

Step 1. Remove the distinctness condition in the m-point correlation by relating the completed
correlation to themth moment of a random variable. This will add a new frequency variable, with
the benefit of decorrelating the sequence elements. Then we perform a Fourier decomposition of
this moment and, using a combinatorial argument from [LT21, § 3], we reduce the problem of
convergence for the moment to convergence of one particular term to an explicit ‘target’. This
step works quite similarly to what we did in [LT21].

Step 2. Using various partitions of unity, we further reduce the problem to an asymptotic eval-
uation of the Lm([0, 1])-norm of a two-dimensional exponential sum. Then we apply van der
Corput’s B-process to each of these variables. In contrast to our argument in [LT21], we can
no longer use the form of the sequence to perform explicit computations throughout. Instead,
a more fundamental understanding of how the two B-processes work is now required. In fact,
after the first application of the B-process we end up with an implicitly defined phase function.
Surprisingly, after the second application of the B-process (in the other variable) we can show
that a manageable phase function arises! This is the content of Lemma 4.10, and we believe this
by-product of our investigation to be of some independent interest. Being able to understand the
phase function arising is crucial to performing the next step. Furthermore, a simple computation
yields that if we stop at this step and apply the triangle inequality the resulting error term is of
size O((logN)(A+1)m).

Step 3. Finally, we expand the Lm([0, 1])-norm giving an oscillatory integral. Then, using a
localized version of Van der Corput’s lemma, we achieve an extra saving to bound the error term
by o(1). In [LT21] we used classical theorems from linear algebra to justify that that localized
version of Van der Corput’s lemma is applicable, by showing that Wronskians of a family of
relevant curves are uniformly bounded from below. In the present situation, the underlying
geometry and Wronskians are considerably more involved. After several initial manipulations we
boil matters down to determinants of generalized Vandermonde matrices. To handle those we
rely on recent work of Khare and Tao [KT21], which is precise enough to (by a small logarithmic
gain) single out the largest contribution to the Wronskian and thereby complete the argument.

Notation
Throughout, we use the usual Bachmann–Landau notation: for functions f, g : X → R, defined
on some set X, we write f 
 g (or f = O(g)) to denote that there exists a constant C > 0
such that |f(x)| ≤ C|g(x)| for all x ∈ X. Moreover, let f � g denote f 
 g and g 
 f , and let
f = o(g) denote that f(x)/g(x) → 0.

Given a Schwartz function f : Rm → R, let f̂ denote the m-dimensional Fourier transform:

f̂(k) :=
∫

Rm

f(x)e(−x · k) dx, for k ∈ Zm.

Here, and throughout we let e(x) := e2πix. Moreover, we use the convention 0/0 = 0 to avoid
extra conditions on summations.
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All of the sums which appear range over integers, in the indicated interval. We will frequently
be taking sums over multiple variables, thus if u is an m-dimensional vector, for brevity, we write∑

k∈[f(u),g(u))

F (k) =
∑

k1∈[f(u1),g(u1))

· · ·
∑

km∈[f(um),g(um))

F (k).

Moreover, all Lp norms are taken with respect to Lebesgue measure; we often do not include the
domain when it is obvious. Let

Z∗ := Z \ {0}.

For ease of notation, ε > 0 may vary from line to line by a bounded constant.

2. Preliminaries

The following stationary phase principle is derived from the work of Blomer, Khan and Young
[BKY13, Proposition 8.2]. In application we will not make use of the full asymptotic expansion,
but this will give us a particularly good error term which is essential to our argument.

Proposition 2.1 (Stationary phase expansion). Let w ∈ C∞
c (R) be supported in a compact

interval J of length Ωw > 0 so that there exists an Λw > 0 for which

w(j)(x) 
j ΛwΩ−j
w

for all j ∈ N. Suppose ψ is a smooth function on J so that there exists a unique critical point x0

with ψ′(x0) = 0. Suppose there exist values Λψ > 0 and Ωψ > 0 such that

ψ′′(x) � ΛψΩ−2
ψ , ψ(j)(x) 
j ΛψΩ−j

ψ

for all j > 2. Moreover, let δ ∈ (0, 1/10), and Z := Ωw + Ωψ + Λw + Λψ + 1. If

Λψ ≥ Z3δ and Ωw ≥ ΩψZ
δ/2

Λ1/2
ψ

(2.1)

hold, then

I :=
∫ ∞

−∞
w(x)e(ψ(x)) dx

has the asymptotic expansion

I =
e(ψ(x0))√
ψ′′(x0)

∑
0≤j≤3C/δ

pj(x0) +OC,δ(Z−C)

for any fixed C ∈ Z≥1; here

pn(x0) :=
e(1/8)
n!

(
i

2ψ′′(x0)

)n

G(2n)(x0),

where

G(x) := w(x)e(H(x)), H(x) := ψ(x) − ψ(x0) − 1
2ψ

′′(x0)(x− x0)2.

In a slightly simpler form we have the following lemma.

Lemma 2.2 (First-order stationary phase). Let ψ and w be smooth, real-valued functions defined
on a compact interval [a, b]. Let w(a) = w(b) = 0. Suppose there exist constants Λψ,Ωw,Ωψ ≥ 3
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satisfying (2.1), with Z as in Proposition 2.1 and Λw = 1 so that

ψ(j)(x) 
 Λψ
Ωj
ψ

, w(j)(x) 
 1

Ωj
w

and ψ(2)(x) � Λψ
Ω2
ψ

(2.2)

for all j = 0, 1, 2, . . . and all x ∈ [a, b]. If ψ′(x0) = 0 for a unique x0 ∈ [a, b], and if ψ(2)(x) > 0,
then ∫ b

a
w(x)e(ψ(x)) dx =

e(ψ(x0) + 1/8)√
|ψ(2)(x0)|

w(x0) +O

( Ω3
ψ

Λ3/2
ψ Ω2

w

+
1
Z

)
.

If instead ψ(2)(x) < 0 on [a, b] then the same equation holds with e(ψ(x0) + 1/8) replaced by
e(ψ(x0) − 1/8).

Proof. We apply Proposition 2.1 with Λw = 1 and C = 1. In which case the first error term
comes from the term p1 in the expansion. All higher-order terms give a smaller contribution; see
[BKY13, p. 20] for a more detailed explanation. �

Moreover, we also need the following version of van der Corput’s lemma. ([Ste93,
Chapter VIII, Proposition 2]).

Lemma 2.3 (van der Corput’s lemma). Let [a, b] be a compact interval. Let ψ,w : [a, b] → R be
smooth functions. Assume ψ′′ does not change sign on [a, b] and that for some j ≥ 1 and Λ > 0
the bound

|ψ(j)(x)| ≥ Λ

holds for all x ∈ [a, b]. Then∫ b

a
e(ψ(x))w(x) dx


(
|w(b)| +

∫ b

a
|w′(x)| dx

)
Λ−1/j

where the implied constant depends only on j.

Generalized Vandermonde matrices
One of the primary difficulties which we will encounter in § 6 is the fact that taking derivatives of
exponentials (which arise as the inverse of the logs defining our sequence) increases in complexity
as we take derivatives. To handle this we appeal to a recent result of Khare and Tao [KT21]
which requires us to set up some notation. Given an M -tuple u ∈ RM , let

V (u) :=
∏

1≤i<j≤M
(uj − ui)

denote the Vandermonde determinant. Furthermore, given two tuples u and n, we define

un := un1
1 · · ·unM

M and u◦n :=

⎛⎜⎜⎜⎝
un1

1 un2
1 · · · unM

1

un1
2 un2

2 · · · unM
2

...
...

...
...

un1
M un2

M · · · unM
M

⎞⎟⎟⎟⎠ ,

the latter being a generalized Vandermonde matrix. Finally, let nmin := (0, 1, . . . ,M − 1). Then
Khare and Tao established the following lemma.
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Lemma 2.4 [KT21, Lemma 5.3]. Let K be a compact subset of the cone

{(n1, . . . , nM ) ∈ RM : n1 < · · · < nM}.

Then there exist constants C, c > 0 such that

cV (u)un−nmin ≤ det(u◦n) ≤ CV (u)un−nmin (2.3)

for all u ∈ (0,∞)M with u1 ≤ · · · ≤ uM and all n ∈ K.

3. Combinatorial completion

The proof of Theorem 1.3 follows an inductive argument. Thus, fix m ≥ 2 and assume (x(n))
has j-point correlations for all j < m. Let f be a positive C∞(R) function with f̂ ∈ C∞

c (R), and
define

SN (s, f) = SN :=
∑
n∈[N ]

∑
k∈Z

f(N(ω(n) + k + s)).

Note that if f was the indicator function of an interval I, then SN would count the number of
points in (xn)n≤N which land in the shifted interval I/N + s/N . Now consider the mth moment
of SN . Then one can show that (see [LT21, § 3])

M(m)(N) :=
∫ 1

0
SN (s, f)m ds

=
∫ 1

0

∑
n∈[N ]m

∑
k∈Zm

f(N(ω(n1) + k1 + s)) · · · f(N(ω(nm) + km + s)) ds

=
1
N

∑
n∈[N ]m

∑
k∈Zm−1

F (N(ω(n1) − ω(n2) + k1), . . . N(ω(nm−1) − ω(nm) + km−1)),

(3.1)

where

F (z1, z2, . . . , zm−1)

:=
∫

R

f(s)f(z1 + z2 + · · · + zm−1 + s)f(z2 + · · · + zm−1 + s) · · · f(zm−1 + s) ds.

