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Abstract Let k � 0, a � 1 and b � 0 be integers. We define the arithmetic function gk,a,b for any
positive integer n by

gk,a,b(n) :=
(b + na)(b + (n + 1)a) · · · (b + (n + k)a)

lcm(b + na, b + (n + 1)a, . . . , b + (n + k)a)
.

If we let a = 1 and b = 0, then gk,a,b becomes the arithmetic function that was previously introduced by
Farhi. Farhi proved that gk,1,0 is periodic and that k! is a period. Hong and Yang improved Farhi’s period
k! to lcm(1, 2, . . . , k) and conjectured that (lcm(1, 2, . . . , k, k + 1))/(k + 1) divides the smallest period
of gk,1,0. Recently, Farhi and Kane proved this conjecture and determined the smallest period of gk,1,0.
For the general integers a � 1 and b � 0, it is natural to ask the following interesting question: is gk,a,b

periodic? If so, what is the smallest period of gk,a,b? We first show that the arithmetic function gk,a,b

is periodic. Subsequently, we provide detailed p-adic analysis of the periodic function gk,a,b. Finally, we
determine the smallest period of gk,a,b. Our result extends the Farhi–Kane Theorem from the set of
positive integers to general arithmetic progressions.

Keywords: arithmetic progression; least common multiple; p-adic valuation; arithmetic function;
smallest period
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1. Introduction

Many beautiful and important theorems about the arithmetic progression in number
theory are known: Dirichlet’s Theorem [1,11] and the Green–Tao Theorem [9] being the
two most famous examples. For some other results, see, for example, [4,12,15,21,22].
Meanwhile, the topic of the least common multiple of any given sequence of positive
integers has received a lot of attention from many authors: see, for example, [2,3,5–7,
10,11,13,14,16,19,20]. For detailed background information about the least common
multiple of finite arithmetic progressions, we refer readers to [17].

Farhi [6,7] investigated the least common multiple of a finite number of consecutive
integers. Let k � 0 be an integer. It was proved in [6] and [7] that lcm(n, n+1, . . . , n+k)
is divisible by n

(
n+k

k

)
and also divides

n

(
n + k

k

)
lcm

((
k

0

)
,

(
k

1

)
, . . . ,

(
k

k

))
.
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Farhi [6,7] showed that the last equality holds if k!|(n+k +1). Farhi also introduced the
arithmetic function gk, which is defined for any positive integer n by

gk(n) :=
n(n + 1) · · · (n + k)

lcm(n, n + 1, . . . , n + k)
.

Farhi then proved that the sequence {gk}∞
k=0 satisfies the recursive relation gk(n) =

gcd(k!, (n + k)gk−1(n)) for all positive integers n, where gcd(a, b) means the greatest
common divisor of integers a and b. Using this relation, we can easily show (by induction
on k) that for any non-negative integer k, the function gk is periodic of period k!. This
is a result due to Farhi [7]. Define Pk to be the smallest period of the function gk.
Farhi’s result then says that Pk|k!. Define L0 := 1 and, for any integer k � 1, define
Lk := lcm(1, 2, . . . , k). Hong and Yang [17] showed that gk(1)|gk(n) for any non-negative
integer k and any positive integer n. Consequently, using this result, they showed that
Pk|Lk for all positive integers k. This improves Farhi’s period. In [17], Hong and Yang
raised a conjecture stating that Lk+1/(k + 1) divides Pk for all non-negative integers
k. From this conjecture, one can read that k|Pk and Pk = Lk if k + 1 is a prime. Very
recently, Farhi and Kane [8] found a proof of the Hong–Yang conjecture. Furthermore,
Farhi and Kane determined the exact value of Pk, which solved the open problem posed
by Farhi in [7].

Throughout this paper, let Q and N denote the field of rational numbers and the set
of positive integers, respectively. Define N0 := N ∪ {0}. Let k, b ∈ N0 and let a ∈ N. We
define the arithmetic function gk,a,b : N → N by

gk,a,b(n) =
(b + na)(b + (n + 1)a) · · · (b + (n + k)a)

lcm(b + na, b + (n + 1)a, . . . , b + (n + k)a)
.