As such we can relate the mth moment of SN to the m-point correlation of F . Note that since
f̂ has compact support, F̂ also has compact support. To recover the m-point correlation in full
generality, we replace the moment

∫
SN (s, f)m ds with the mixed moment

∫ ∏m
i=1 SN (s, fi) ds

for some collection of fi : R → R. The proof below can be applied in this generality; however,
for ease of notation we only explain the details in the former case.

3.1 Combinatorial target
We will need the following combinatorial definitions to explain how to prove convergence of the
m-point correlation from (3.1). Given a partition P of [m], we say that j ∈ [m] is isolated if
j belongs to a partition element of size 1. A partition is called non-isolating if no element is
isolated (and otherwise we say it is isolating). For our example P = {{1, 3}, {4}, {2, 5, 6}} we
have that 4 is isolated, and thus P is isolating.
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Now consider the middle line of (3.1). We apply Poisson summation to each of the ki sums.
That is, we insert ∑

k∈Z

f(N(ω(n) + k + s)) =
1
N

∑
k∈Z

e(k(ω(n) + s))f̂
(
k

N

)
(3.2)

yielding

M(m)(N) =
1
Nm

∫ 1

0

∑
n∈[N ]m

∑
k∈Zm

f̂

(
k
N

)
e(k · ω(n) + k · 1s) ds, (3.3)

where ω(n) := (ω(n1), ω(n2), . . . , ω(nm)) and where f̂(k/N) =
∏m
i=1 f̂(ki/N).

In [LT21, § 3] we showed that, if

E(N) :=
1
Nm

∫ 1

0

∑
n∈[N ]m

∑
k∈(Z∗)m

f̂

(
k
N

)
e(k · ω(n) + k · 1s) ds,

then for fixed m, and assuming the inductive hypothesis, Theorem 1.3 reduces to the following
lemma.

Lemma 3.1. Let Pm denote the set of non-isolating partitions of [m]. We have that

lim
N→∞

E(N) =
∑

P∈Pm

E(f |P1|) · · ·E(f |Pd|). (3.4)

where the partition P = (P1, P2, . . . , Pd), and |Pi| is the size of Pi.

3.2 Dyadic decomposition
It is convenient to decompose the sums over n and k within SN (s, f) into (nearly) dyadic ranges
in a smooth manner. Given N , we let Q > 1 be the unique integer with eQ ≤ N < eQ+1. Now, we
describe a smooth partition of unity which approximates the indicator function of [1, N ]. Strictly
speaking, these partitions depend on Q, but we suppress this from the notation. Furthermore,
since we want asymptotics of E(N), we need to take a bit of care at the right end point of [1, N ],
and so a tighter than dyadic decomposition is needed. Let us make this precise, and point out
that a detailed construction can be found in the Appendix. For 0 ≤ q < Q we let Nq : R → [0, 1]
denote a smooth function for which

supp(Nq) ⊂ [eq/2, 3eq), for 0 ≤ q < Q,

and such that Nq(x) + Nq+1(x) = 1 for x ∈ [eq, eq+1). Now for q ≥ Q we let Nq form a smooth
partition of unity for which

2Q−1∑
q=0

Nq(x) =

⎧⎨⎩1 if 1 < x < eQ,

0 if x < 1/2 or x > N +
3N

log(N)
(3.5)

and

supp(Nq) ⊂
[
eQ + (q −Q− 1.1)

eQ

Q
, eQ + (3 + q −Q)

eQ

Q

)
for Q < q ≤ 2Q− 1, (3.6)

while supp(NQ) ⊂ (0.9 · eQ−1, 1.1 · eQ). Let ‖g‖∞ denote the sup norm of a function g : R → R.
We impose the following condition on the derivatives:

‖N(j)
q ‖∞ 


{
e−qj for q < Q,

(eQ/Q)−j for Q < q,
(3.7)
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for j ≥ 1. For technical reasons, assume N
(1)
q changes sign only once.

Notice that (3.5) implies

∑
n∈Z

2Q−2∑
q=0

Nq(n)
∑
k∈Z

f(N(ω(n) + k + s)) ≤ SN (s, f) ≤
∑
n∈Z

2Q−1∑
q=0

Nq(n)
∑
k∈Z

f(N(ω(n) + k + s)).

Ignoring the lower bound, which can be treated similarly, applying Poisson summation for every
fixed n and using the positivity of the inner sum, we then have

SN (s, f) ≤ 1
N

∑
n∈Z

2Q−1∑
q=0

Nq(n)
∑
k∈Z

f̂

(
k

N

)
e(k(ω(n) + s)).

Next, by positivity, we have that

M(m)(N) ≤
∫ 1

0

(
1
N

2Q−1∑
q=0

∑
n∈Z

Nq(n)
∑
k∈Z

f̂

(
k

N

)
e(kω(n) + ks)

)m

ds. (3.8)

All frequencies k for which kj = 0 for at least some index 1 ≤ j ≤ m− 1 contribute to M(m)(N)
exactly

m−1∑
i=1

(
m− 1
i

)
f̂(0)i

∫ 1

0

(
1
N

∑
n∈[N ]

∑
k 
=0

f̂

(
k

N

)
e(kω(n) + ks)

)m−i
ds.

Subtracting exactly the above term from both sides of (3.8), while using our inductive assumption
that the Mm−i(N) converge (for 1 ≤ i ≤ m− 2), then yields

E(N) ≤
∫ 1

0

(
1
N

2Q−1∑
q=0

∑
n∈Z

Nq(n)
∑
k 
=0

f̂

(
k

N

)
e(kω(n) + ks)

)m

ds+ o(1). (3.9)

The same argument can be used to yield

E(N) + o(1) ≥
∫ 1

0

(
1
N

2Q−2∑
q=0

∑
n∈Z

Nq(n)
∑
k 
=0

f̂

(
k

N

)
e(kω(n) + ks)

)m

ds.

We similarly decompose the k sums, although thanks to the compact support of f̂ we do not
need to worry about k ≥ N . Let Ku : R → [0, 1] be a smooth function such that, for U := �logN�,

U∑
u=−U

Ku(k) =

{
1 if |k| ∈ [1, N),
0 if |k| < 1/2 or |k| > 2N,

and the symmetry K−u(k) = Ku(−k) holds true for all u, k > 0. Similarly,

supp(Ku) ⊂ [eu/3, 3eu) if u ≥ 0, and

‖K(j)
u ‖∞ 
 e−|u|j , for all j ≥ 1.

As for Nq, we also assume K
(1)
u changes sign exactly once.

Therefore, a central role is played by the smoothed exponential sums

Eq,u(s) :=
1
N

∑
k∈Z

Ku(k)f̂
(
k

N

)
e(ks)

∑
n∈Z

Nq(n)e(kω(n)). (3.10)
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Notice that (3.9) and the compact support of f̂ imply

E(N) 

∥∥∥∥ U∑
u=−U

2Q−1∑
q=0

Eq,u
∥∥∥∥m
Lm(R)

.

Now write

F(N) :=
1
Nm

∑
q∈[0,2Q−1]m

∑
u=[−U,U ]m

∑
k,n∈Zm

Ku(k)Nq(n)
∫ 1

0
f̂

(
k
N

)
e(k · ω(n) + k · 1s) ds,

where Nq(n) := Nq1(n1)Nq2(n2) · · ·Nqm(nm) and Ku(k) := Ku1(k1)Ku2(k2) · · ·Kum(km). Our
goal will be to establish that F(N) is equal to the right-hand side of (3.4) up to an o(1) term.
Then, since we can establish the same asymptotic for the lower bound, we may conclude the
asymptotic for E(N). Since the details are identical, we will only focus on F(N).

Fixing q and u, we let

Fq,u(N) =
1
Nm

∫ 1

0

∑
n,k∈Z

m

Nq(n)Ku(k)f̂
(

k
N

)
e(k · ω(n) + k · 1s) ds.

Remark. In the following sections, we will fix q and u. Because of the way we have defined Nq,
this implies two cases: q < Q and q ≥ Q. The only real difference in these two cases are the
bounds in (3.7), which differ by a factor of Q = log(N). To keep the notation simple, we will
assume we have q < Q and work with the first bound. In practice the logarithmic correction does
not affect any of the results or proofs.

4. Applying the B-process

4.1 Degenerate regimes
Fix δ = 1/(m+ 1). We say that (q, u) ∈ [2Q] × [−U,U ] is degenerate if either

|u| < q(A−1)/2 or q ≤ δQ

holds. Otherwise (q, u) is called non-degenerate. Let G (N) denote the set of all non-degenerate
pairs (q, u). In this section it is enough to suppose that u > 0 (and therefore k > 0). Next, we
show that degenerate (q, u) contribute a negligible amount to F(N).

First, assume q ≤ δQ. Expanding the mth power, evaluating the s-integral and trivial
estimation yield

‖Eq,u‖mLm =
∫ 1

0

(
1
N

∑
k∈Z

Ku(k)f̂
(
k

N

)
e(ks)

∑
n∈Z

Nq(n)e(kω(n))
)m

ds


 1
Nm

∑
ki�eu,
i=1,...m

max
x

(
f̂

(
x

N

))m ∑
ni�eq ,
i=1,...m

∣∣∣∣ ∫ 1

0
e((k1 + · · · + km)s) ds

∣∣∣∣

 1

Nm
#{k1, . . . , km � eu : k1 + · · · + km = 0}Nmδ 
 Nmδ−1.

If u < q(A−1)/2 and q > δQ, then we can apply the Euler summation formula, followed by van
der Corput’s lemma with j = 1, to conclude that∑

n∈Z

Nq(n)e(kω(n)) 
 eq

kqA−1
,
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where the numerator is the size of the support of Nq and the denominator is the maximum value
of kω′(x) for x in that support. Hence,

‖Eq,u‖∞ 
 1
N

∑
k�eu

eq

kqA−1

 1

N

eq

qA−1
.

Note∑
q≤Q

eq

qA−1



∫ Q

1

eq

qA−1
dq =

∫ Q/2

1

eq

qA−1
dq +

∫ Q

Q/2

eq

qA−1
dq 
 eQ/2 +

1
QA−1

∫ Q

Q/2
eQ dq 
 eQ

QA−1
.

Thus,∥∥∥∥ ∑
δQ≤q≤Q

∑
u≤q(A−1)/2

Eq,u
∥∥∥∥
∞


 1
N

∑
q≤Q

∑
u≤q(A−1)/2

∑
k�eu

1
k

eq

qA−1

 1

N

eQ

QA−1

∑
u≤Q(A−1)/2

1 ≤ 1
Q(A−1)/2

.

Taking the Lm-norm then yields∥∥∥∥ ∑
(q,u)∈[2Q]×[−U,U ]\G (N)

Eq,u
∥∥∥∥m
Lm


δ log(N)−ρ,

for some ρ > 0. Hence, the triangle inequality implies

F(N) =
∥∥∥∥ ∑

(u,q)∈G (N)

Eq,u
∥∥∥∥m
Lm

+O(N−ρ). (4.1)

Next, to dismiss the degenerate regimes, let w,W denote strictly positive numbers satisfying
w < W . Consider

gw,W (x) := min
(

1
‖xw‖ ,

1
W

)
,

where ‖ · ‖ denotes the distance to the nearest integer. We shall need (as in [LT21, Proof of
Lemma 4.1]) the following lemma.

Lemma 4.1. If W < 1/10, then∑
eu≤|k|<eu+1

gw,W (k) 

(
eu +

1
w

)
log(1/W )

where the implied constant is absolute.

Proof. The proof is elementary, hence we only sketch the main idea. If euw < 1 then we achieve
the bound (1/w) log(1/W ), and otherwise we get the bound eu log(1/W ). Focusing on the latter,
first make a case distinction between those x which contribute 1/‖xw‖ and those that con-
tribute 1/W . Then count how many contribute the latter. For the former, since the spacing
between consecutive points is small, we can convert the sum into euw many integrals of the form
(1/w)

∫ 1/w
W/w(1/x) dx. �

With the previous lemma at hand, we can show that an additional degenerate regime is
negligible. Specifically, when we apply the B-process, the first step is to apply Poisson summa-
tion. Depending on the new summation variable there may, or may not, be a stationary point.
The following lemma allows us to dismiss the contribution when there is no stationary point.
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Fix k � eu and let [a, b] := supp(Nq). Consider

Err(k) :=
∑
r∈Z

mq(r)>0

∫
R

e(Φr(x))Nq(x) dx,

where

Φr(x) := kω(x) − rx, mq(r) := min
x∈[a,b]

|Φr(x)|.

Our next aim is to show that the smooth exponential sum

Erru(s) :=
∑
k∈Z

e(ks)Err(k)Ku(k)f̂
(
k

N

)
is small on average over s.

Lemma 4.2. Fix any constant C > 0. Then the bound

Iu :=
∫ 1

0

m∏
i=1

Errui(s) ds
 Q−CNm (4.2)

holds uniformly in Q(A−1)/2 ≤ u 
 Q.

Proof. Let Lu denote the truncated sub-lattice of Zm defined by gathering all k ∈ Zm so that
k1 + · · · + km = 0 and |ki| � eui for all i ≤ m. The quantity Lu arises from

Iu =
∑

|ki|�eu

i≤m

(( ∏
i≤m

Err(ki)Ku(ki)f̂
(
ki
N

)) ∫ 1

0
e((k1 + · · · + km)s) ds

)



∑
k∈Lu

( ∏
i≤m

Err(ki)
)
.

(4.3)
Partial integration and the dyadic decomposition allow one to show that the contribution of
|r| ≥ QO(1) to Err(ki) can be bounded by O(Q−C) for any C > 0. Hence, from van der Corput’s
lemma (Lemma 2.3) with j = 2 and the assumption mq(r) > 0, we infer

Err(k) 
 QO(1) min
(

1
‖kω′(a) − r‖ ,

1
(kω′′(a))1/2

)
= QO(1) min

(
1

‖kω′(a)‖ ,
1

(kω′′(a))1/2

)
where the implied constant is absolute. Notice that ω′(a) � qA−1e−q =: w and

kω′′(a) � (eu−2qqA−1)1/2 =: W.

Thus, Err(k) 
 gw,W (k)QO(1). Using Err(ki) 
 gw,W (ki)QO(1) for i < m and Err(km) 

QO(1)/W in (4.3) produces the estimate

Iu 
 QO(1)

W

∑
|ki|�eu

i<m

( ∏
i<m

gw,W (ki)
)

=
QO(1)

W

( ∑
|k|�eu

gw,W (k)
)m−1

. (4.4)

Suppose W ≥ N−ε. Then gw,W (k) ≤ N ε and we obtain that

Iu 
 QO(1)N εmeu1+···+um−1 
 Nm−1+εm 
 Q−CNm.

Now suppose W < N−ε ≤ 1/10. Then Lemma 4.1 is applicable and yields∑
|k|�eu

gw,W (k) 
 (eu + 1/w) log(1/W ) 
 (eu + eq) log(1/W ) 
 NQ.
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Plugging this into (4.4) and using 1/W 
 eq−u/2q(1−A)/2 
 Ne−u/2 shows that

Iu 
 QO(1) (NQ)m−1

W

 QO(1)(NQ)me−u/2.

Because u ≥ Q(A−1)/2, we certainly have e−u/2 
 Q−C for any C > 0 and thus the proof is
complete. �

4.2 First application of the B-process
First, following the lead set out in [LST24], we apply the B-process in the n-variable. Assume
without loss of generality that k > 0 (if k < 0 we take complex conjugates and the without loss
of generality assumption that f is even).

Then, after applying the B-process, the phase function x 
→ kω(x) − rx will be transformed
to

φ(k, r) := kω(xk,r) − rxk,r where xk,r :=

⎧⎨⎩ω̃
(
r

k

)
if
r

k
> eA−1,

3 otherwise,

and ω̃(x) := (ω′)−1(x) is the inverse of the derivative of ω. Importantly, the next proposition
states that Eq,u is well approximated by

E(B)
q,u (s) :=

e(−1/8)
N

∑
k>0

Ku(k)f̂
(
k

N

)
e(ks)

∑
r≥0

Nq(xk,r)√
|kω′′(xk,r)|

e(φ(k, r)). (4.5)

We comment on the definition of xk,r and E(B)
q,u in the next remark.

Remark. Recall that we currently work in the non-degenerate regime, q ≥ δQ. Note that xk,r is
the stationary point for the map x 
→ kω(x) − rx when r/k > eA−1 (i.e. when there is a unique
stationary point in the relevant regime). On the other hand, Nq(3) = 0 since inf(supp(Nq)) → ∞
as Q→ ∞. Thus, Nq(xk,r) is well defined and smooth as a function of k, r ≥ 0.

Proposition 4.3. If u ≥ Q(A−1)/2, then

‖Eq,u − E(B)
q,u ‖mLm 
 Q−100m (4.6)

uniformly for all non-degenerate (u, q) ∈ G (N).

Proof. Let [a, b] := supp(Nq), let Φr(x) := kω(x) − rx, and let m(r) := min{|Φ′
r(x)| : x ∈ [a, b]}.

As usual when applying the B-process we first apply Poisson summation and integration by parts:∑
n∈Z

Nq(n)e(kω(n)) =
∑
r∈Z

∫ ∞

−∞
Nq(x)e(Φr(x)) dx = M(k) + Err(k),

where M(k) gathers the contributions when r ∈ Z with m(r) = 0 (i.e. with a stationary point)
and Err(k) gathers the contribution of 0 < m(r).

In the notation of Lemma 2.2, let w(x) := Nq(x), Λψ := ω(eq)eu = qAeu, and Ωψ = Ωw := eq.
Since (u, q) is non-degenerate we have that Λψ/Ωψ � q, and hence

M(k) = e(−1/8)
∑
r≥0

Nq(xk,r)√
|kω′′(xk,r)|

e(φ(k, r)) +O((qΛ1/2+O(ε)
ψ )−1). (4.7)

Summing (4.7) against N−1Ku(k)f̂(k/N)e(ks) for k ≥ 0 gives rise to E(B)
q,u . The term coming from

Err(k)N−1Ku(k)f̂(k/N)e(ks) =
1
N

Erru(s)
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can be bounded sufficiently by Lemma 4.2 and the triangle inequality. �

Since xk,r is roughly of size eq, if we stop here and apply the triangle inequality to (4.5) we
would get

|E(B)
q,u (s)| 
 1

N

∑
k>0

Ku(k)eq
1√
k

k

eq

 1

N
e3u/2 
 N1/2.

Hence, we still need to find a saving of O(N1/2). To achieve most of this, we now apply the
B-process in the k variable. This will require the following a priori bounds.

4.3 Amplitude bounds
Before proceeding with the second application of the B-process, we require bounds on the
amplitude function

Ψq,u(k, r, s) = Ψq,u :=
Nq(xk,r)Ku(k)√

|kω′′(xk,r)|
f̂

(
k

N

)
,

and its derivatives; for which we have the following lemma.

Lemma 4.4. For any pair q, u as above, and any j ≥ 1, we have the bounds

‖∂jkΨq,u(k, r, ·)‖∞ 
 e−ujQO(1)‖Ψq,u‖∞, (4.8)

where the implicit constant in the exponent depends on j, but not q, u. Moreover,

‖Ψq,u‖∞ 
 eq−u/2q−(1/2)(A−1).