Note that gk,1,0 = gk. It is natural to ask the following interesting question.

Problem 1.1. Let k � 0, a � 1 and b � 0 be integers. Is gk,a,b periodic and, if so,
what is the smallest period of gk,a,b?

Assume that gk,a,b is periodic and that Pk,a,b is the smallest period of gk,a,b. We can
then use Pk,a,b to give a formula for lcm(b + na, b + (n + 1)a, . . . , b+ (n + k)a) as follows:
for any positive integer n, we have

lcm(b + na, b + (n + 1)a, . . . , b + (n + k)a) =
(b + na)(b + (n + 1)a) · · · (b + (n + k)a)

gk,a,b(〈n〉Pk,a,b
)

,

where 〈n〉Pk,a,b
denotes the least non-negative residue of n modulo Pk,a,b. Therefore, it

is important to determine the exact value of Pk,a,b.
In this paper, we investigate the least common multiple of consecutive terms in arith-

metic progressions. As usual, for any prime number p, we let vp be the normalized p-adic
valuation of Q, i.e. vp(a) = s if ps ‖ a. For any real number x, by �x� we denote the
largest integer no more than x. Let ep,k := �logp k� = max1�i�k{vp(i)} be the largest
exponent of a power of p that is at most k. We can now give the main result of this
paper.
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Theorem 1.2. Let k � 0, a � 1 and b � 0 be integers. The arithmetic function gk,a,b

is then periodic, and if gcd(a, b) = 1, then its smallest period equals Qk,a, where

Qk,a :=
Lk

δk,a

∏
prime q| gcd(a,Lk) qeq,k

, (1.1)

and

δk,a :=

{
pep,k if p � a and vp(k + 1) � ep,k for some prime p � k,

1 otherwise.

For gcd(a, b) > 1, the smallest period of gk,a,b is equal to Qk,a′ with a′ = a/(gcd(a, b)).

Thus we answer Problem 1.1 completely. Our result extends the Farhi–Kane Theorem
from the set of positive integers to general arithmetic progressions.

The paper is organized as follows. In § 2, by using a well-known result of Hua [18]
we show that the arithmetic function gk,a,b is periodic (see Theorem 2.5). Then, in § 3,
we provide detailed p-adic analysis of the periodic function gk,a,b and determine the
smallest period of gk,a,b. In the last section, we prove Theorem 1.2 and give an example
to illustrate its validity.

2. The periodicity of gk,a,b

Hong and Yang [17] proved that Lk is a period of gk. In this section, we introduce a
new method to show that for any integers k � 0, a � 1 and b � 0, the arithmetic
function gk,a,b is periodic, and in particular Lk is also a period of gk,a,b. First we need
a well-known result of Hua. One can easily deduce this result by using the principle of
inclusion–exclusion (see, for instance, [18, p. 11]).

Lemma 2.1 (Hua [18]). Let a1, a2, . . . , an be any n positive integers. We then have

lcm(a1, a2, . . . , an) = a1a2 · · · an

n∏
r=2

∏
1�i1<···<ir�n

(gcd(ai1 , . . . , air
))(−1)r−1

.

Lemma 2.2. Let a1, a2, . . . , an and b1, b2, . . . , bn be any 2n positive integers. Let
3 � t � n be a given integer. If gcd(ai1 , . . . , ait) = gcd(bi1 , . . . , bit) for any 1 � i1 < · · · <

it � n, we then have

a1a2 · · · an

lcm(a1, a2, . . . , an)

t−1∏
r=2

∏
1�i1<···<ir�n

(gcd(ai1 , . . . , air ))
(−1)r−1

=
b1b2 · · · bn

lcm(b1, b2, . . . , bn)

t−1∏
r=2

∏
1�i1<···<ir�n

(gcd(bi1 , . . . , bir ))
(−1)r−1

.