Proof. First, note that since Ψq,u is a product of functions of k, if we can establish (4.8) for
each of these functions, then the overall bound will hold for Ψq,u(k, r, s) by the product rule.
Moreover, the bound is obvious for Ku(k), f̂(k/N), and k−1/2.

Thus, consider first ∂kNq(xk,r) = N′
q(xk,r)∂k(xk,r). By assumption, since xk,r � eq, we have

that N′
q(xk,r) 
 e−q. Again, by repeated application of the product rule, it suffices to show that

∂jkxk,r 
 eq−ujQO(1). To that end, begin with the equation

1 = ∂x(x) = ∂x(ω̃(ω′(x))) = ω̃′(ω′(x))ω′′(x).

Hence, ω̃′(ω′(x)) = 1/ω′′(x) which we can write as

ω̃′(ω′(x)) = x2f1(log(x)),

where f1 is a rational function. Now we take j − 1 derivatives of each side. Inductively, one sees
that there exist rational functions fj such that

ω̃(j)(ω′(x)) = xj+1fj(log(x)).

Setting x = xk,r = ω̃(r/k) then gives

ω̃(j)(r/k) = xj+1
k,r fj(log(xk,r)). (4.9)
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With (4.9), we can use repeated application of the product rule to bound

∂jkxk,r = ∂jkω̃(r/k)

= −∂j−1
k ω̃′(r/k)

(
r

k2

)

 ω̃(j)(r/k)

(
r

k2

)j

+ ω̃′(r/k)
(

r

k1+j

)

 xj+1

k,r fj(log(xk,r))
(
r

k2

)j

+ x2
k,rf1(log(xk,r))

(
r

k1+j

)
.

Now recall that k � eu, xk,r � eq, and r � eu−qqA−1, thus

∂jkxk,r 

(
eq(j+1)

(
eu−q

e2u

)j

+ e2q
(

eu−q

e(1+j)u

))
QO(1)


 eq−juQO(1).

Hence, ∂(j)
k Nq(xk,r) 
 e−juQO(1).

The same argument suffices to prove that ∂jk(1/
√
|ω′′(xk,r)| ) 
 eq−juQO(1). �

4.4 Second application of the B-process
We now apply the B-process in the k-variable. At the present stage, the phase function is
φ(k, r) + ks. Thus, for h ∈ Z, let μ = μh,r,s be the unique stationary point of k 
→ φ(k, r) − (h−
s)k. Namely,

(∂μφ)(μ, r) = h− s.

After the second application of the B-process, the phase will be transformed to

Φ(h, r, s) = φ(μ, r) − (h− s)μ.

With that, let (again for u > 0)

E(BB)
q,u (s) :=

1
N

∑
r≥0

∑
h≥0

f̂

(
μ

N

)
Ku(μ)Nq(xμ,r)

1√
|μω′′(xμ,r) · (∂μμφ)(μ, r)|

e(Φ(h, r, s)). (4.10)

We can now apply the B-process for a second time and conclude the following proposition.

Proposition 4.5. We have

‖E(BB)
q,u − E(B)

q,u ‖Lm([0,1]) = O(N−1/2m+ε) (4.11)

uniformly for any non-degenerate (q, u) ∈ G (N).

Before we can prove the above proposition, we need some preparations. Note that

kω′(n) = Ak
(log n)A−1

n
≤ 10Aeu−qqA−1.

If u− q + (A− 1) log q < −10 then 10Aeu−qqA−1 = 10Ae−10A ≤ 0.6. Hence, there is no station-
ary point in the first application of the B-process. Thus, the contribution from this regime is
disposed of by the first B-process. Therefore, from now on we assume that

u ≥ q − (A− 1) log q − 10A, in particular, eu � eqq1−A. (4.12)
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4.5 Non-essential regimes
In this section we estimate the contribution from regimes where u is smaller by a power of a
logarithm than the top scale Q. We shall see that this regime can be disposed of. More precisely,
let

T (N) := {(q, u) ∈ G (N) : u ≤ logN − 10A log logN}.

We shall see that contribution T (N) is negligible by showing that the function

TN (s) :=
∑

(q,u)∈T (N)

E(B)
q,u (s) (4.13)

has a small ‖ · ‖∞-norm (in the s ∈ [0, 1] variable). To prove this, we need to ensure that in

E(B)
q,u (s) =

e(−1/8)
N

∑
r≥0

∑
k≥0

Ψq,u(k, r, s)e(φ(k, r) − ks)

the amplitude function

Ψq,u(k, r, s) :=
Nq(xk,r)Ku(k)√

|kω′′(xk,r)|
f̂

(
k

N

)
has a suitably good decay in k.

Lemma 4.6. If (4.12) holds, then

‖k 
→ ∂kΨq,u(k, r, s)‖L1(R) 
 eu/2q−(1/2)(A−1)

uniformly for r and s in the prescribed ranges.

Proof. First, use the triangle inequality to bound

‖k 
→ ∂kΨq,u(k, r, s)‖L1(R) 

∥∥∥∥∂k{Nq(xk,r)Ku(k)√

|kω′′(xk,r)|

}
f̂

(
k

N

)∥∥∥∥
L1(R)

+
∥∥∥∥Nq(xk,r)Ku(k)√

|kω′′(xk,r)|
∂kf̂

(
k

N

)∥∥∥∥
L1(R)

.

Since f̂ has bounded derivative, the term on the right can be bounded by 1/N times the sup
norm times eu. Since f̂(k/N) is bounded, and Nq(xk,r)Ku(k)/

√
|kω′′(xk,r)| changes sign finitely

many times, we can apply the fundamental theorem of calculus and bound the whole by

‖k 
→ ∂kΨq,u(k, r, s)‖L1(R) 

∥∥∥∥k 
→ 1√

|kω′′(xk,r)|

∥∥∥∥
L∞(R)

. �

Now we are in the position to prove that the contribution from (4.13) is negligible thanks to
a second derivative test. This is one of the places where, in contrast to the monomial case, we
only win by a logarithmic factor. Moreover, this logarithmic saving goes to 0 as A approaches 1.

Lemma 4.7. The oscillatory integral

Iq,u(h, r) :=
∫ ∞

−∞
Ψq,u(t, r, s)e(φ(t, r) − t(h− s)) dt (4.14)

satisfies the bound

Iq,u(h, r) 
 eqq1−A (4.15)

uniformly in h, and r in ranges prescribed by Ψ.
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Proof. We aim to apply van der Corput’s lemma (Lemma 2.3) for a second derivative bound.
For that, first note that ∂tφ(t, r) = ω(xt,r) + t∂t(ω(xt,r)) − r∂t(xt,r). Now, since

∂t(ω(xt,r)) = ω′(xt,r)∂t(xt,r) =
r

t
∂t(xt,r), (4.16)

it follows that

∂tφ(t, r) = ω(xt,r). (4.17)

Now we bound the second derivative of φ(t, r) − t(s+ h). By (4.16) and (4.17), we have

∂2
t [φ(t, r)] = ∂t[ω(xt,r)] =

r

t
∂t[xt,r].

Thus,

∂2
t [φ(t, r)] = − 1

ω′′(xt,r)
r2

t3
.

Taking xt,r � eq into account gives

∂2
t [φ(t, r)] � 1

e−2qqA−1

(eu−qqA−1)2

e3u
= e−uqA−1. (4.18)

The upshot, by van der Corput’s lemma (Lemma 2.3), is that

Iq,u(h, r) 
 ‖Ψ‖∞(e−uqA−1)−1/2 
 eqq1−A. �
Now we are in the position to prove the following lemma.

Lemma 4.8. We have that, as a function of s ∈ [0, 1], the sup norm ‖TN‖∞ 
 (logN)−8A.

Proof. Note that

E(B)
q,u (s) 
 1

N

∑
r�eu−qqA−1

|Ξ(r)|, where Ξ(r) :=
∑
k>0

Ψq,u(k, r, s)e(φ(k, r) − ks). (4.19)

By Poisson summation,

Ξ(r) =
∑
h∈Z

Iq,u(h, r).

We decompose the right-hand side into the contribution Ξ1(r) coming from |h| > (4Q)A, and a
contribution Ξ2(r) from the regime |h| ≤ (4Q)A. Next, we argue that Ξ1(r) can be disposed of
by partial integration. Because xk,r ≤ 2N , we have

ω(xk,r) = (log xk,r)A ≤ (3Q)A.

Note for |h| > (4Q)A, by (4.17), that the inequality

∂k[φ(k, r) − k(s+ h)] � h

holds true uniformly in r and s. As a result, partial integration yields, for any constant C > 0,
the bound

Iq,u(h, r) 
 ‖k 
→ ∂kΨq,u(k, r, s)‖L1(R)h
−C .

Therefore,

Ξ1(r) 
 ‖k 
→ ∂kΨq,u(k, r, s)‖L1(R)

∑
h≥(4Q)A

h−C .
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Recall that we have q ≥ 1/(m+ 1)Q. Thus, taking C to be large and using Lemma 4.6, we deduce
that

Ξ1(r) 
C1 e
u/2Q−C1 (4.20)

for any constant C1 > 0. All in all, we have shown so far that

Ξ(r) 
 Ξ2(r) + eu/2Q−C1 .

In Ξ2(r) there are O(QA) choices of h. By using Lemma 4.7 we conclude

Ξ2(r) 
 eqq1−AQA. (4.21)

By combining (4.20) and (4.21), we deduce from (4.19) that

‖E(B)
q,u (·)‖∞ 
 1

N

∑
r�eu−qqA−1

eqq1−AQA 
 1
N
euQA.