Proof. If gcd(ai1 , . . . , ait) = gcd(bi1 , . . . , bit) for any 1 � i1 < · · · < it � n, then
we have gcd(ai1 , . . . , aik

) = gcd(bi1 , . . . , bik
) for any 1 � i1 < · · · < ik � n and any

n � k � t. Thus, by using Lemma 2.1, we get the result of Lemma 2.2. �
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In particular, we have the following result.

Lemma 2.3. Let a1, a2, . . . , an and b1, b2, . . . , bn be any 2n positive integers. If, for
any 1 � i1 < i2 < i3 � n, we have gcd(ai1 , ai2 , ai3) = gcd(bi1 , bi2 , bi3), then

1∏
1�i<j�n gcd(ai, aj)

a1a2 · · · an

lcm(a1, a2, . . . , an)
=

1∏
1�i<j�n gcd(bi, bj)

b1b2 · · · bn

lcm(b1, b2, . . . , bn)
.

Proof. Since gcd(ai1 , ai2 , ai3) = gcd(bi1 , bi2 , bi3) for any 1 � i1 < i2 < i3 � n, we
have gcd(ai1 , . . . , aik

) = gcd(ai1 , . . . , aik
) for any 1 � i1 < · · · < ik � n and k � 3. By

using Lemma 2.1, we get the conclusion of Lemma 2.3. �

Notice that if gcd(ai, aj) = gcd(bi, bj) for any 1 � i < j � n, then gcd(ai1 , ai2 , ai3) =
gcd(bi1 , bi2 , bi3) for any 1 � i1 < i2 < i3 � n. It follows immediately from Lemma 2.3
that the following is true.

Corollary 2.4. Let a1, a2, . . . , an and b1, b2, . . . , bn be any 2n positive integers. If
gcd(ai, aj) = gcd(bi, bj) for any 1 � i < j � n, we then have

a1a2 · · · an

lcm(a1, a2, . . . , an)
=

b1b2 · · · bn

lcm(b1, b2, . . . , bn)
.

We can now give the main result of this section. This also gives an alternative proof
of the Hong–Yang period of the periodic function gk [17].

Theorem 2.5. Let k � 0, a � 1 and b � 0 be integers. The arithmetic function gk,a,b

is then periodic, and Lk is a period of gk,a,b.

Proof. Let n be any positive integer. For any 0 � i < j � k, we have

gcd(b + (n + i + Lk)a, b + (n + j + Lk)a) = gcd(b + (n + i + Lk)a, (j − i)a)

= gcd(b + (n + i)a, (j − i)a)

= gcd(b + (n + i)a, b + (n + j)a).

Thus, by Corollary 2.4, we obtain

(b + (n + Lk)a)(b + (n + 1 + Lk)a) · · · (b + (n + k + Lk)a)
lcm(b + (n + Lk)a, b + (n + 1 + Lk)a, . . . , b + (n + k + Lk)a)

=
(b + na)(b + (n + 1)a) · · · (b + (n + k)a)

lcm(b + na, b + (n + 1)a, . . . , b + (n + k)a)
.

In other words, for any positive integer n, we have gk,a,b(n + Lk) = gk,a,b(n), as desired.
�

Evidently, Theorem 2.5 gives an affirmative answer to the first part of Problem 1.1.
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3. p-adic analysis of gk,a,b

Throughout this section we always let k � 0, a � 1 and b � 0 be integers such that
gcd(a, b) = 1. From the main result of the previous section (Theorem 2.5), we know that
the arithmetic function gk,a,b is periodic. Let Pk,a,b denote the smallest period of gk,a,b.
By Theorem 2.5 we then know that Pk,a,b is a divisor of Lk. But the exact value of Pk,a,b

is still unknown. In this section, we will determine the exact value of Pk,a,b. We need
some more notation. Let

Sk,a,b(n) := {b + na, b + (n + 1)a, . . . , b + (n + k)a}

be any k + 1 consecutive terms in the arithmetic progression {b + ma}m∈N0 . For a given
prime number p, define gp,k,a,b(n) := vp(gk,a,b(n)). Since gk,a,b is a periodic function,
gp,k,a,b is also a periodic function for each prime p and Pk,a,b is a period of gp,k,a,b. Let
Pp,k,a,b be the smallest period of gp,k,a,b. We have the following result.