As a result,

‖TN (·)‖∞ 
 1
N

∑
(u,q)∈T (N)

euQA 
 1
N

∑
u≤logN−10A log logN

euQA+1


 1
(logN)10A

(logN)A+1 
 1
(logN)8A

. �

4.6 Essential regimes
We are now ready to apply our stationary phase expansion (Proposition 2.1), and thus effectively
apply the B-process a second time. Recall that after applying Poisson summation, the phase will
be ψr,h(t) = ψ(t) := φ(t, r) − t(h− s). Let

Wq,u(t) :=
Nq(xt,r)Ku(t)√

|tω′′(xt,r)|
f̂

(
t

N

)
e

(
ψ(t) − ψ(μ) − 1

2
(t− μ)2ψ′′(μ)

)
.

Furthermore, define

pj(μ) := cj

(
1

|ψ′′(μ)|

)j

W (2j)
q,u (μ),

where p0(μ) = e(1/8)Wq,u(μ). Note that, by (4.18), one can bound

pj(μ) 
 p1(μ) 
 N ε 1
|ψ′′(μ)|

1
μ1/2

ω′′′′(xμ,r)(∂txt,r|t=μ)2
|ω′′(xμ,r)|3/2


 eu/2−qN ε, j ≥ 1. (4.22)

Hence, let

Pq,u(h, r, s) :=
e(ψ(μ))√
|ψ′′(μ)|

(p0(μ) + p1(μ)),

and set

E(BB)
q,u (s) :=

e(−1/8)
N

∑
r≥0

∑
h≥0

Pq,u(h, r, s).

Before proving Proposition 4.5 we need the following lemma.

Lemma 4.9. For any c ∈ [0, 1] and any M > 10, we have the bound∫ 1

0
min(‖c+ s‖−1,M) ds ≤ 2 logM.
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Proof. Decomposing into intervals where ‖c+ s‖−1 ≤M as well as intervals where ‖c+ s‖−1 >
M and then using straightforward estimates implies the claimed bound. �

We can now prove Proposition 4.5.

Proof of Proposition 4.5. Fix s ∈ [0, 1] and recall the definition of Iq,u(h, r) from (4.14). Then,
by Poisson summation,

E(B)
q,u (s) =

e(−1/8)
N

∑
r≥0

∑
h∈Z

Iq,u(h, r).

Let [a, b] := supp(Ku), and
mr(h) := min

k∈[a,b]
|ψ′
r,h(k)|.

We decompose the h-summation into three different ranges:∑
h∈Z

Iq,u(h, r) = C1 + C2 + C3,

where the first contribution C1(r, s) is where mr(h) = 0, the second contribution C2(r, s) is where
0 < mr(k) ≤ N ε, and the third contribution C3(r, s) is where mr(h) ≥ N ε. Integration by parts
shows that

C3(r, s) 
 N−100.

Next, we handle C1(r, s). To this end, we shall apply Proposition 2.1, in the notation of which
we have

Ωw := eu, Λw := eq−u/2+ε, Λψ := euqA−1, Ωψ := eu.

The decay of the amplitude function was shown in Lemma 4.4; the decay of the phase function
follows from a short calculation we omit. Next, since we have disposed of the inessential regimes,
we see

Z := Ωψ + Λw + Λψ + Ωw + 1 � euqA−1 � N1+o(1).

Furthermore,
Ωψ

Λ1/2
ψ

Zδ/2 =
eu/2

q(1/2)A
Zδ/2 � eu(1/2+δ)

q(1/2)A+(δ/2)(A−1)
.

Hence, taking δ := 1/11 is compatible with the assumption (2.1). Thus,

C1(r, s) =
∑
h≥0

Pq,u(h, r, s) +O(N−1/11).

Now we bound C2(r, s). First note that ω(xt,r) is monotonic in t. To see this, set the derivative
equal to 0:

A
log(xt,r)A−1

xt,r
∂txt,r = A

log(xt,r)A−1

xt,r
ω′(r/t)(−r/t2) = 0.

However, since xt,r � eq, this implies ω′(r/k) = 0, which is a contradiction. Thus, by van der
Corput’s lemma (Lemma 2.3) for the first derivative, and monotonicity, we have

C2(r, s) 
 N1/2+ε min(‖ω(xa,r) + s‖−1, N1/2+o(1)),

where we used (4.18) and the fact that ∂tφ(t, r) = ω(xt,r). Notice that∥∥∥∥ 1
N

∑
r≥0

C2(r, ·)
∥∥∥∥m
Lm



∥∥∥∥ 1
N

∑
r≥0

C2(r, ·)
∥∥∥∥m−1

∞

∥∥∥∥ 1
N

∑
r≥0

C2(r, ·)
∥∥∥∥
L1

.

166

https://doi.org/10.1112/S0010437X2400753X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400753X


Full Poissonian local statistics of slowly growing sequences

By (4.15) we see that ∥∥∥∥ 1
N

∑
r≥0

C2(r, s)
∥∥∥∥m−1

∞

 NO(ε).

Hence, it remains to estimate

NO(ε)
∑

r�eu−qqA−1

1√
N

∫ 1

0
min(‖ω(xa,r) + s‖−1, N1/2+o(1)) ds.

By exploiting Lemma 4.9 we see that∥∥∥∥ 1
N

∑
r≥0

C2(r, ·)
∥∥∥∥m
Lm



∑

r�eu−qqA−1

No(1)

√
N


 No(1)−1/2

which implies the claim.
Finally, it remains to show that

‖E(BB)
q,u (·) − E(BB)

q,u (·)‖mLm = O(N−1/2+ε)

from which we can apply the triangle inequality to conclude Proposition 4.5. For this, recall the
bounds (4.22). Since E(BB)

q,u is simply the term arising from p0(μ), we have that

‖E(BB)
q,u (·) − E(BB)

q,u (·)‖mLm 
 1
N

∑
r∈Z

p1 
 eu−q/2N ε

N
.

From here the bound follows from the ranges of q and u. �
Before proceeding, we note that (4.10) can be simplified. In particular, we have the following

lemma.

Lemma 4.10. Given, h, r, and s as above, we have

μh,r,s =
r

ω′(ω−1(h− s))
, Φ(h, r, s) = −rω−1(h− s)

and

μω′′(xμ,r) · (∂μμφ)(μ, r) = − r2

μ2
. (4.23)

Proof. Recall xk,r = ω̃(r/k). Now, to compute μ, we have

0 = ∂μ(μω(xμ,r) − rxμ,r) − (h− s)

= ω(xμ,r) + μω′(xμ,r)(∂μxμ,r) − r∂μxμ,r − (h− s).

Consider first

∂μxμ,r = ∂μ

(
ω̃

(
r

μ

))
= ω̃′

(
r

μ

)(
− r

μ2

)
.

Furthermore, since μ = ω̃(ω′(μ)), we may differentiate both sides and then change variables to
see that

ω̃′(r/μ) =
1

ω′′(ω̃(r/μ))
. (4.24)

Hence,

∂μ(xμ,r) = −ω
(
ω̃

(
r

μ

))
r

μ2ω′′(ω̃(r/μ))
.
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Hence,

0 = ω(xμ,r) − r

(
ω

(
ω̃

(
r

μ

))
r

μ2ω′′(ω̃(r/μ))

)
+ ω

(
ω̃

(
r

μ

))
r2

μ2ω′′(ω̃(r/μ))
− (h− s)

= ω(xμ,r) − (h− s).

Hence, ω(ω̃(r/μ)) = h− s. Solving for μ gives

μ =
r

ω′(ω−1(h− s))
.

Moreover, we can simplify the phase as follows:

Φ(h, r, s) = φ(μ, r) − (h− s)μ

= μω(xμ,r) − rxμ,r − (h− s)μ

= μω(ω̃(r/μ)) − rω̃(r/μ) − (h− s)μ

=
r(h− s)

ω′(ω−1(h− s))
− rω−1(h− s) − (h− s)

r

ω′(ω−1(h− s))

= −rω−1(h− s).

Turning now to (4.23), we note that since, by the definition of μ, we have that ∂μφ(μ, r) = h− s
and h− s = ω(ω̃(r/μ)), we may differentiate both sides of the former to deduce that

∂μμφ(μ, r) = ∂μ(ω(ω̃(r/μ)))

= ω′(ω̃(r/μ))ω̃′(r/μ)(−r/μ2)

= −(r2/μ3)ω̃′(r/μ).

Now, using (4.24), we conclude that

μω′′(xr,μ) · (∂μμφ)(μ, r) = −μω′′(ω̃(r/μ))(r2/μ3)ω̃′(r/μ)

= −(r2/μ2)ω′′(ω̃(r/μ))
1

ω′′(ω̃(r/μ))
= − r2

μ2
. �

Applying Lemma 4.10 and inserting some definitions allows us to write

E(BB)
q,u (s) =

1
N

∑
r≥0

∑
h≥0

f̂

(
μ

N

)
Ku(μ)Nq(ω̃(r/μ))

μ

r
e(−rω−1(h− s)). (4.25)

Returning now to the full Lm norm, let σi := σ(ui) := ui/|ui|. Applying
Propositions 4.3 and 4.5 and expanding the mth power yields

F(N) =
∑

σ1,...,σm∈{±1}

∑
(ui,qi)∈G (N)

ui>0

∫ 1

0

∏
i≤m
σi>0

E(BB)
qi,ui

(s)
∏
i≤m
σi<0

E(BB)
qi,ui (s) ds+O(N−ε/2). (4.26)

To simplify this expression, for a fixed u and q, and µ = (μ1, . . . , μm), let Ku(µ) :=
∏
i≤m Kui(μi).

The functions Nq(µ, s) and f̂(µ/N) are defined similarly. Aside from the error term, the
right-hand side of (4.26) splits into a sum over

Fq,u :=
1
Nm

∑
r∈Zm

1
r1r2 · · · rm

∫ 1

0

∑
h∈Zm

Ku(µ)Nq(µ, s)Ah,r(s)e(ϕh,r(s)) ds,

168

https://doi.org/10.1112/S0010437X2400753X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400753X


Full Poissonian local statistics of slowly growing sequences

where the phase function is given by

ϕh,r(s) := −(r1ω−1(h1 − s) + r2ω
−1(h2 − s) + · · · + rmω

−1(hm − s)),

and where

Ah,r(s) := f̂

(
µ

N

)
μ1μ2 · · ·μm.

Now we distinguish between two cases. First, the set of all (r,h) where the phase ϕh,r(s) vanishes
identically, which we call the diagonal ; and its complement, the off-diagonal. Let

A := {(r,h) ∈ N × N : ϕh,r(s) = 0, ∀s ∈ [0, 1]},

and let

η(r,h) :=

{
1 if (r,h) �∈ A ,

0 if (r,h) ∈ A .

The diagonal, as we show, contributes the main term, while the off-diagonal contribution is
negligible (see § 6).

5. Extracting the diagonal

First, we establish an asymptotic for the diagonal. The sums below range over q ∈ [2Q]m, u ∈
[−U,U ], and r,h ∈ Z. Let

DN =
1
Nm

∑
q,u,r,h

(1 − η(r,h))
1

r1r2 · · · rm

∫ 1

0
Ku(µ)Nq(µ, s)Ah,r(s) ds.

With that, the following lemma establishes the main asymptotic needed to prove Lemma 3.1
(and thus Theorem 1.2).

Lemma 5.1. We have

lim
N→∞

DN =
∑

P∈Pm

E(f |P1|) · · ·E(f |Pd|), (5.1)

where the sum is over all non-isolating partitions of [m], which we denote by P = (P1, . . . , Pd).

Proof. Since the Fourier transform f̂ is assumed to have compact support, we can evaluate the
sum over u and eliminate the factors Ku. Hence,

DN =
1
Nm

∑
q,r,h

1(|μi| > 0)(1 − η(r,h))
1

r1r2 · · · rm

∫ 1

0
Nq(µ, s)Ah,r(s) ds,

where the indicator function takes care of the fact that we extracted the contribution when
ki = 0.

The condition that the phase is zero is equivalent to a condition on h and r. Specifically,
this happens in the following situation. Let P be a non-isolating partition of [m]. We say that a
vector (r,h) is P-adjusted if for every P ∈ P we have hi = hj for all i, j ∈ P , and

∑
i∈P ri = 0.

The diagonal is restricted to P-adjusted vectors. Now

χP,1(r) :=

⎧⎨⎩1 if
∑
i∈P

ri = 0 for each P ∈ P,

0 otherwise,
χP,2(h) :=

{
1 if hi = hj for all i, j ∈ P ∈ P,
0 otherwise,
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where χP,1(r)χP,2(h) encodes the condition that (r,h) is P-adjusted. Thus, we may write

DN =
1
Nm

∑
P∈Pm

∑
q,r,h

χP,1(r)χP,2(h)
1

r1r2 · · · rm

( ∫ 1

0
Nq(µ, s)f̂

(
µ

N

)
μ1μ2 · · ·μm ds

)
+ o(1).

Inserting the definition of μi then gives

DN =
1
Nm

∑
P∈Pm

∑
q,r,h

χP,1(r)χP,2(h)
∫ 1

0
Nq(µ, s)f̂

(
µ

N

) m∏
i=1

(
1

ω′(ω−1(hi − s))

)
ds+ o(1).

Now note that the r variable only appears in f̂(µ/N), that is,

DN =
1
Nm

∑
P∈Pm

∑
P∈P

∑
q,h

∫ 1

0
Nq,P (h)

(
1

ω′(ω−1(h))

)|P |

×
∑

r∈Z
|P |

ri 
=0

χ(r)f̂
(

1
Nω′(ω−1(h))

r
)
ds(1 + o(1)), (5.2)

where χ(r) is 1 if
∑|P |

i=1 ri = 0 and where Nq,P (h) =
∏
i∈P Nqi(μi, s). We can apply Euler’s

summation formula ([Apo76, Theorem 3.1]) to conclude that∑
r∈Z

|P |
ri 
=0

χ(r)f̂
(

1
Nω′(ω−1(h))

r
)

=
∫

R|P |
χ(x)f̂

(
1

Nω′(ω−1(h))
x
)
dx(1 + o(1)).

Changing variables then yields∫
R|P |

χ(x)f̂
(

1
Nω′(ω−1(h))

x
)
dx = N |P |−1ω′(ω−1(h))|P |−1

∫
R|P |

χP(x)f̂(x) dx(1 +O(N−θ));

note that χ(x) fixes x|P | = −
∑|P |−1

i=1 xi. Plugging this into our (5.2) gives

DN =
1
Nd

∑
P∈Pm

∑
P∈P

∑
q,h

Nq,P (h)ω′(ω−1(h))
∫

R|P |−1

f̂(x1, . . . , x|P |−1,−x · 1) dx(1 + o(1)).

Next, we may apply Euler’s summation formula and a change of variables to conclude that

DN =
∑

P∈Pm

∑
P∈P

( ∫
R|P |−1

f̂(x1, . . . , x|P |−1,−x · 1) dx
)

(1 + o(1)).

From there we apply Fourier analysis as in [LT21, Proof of Lemma 5.1] to conclude (5.1). �

6. Bounding the off-diagonal

Recall that the off-diagonal contribution is given by

ON =
∑
q,u

1
Nm

∑
r,h

η(r,h)
∫ 1

0

μ1μ2 · · ·μm
r1r2 · · · rm

f̂

(
µ

N

)
Ku(µ)Nq(µ, s)e(Φ(h, r, s)) ds,

where ri � eui−qiqA−1
i and the variable hi � qA. Finally, we have the phase function

Φ(h, r, s) = −
m∑
i=1

ri exp((hi − s)1/A).
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If we were to bound the oscillatory integral trivially, we would achieve the bound ON 

(logN)(A+1)m. Therefore, all that is needed is a small power saving, for which we can exploit
the oscillatory integral

I(h, r) :=
∫ 1

0
Ah,r(s)e(Φ(h, r, s)) ds,

where

Ah,r(s) :=
μ1μ2 · · ·μm
r1r2 · · · rm

f̂

(
µ

N

)
Ku(µ)Nq(µ, s).

While bounding this integral is more involved in the present setting, we can nevertheless use the
proof in [LT21, § 6] as a guide. In Proposition 6.1 we achieve a power-saving; for this reason we
can ignore the sums over q and u which give a logarithmic number of choices.

Since we are working on the off-diagonal we may write the phase as

Φ(h, r, s) =
l∑

i=1

ri exp((hi − s)1/A) −
L∑
i=l

ri exp((hi − s)1/A), (6.1)

where we may now assume that ri > 0, the hi are pairwise distinct, and L < m. We restrict
attention to the case L = m (this is also the most difficult case and the other cases can be done
analogously).

Proposition 6.1. Let Φ be as above. Then, for any ε > 0, we have

I(h, r) 
 N εKu(µ0)Nq(µ0, 0)
eu1+···+um

r1 · · · rm
N−1/m+ε

as N → ∞, where μ0,i = ri/ω
′(ω−1(hi)). The implied constants are independent of h and r

provided ηr(h) �= 0.

Proof. As in [LT21], we shall prove Proposition 6.1 by showing that one of the first m derivatives
of Φ is small. Then we can apply van der Corput’s lemma to the integral and achieve the
necessary bound. However, since the phase function is a sum of exponentials (as oppose to a
sum of monomials as it was in our previous work), achieving these bounds is significantly more
involved than in [LT21].

The jth derivative is given by (we will send s 
→ −s to avoid having to deal with minus signs
at the moment)

Dj =
m∑
i=1

ri exp((hi + s)1/A)

× {A−j(hi + s)j/A−j + cj,1(hi + s)(j−1)/A−j + · · · + cj,j−1(hi + s)(1/A−j)}

=:
m∑
i=1

biPj(hi)

where the cj,k depend only on A and j, where bi := ri exp((hi + s)1/A).
In matrix form, let D := (D1, . . . , Dm) denote the vector of the first m derivatives, and let

b := (b1, . . . , bm). Then
D = bM, where (M)ij := Pj(hi).

To prove Proposition 6.1 we will lower-bound the determinant of M . Thus, we will show that
M is invertible, and hence we will be able to lower-bound the �2-norm of D. For this purpose,
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consider the jth row of M ,

(M)j = (Pj(h1), . . . , Pj(hm)).

We can write Pj(h1) :=
∑j−1

k=0 cj,k(hi + s)tk/A−j , where tk := j − k. Since the determinant is
multilinear in the rows, we can decompose the determinant of M as

det(M) =
∑
t∈T

ct det(((hi + s)tj/A−j)i,j≤m), (6.2)

where ct are constants depending only on t and the sum over t ranges over the set

T := {t ∈ Nm : tj ≤ j, ∀j ∈ [1,m]}.

Let Xt := ((hi + s)tj/A−j)i,j≤m. We claim that det(M) = ctM det(XtM )(1 +O(maxi(h
−1/A
i ))) as

N → ∞, where tM := (1, 2, . . . ,m).
To establish this claim, we appeal to the work of Khare and Tao; see Lemma 2.4. Namely, let

H := (h1 + s, . . . , hm + s) with h1 > h2 > · · · and let T(t) := (t1/A− 1, . . . , tm/A−m). Then
we can write

Xt := H◦T(t).

Now invoking Lemma 2.4, we have

det(Xt) � V (H)HT(t)−nmin .

Note that we may need to interchange the rows and/or columns of Xt to guarantee that the
conditions of Lemma 2.4 are met. However, this will only change the sign of the determinant
and thus will not affect the magnitude.

Now, fix t ∈ T such that t �= tM and compare

|det(XtM )| − |det(Xt)| ≥ |V (H)|(|HT(tM )−nmin | − |HT(t)−nmin |).

Since tM �= t we conclude that all coordinates ti ≤ (tM )i and there exists a k such that tk <
(tM )k. Therefore,

|det(XtM )| − |det(Xt)| = |V (H)HT(tM )−nmin |(1 +O(max
i

(h−1/A
i )))

= |det(XtM )|(1 +O(max
i

(h−1/A
i ))).

This proves our claim.
Hence,

|det(M)| = |ctM det(XtM )|(1 +O(max
i

(h−1/A
i )))

= |ctMV (H)HT(tM )−nmin |(1 +O(max
i

(h−1/A
i )))

= |ctM |
( m∏
j=1

(hj + s)j/A−2j+1

) ∏
1≤i<j≤m

(hi − hj)(1 +O(max
i

(h−1/A
i ))) (6.3)

which is clearly larger than 0 (since hi − hj > 1 and s > −1).
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Hence, M is invertible, and we conclude that

DM−1 = b,

‖D‖2‖M−1‖spec ≥ ‖b‖2,

‖D‖2 ≥ ‖b‖2

‖M−1‖spec
,

where ‖ · ‖spec denotes the spectral norm with respect to the �2 vector norm. Recall that
‖M−1‖spec is simply the largest eigenvalue of M−1. Hence, det(M−1)1/m ≤ ‖M−1‖spec.

We can bound the spectral norm by the maximum norm,

‖M−1‖spec 
 max
i,j

(M−1)i,j .

However, each entry of M−1 is equal to 1/det(M) times a cofactor of M , by Cramer’s rule. This,
together with the size of the hi, is enough to show that

‖D‖2 � ‖b‖2 log(N)−1000m.

Now using the bounds on b (which come from the essential ranges of hi and ri), we conclude
that

‖D‖2 � N1−ε.

From here we can apply the localized van der Corput’s lemma [TY20, Lemma 3.3] as we did in
[LT21] to conclude Proposition 6.1. �

7. Proof of Lemma 3.1

Thanks to the preceding argument, we conclude that

lim
N→∞

Km(N) =
∑

P∈Pm

E(f |P1|) · · ·E(f |Pd|) + lim
N→∞

ON .

Moreover, the off-diagonal term can be bounded using Proposition 6.1 as follows:

ON =
1
Nm

∑
q,u

∑
r,h

η(r,,h)I(h, r)


 1
Nm

∑
q,u

∑
r,h

Ku(µ0)Nq(µ0, 0)
eu1+···+um

r1 · · · rm
max
i≤m

e−ui/mN ε.

Note that we are summing over reciprocals of ri and recall that the hi have size qAi , so we may
evaluate the sums over h and r and gain at most a logarithmic factor (which can be absorbed
into the ε). Thus,

ON 
 1
Nm

∑
q,u

eu1+···+um max
i≤m

e−ui/mN ε.

Likewise there are logarithmically many q and u. Thus, maximizing the upper bound, we arrive
at

ON 
 N−1/m+ε.

This concludes our proof of Lemma 3.1. Hence, Theorem 1.3 follows from the argument in § 3.
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8. Deducing Theorem 1.2 from Theorem 1.3

To see why Theorem 1.3 implies Theorem 1.2, we focus first in § 8.1 on the simplest case,
m = 2. The spirit of approximation argument therein works for any m ≥ 2. However, because
the notation gets more complicated when m ≥ 3, we present the general argument in § 8.2. In
any case, the following lemma is at the core of the matter.

Lemma 8.1. Let f ∈ C∞
c (R) be positive. For any ε > 0, there exists a pointwise majorant F of

f with ∫
R

F (x) − f(x) dx < ε and F̂ ∈ C∞
c . (8.1)

A proof of this can be found in § 8.3.

8.1 The case m = 2
Suppose we knew that

lim
N→∞

R(2)(N, f) = E(f), for any positive f ∈ C∞
c . (8.2)

Then, by the linearity of f 
→ R(2)(N, f) and f 
→
∫

R
f(x) dx, the convergence of R(2)(N, f) →

E(f) follows for all f ∈ C∞
c . To verify (8.2) we show, for any positive f ∈ C∞

c , that

lim sup
N→∞

R(2)(N, f) ≤ E(f) ≤ lim inf
N→∞

R(2)(N, f). (8.3)

We first argue the estimate for the limit superior. Given ε > 0, Lemma 8.1 guarantees that there
exists a pointwise majorant F of f satisfying (8.1). Observe that R(2)(N, f) −R(2)(N,F ) =
R(2)(N, f − F ) and R(2)(N, f − F ) = −R(2)(N,F − f). As a result,

|R(2)(N, f) −R(2)(N,F )| ≤ R(2)(N,F − f). (8.4)

Let g := F − f . Combining (8.4), Theorem 1.3, and (8.1), we see that

lim sup
N→∞

R(2)(N, f) ≤ lim sup
N→∞

R(2)(N,F ) + lim sup
N→∞

R(2)(N, g) ≤ E(f) + ε+ lim sup
N→∞

R(2)(N, g).

(8.5)
Using Lemma 8.1, we find a pointwise majorant G of g with (8.1).

Applying Theorem 1.3 once more,

lim sup
N→∞

R(2)(N, g) ≤ lim sup
N→∞

R(2)(N,G) = E(G) ≤ E(g) + ε ≤ 2ε. (8.6)

By inserting this into (8.5) we obtain

lim sup
N→∞

R(2)(N, f) ≤ E(f) + 3ε, (8.7)

for any choice of ε > 0. Hence, lim supN→∞R(2)(N, f) ≤ E(f). Next, we show the right-hand
side of (8.3). We notice that (8.4) and (8.6) yield

lim inf
N→∞

R(2)(N, f) ≥ lim inf
N→∞

R(2)(N,F ) − lim sup
N→∞

R(2)(N, g) ≥ E(f) − 2ε.

Since ε > 0 was arbitrary, lim infN→∞R(2)(N, f) ≥ E(f) follows.

8.2 linearity-based m ≥ 2
Let f ∈ C∞

c (Rm−1) be positive, which we may assume by a linearity-based argument. Let ε > 0.
It suffices to demonstrate that

lim sup
N→∞

R(m)(N, f) ≤ E(f) + 2ε and E(f) − 2ε ≤ lim inf
N→∞

R(m)(N, f). (8.8)
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Up to an error of at most ε, we can approximate f with respect to the supremum norm
on Rm−1 by a finite linear combination of functions f̃ each of which is the form f̃(x) :=
f1(x1) · · · fm−1(xm−1), where all fi ∈ C∞

c (R). Thus, it suffices to establish (8.8) for f̃ in place of
f . Given 1 ≤ i < m, Lemma 8.1 implies that there exists a pointwise majorant Fi of fi satisfying
(8.1). As a result, F (x) := F1(x1) · · ·Fm−1(xm−1) is a pointwise majorant of f̃ . By using the
identity ab− a′b′ = a(b− b′) + (a− a′)b′ inductively, we conclude that there exists a constant
C
f̃
> 0 so that ∫

Rm−1

F (x) − f̃(x) dx < C
f̃
· ε

no matter what our initial choice of the small parameter ε was. Since F̂ (x) =
F̂1(x1) · · · F̂m−1(xm−1) is the product of compactly supported functions, F̂ ∈ C∞

c (Rm−1). Notice
that

|R(m)(N, f) −R(m)(N,F )| ≤ R(m)(N,F − f).

From here we reason exactly as we did in the case m = 2 and thus we infer (8.8).

8.3 Proof of Lemma 8.1
The purpose of this subsection is to establish Lemma 8.1. We do so using arguments inspired by
Marklof [Mar03, Section 8.6]. First, chose a δ > 0 small enough to ensure that∫

R

δ

1 + x2
dx <

ε

2
.

Next, we perturb f slightly by considering an auxiliary function h defined via its Fourier
transform

ĥ(x) := f(x) +
δ

1 + x2
.

The reason for working with this perturbation is to create the leeway needed to ensure that the
final approximation F is indeed positive. Let χ : R → [0, 1] be an even, smooth function with
supp(χ) ⊆ [−2, 2] and χ(x) = 1 for x ∈ [−1, 1]. We consider

hT (x) := h(x)χ
(
x

T

)
,

and proceed to argue that there exists a cut-off T > 0 so that

|ĥT (x) − ĥ(x)| < δ

1 + x2
(8.9)

for all x ∈ R. Observe that (8.9) is trivially true at x = 0. From now on let x �= 0. By using
partial integration twice, we conclude

ĥT (x) − ĥ(x) =
∫

R

[
h(y)χ

(
y

T

)
− h(y)

](
d2

dy2

e(−yx)
(−2πix)2

)
dy

=
1

(−2πix)2

∫
R

(
d2

dy2

[
h(y)χ

(
y

T

)
− h(y)

])
e(−yx) dy.

Furthermore,

d2

dy2

(
h(y)

(
1 − χ

(
y

T

)))
= h′′(y)

(
1 − χ

(
y

T

))
+ 2

1
T
h′(y)χ′

(
y

T

)
+

1
T 2
h(y)χ′′

(
y

T

)
. (8.10)

Let j ≥ 0 be an integer. To estimate the right-hand side of (8.10) efficiently, our next goal is to
control the decay of the jth derivative of h uniformly. To this end, thanks to Fourier inversion,

175

https://doi.org/10.1112/S0010437X2400753X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400753X


C. Lutsko and N. Technau

we see that

h(j)(y) =
∫

R

ĥ(ξ)(2πiξ)je(yξ) dξ.

Let y �= 0. By using partial integration t ≥ j many times,

|h(j)(y)| =
∣∣∣∣ ∫

R

ĥ(ξ)(2πiξ)j
dt

dξt

(
e(yξ)

(2πiy)t

)
dξ

∣∣∣∣ ≤ (2π)j

|2πy|t ·
∫

R

∣∣∣∣ dtdξt (ξj ĥ(ξ))
∣∣∣∣dξ

≤ 1
|y|t

∫
R

∣∣∣∣ dtdξt
(
ξjf(ξ) +

δξj

1 + ξ2

)∣∣∣∣dξ.
By applying Leibniz’s rule we conclude that, for any integers t ≥ j ≥ 0, there exists a constant
C(j, t, f) > 0 so that |h(j)(y)| ≤ C(j, t, f)|y|−t for any y �= 0. Taking this information in (8.10)
into account yields

d2

dy2

(
h(y)

(
1 − χ

(
y

T

)))

 1

y2

[
1 − χ

(
y

T

)
+

1
T
χ′

(
y

T

)
+

1
T 2
χ′′

(
y

T

)]

 1

y2

whenever y �= 0. Here the implied constants depend only on f and χ. Because the left-hand side
of (8.10) is supported on |y| ≥ T , it follows that

|ĥT (x) − ĥ(x)| 
 1
|x|2

∫
R

∣∣ d2

dy2

(
h(y)

(
1 − χ

(
y

T

)))∣∣∣∣dy 
 1
|x|2

∫
|y|>T

1
y2
dy 
 1

|x|2T .

Upon choosing T large enough to overwhelm the implicit constant, we deduce that (8.9) holds
true.

Now put F (x) := ĥT (x). By the convolution theorem, F (x) =
∫

R
ĥ(x− y)χ̂(y) dy. Notice that

ĥ and χ̂ are real-valued (the latter being the Fourier transform of an even, real-valued function).
Therefore, F is real-valued. To proceed, we notice that the triangle inequality implies

f(x) = ĥ(x) − δ

1 + x2
< ĥ(x) + (ĥT (x) − ĥ(x)) = F (x).

Hence, F is a pointwise majorant of f and, in particular, positive. Furthermore,∫
R

F (x) − f(x) dx <
∫

R

|ĥT (x) − ĥ(x)| dx+
∫

R

δ

1 + x2
dx < ε.

Appendix A. A sublacunary partition of unity

Choose large integers N,Q ≥ 10, with eQ ≤ N < eQ+1. In this section we justify that the func-
tions Nq, where 0 ≤ q ≤ 2Q− 1, from § 3.2 exist. We assume in the following that Q is an odd
integer. The case that Q is even can be handled very similarly. We start from the disjoint
decomposition

[1, N ] = [1, eQ−1) ∪ [eQ−1, N ].

To construct a suitable partition of unity for the first and the second set we require somewhat
different treatment. However, the main idea is rather simple, and the mechanics are the same for
both. We begin with the former. We cut [1, eQ−1) into a union of the dyadic intervals [eq, eq+1).
Then we smooth out the corners of their indicator functions in the following way. We smooth
every second indicator function (changing their support only marginally), and adjust the remain-
ing ones so that neighboring functions always sum to 1. Furthermore, to decompose [eQ−1, N ]
in a sublacunary manner, we use a similar strategy. This time we cut the interval into a union
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of sublacunary intervals, smoothing the ones with odd indices and then adjusting the corners of
the even ones appropriately.

To execute this plan, fix a smooth function β : R → R≥0 which is supported in a compact
interval. For example,

β(x) :=

⎧⎨⎩exp
(
− 1

1 − |x|2
)

for 0 ≤ |x| < 1,

0 otherwise

is a viable choice. By translating (if need be) and scaling, we modify β to obtain a function
B : R → R≥0 which is smooth, supported in [−1/100, 1/100], and L1-normalized, that is,∫

R

B(x) dx = 1.

Denote the convolution of functions g1, g2 : R → R by

(g1 ∗ g2)(x) :=
∫

R

g1(x− y)g2(y) dy.

Clearly, if g1 is j times continuously differentiable, then g1 ∗ g2 is j times continuously
differentiable and

(g1 ∗ g2)(j) = g
(j)
1 ∗ g2. (A.1)

A.1 The regime 0 ≤ q < Q
Denote the indicator function of an interval I by 1I . The smooth function By(x) := e−yB(e−yx)
is important in what follows, noting in particular that it is supported in the interval
[−ey/100, ey/100]. For even index q = 2t ∈ {0, . . . , Q− 1}, we let

N2t(x) := (1[eq ,eq+1) ∗Bq)(x).

These functions inherit the smoothness of B. By (A.1), we have

‖N(j)
2t ‖∞ 
 e−qj (A.2)

for each integer j ≥ 0. (The implied constant is allowed to depend on the choice of B, which,
however, is fixed throughout and therefore this dependency is suppressed.) Next, for every odd
index q = 2t+ 1 ∈ {0, . . . , Q− 1} we define

N2t+1(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if x < 0.98 · e2t,
1 − N2t(x), if 0.98 · e2t ≤ x < 1.02 · e2t,
1, if 1.02 · e2t ≤ x < 0.98 · e2t+2,

1 − N2t+2(x), if 0.98 · e2t+2 ≤ x < 1.02 · e2t+2,

0, if e2t+2 ≤ x.

Since N2t+1 is given piecewise by concatenating five smooth functions, we can infer that N2t+1

is a smooth function as soon as we establish that the four relevant boundary points do not cause
issues. A quick inspection reveals that Nq, for any q < Q, is supported in [0.98 · eq, 1.02 · eq+1] ⊆
[eq/2, 3eq). Hence, N2t+1 is smooth. Furthermore, N2t+1 is monotonically increasing (though
not always strictly) on the interval [0.98 · eq, 1.02 · eq], equal to 1 on [1.02 · eq, 0.98 · eq+1], and
monotonically decreasing (not always strictly) on [0.98 · eq+1, 1.02 · eq+1]. The function N2t has
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analogous monotonicity properties. Hence, N′
q also has exactly one sign change. By construction,

Nq(x) + Nq+1(x) = 1

whenever eq ≤ x ≤ eq+1, irrespective of the parity of q. Moreover, (A.2) implies that

‖N(j)
2t+1‖∞ 
 e−qj . (A.3)

Consequently, the family of functions {Nq : 0 ≤ q < Q} satisfies (3.7).

A.2 The regime Q ≤ q < 2Q
Put Q := 2.8 · eQ/Q. To render the subsequent formulas more transparent, define at := eQ + (t−
1/2)Q. Observe that

[eQ−1, N) = [eQ−1, eQ) ∪ [eQ, N) ⊂ [eQ−1, eQ) ∪
⋃

0≤t≤T+1

It, where It := [at, at + Q),

and where T is the unique integer such that N ∈ IT . In fact, due to the fact that e/2.8 < 0.971,
we see that 0 ≤ T ≤ 0.98Q. Informally, our next step is to again smooth out every other partition
interval in the aforementioned cover. However, this time we need to be mindful at the end points
of the partition which, necessarily, play a distinguished role. The end points will be handled at
the end of this paragraph, and we first deal with the bulk of the intervals. Writing any even
index q ∈ {Q+ 1, Q+ T + 1} in the form q = Q+ 2t+ 1, with 0 ≤ t ≤ T , we define

NQ+2t+1(x) := (1I2t+1 ∗BQ)(x).

Next, writing any odd index q ∈ {Q+ 2, Q+ T + 1} in the form q = Q+ 2t, with 1 ≤ t ≤ T , we
put

NQ+2t(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if x < a2t−2 − 0.02 · Q,
1 − NQ+2t−2(x), if a2t−2 − 0.02 · Q ≤ x < a2t−2 + 0.02 · Q,
1, if a2t−2 + 0.02 · Q ≤ x < a2t+2 − 0.02 · Q,
1 − NQ+2t+2(x) if a2t+2 − 0.02 · Q ≤ x < a2t+2 + 0.02 · Q,
0, if a2t+2 + 0.02 · Q ≤ x.

The function NQ plays a distinguished role as it is the final partition element and of a differ-
ent scale of unity given provided by the functions {Nq : 0 ≤ q < Q} and the sublacunary one
furnished by {Nq : Q < q < 2Q− 1}. To smoothly link these two, we let

NQ(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if x < 0.98eQ,
1 − NQ−1(x), if 0.98eQ ≤ x < 0.98eQ,
1, if a2t−1 + 00.2 · Q ≤ x < a2t+1 − 00.2 · Q,
1 − NQ+1(x) if a2t+1 − 00.2 · Q ≤ x < a2t+1 + 00.2 · Q,
0, if a2t+1 + 00.2 · Q ≤ x.

To formally complete the construction, we put

Nq(x) := 0, for q ∈ {Q+ T + 2, . . . , 2Q− 1}.

By arguing very much as in the regime 0 ≤ q < Q, one can check that {Nq : Q ≤ q < 2Q} has
the required properties and, in particular, is such that (3.7) holds true.
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