Lemma 3.1. We have Pk,a,b = lcmp prime(Pp,k,a,b).

Proof. Since, for any n ∈ N, we have that vp(gk,a,b(n + Pk,a,b)) = vp(gk,a,b(n)), i.e.
Pp,k,a,b|Pk,a,b for each prime p. Hence we have lcmp prime(Pp,k,a,b)|Pk,a,b.

Conversely, for any n ∈ N, we have that

vp(gk,a,b(n + lcmp prime(Pp,k,a,b))) = vp(gk,a,b(n))

for each prime p. Thus, we have

gk,a,b(n + lcmp prime(Pp,k,a,b)) = gk,a,b(n)

for any n ∈ N: that is, we have Pk,a,b| lcmp prime(Pp,k,a,b). Therefore, we have Pk,a,b =
lcmp prime(Pp,k,a,b), as required. �

Hence we only need to compute Pp,k,a,b for each prime p to get the exact value of
Pk,a,b. The following result is due to Farhi [6]. An alternative proof of it was given by
Hong and Feng [13].

Lemma 3.2. Let {ui}i∈N0 be a strictly increasing arithmetic progression of non-zero
integers and let k be any given non-negative integer. The integer lcm(u0, u1, . . . , uk) is
then a multiple of

u0u1 · · ·uk

k!(gcd(u0, u1))k
.

Lemma 3.3. For any positive integer n, we have gk,a,b(n)|k!.

Proof. Let ui = b + a(n + i) for 0 � i � k. Then gcd(u0, u1) = 1, since a and b are
coprime. So by Lemma 3.2 we know that there is an integer A such that

lcm(b + na, b + (n + 1)a, . . . , b + (n + k)a) = A
(b + an)(b + a(n + 1)) · · · (b + a(n + k))

k!
.

It then follows that k! = Agk,a,b(n). �
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It follows from Lemma 3.3 that gp,k,a,b(n) = vp(gk,a,b(n)) = 0 for each prime p > k

and any positive integer n. Hence we have Pp,k,a,b = 1 for each prime p > k. So, by
Lemma 3.1, in order to determine the exact value of Pk,a,b, it suffices to compute the
exact value of Pp,k,a,b for all the primes p such that 1 < p � k. First we consider the
case in which p|a and 1 < p � k. Since gcd(a, b) = 1, we have gcd(p, b) = 1, and thus
gcd(p, b+(n+ i)a) = 1 for any integer n ∈ N and if 0 � i � k. Hence gcd(p, gk,a,b(n)) = 1
for any integer n � 1, i.e. we have gp,k,a,b(n) = 0 for any integer n � 1 if p|a. Thus
Pp,k,a,b = 1 if p|a. We put these facts into the following lemma.

Lemma 3.4. Let p be a prime such that either p > k or p|a. We then have Pp,k,a,b = 1.

In what follows we treat the remaining case in which p � a and 1 < p � k. Clearly, we
have

gp,k,a,b(n) =
∑

m∈Sk,a,b(n)

vp(m) − max
m∈Sk,a,b(n)

vp(m)

=
∑
e�1

∑
m∈Sk,a,b(n)

(1 if pe|m) −
∑
e�1

(1 if pe divides some m ∈ Sk,a,b(n))

=
∑
e�1

#{m ∈ Sk,a,b(n) : pe|m} −
∑
e�1

(1 if pe divides some m ∈ Sk,a,b(n))

=
∑
e�1

max(0, #{m ∈ Sk,a,b(n) : pe|m} − 1). (3.1)

We then have the following lemmas.

Lemma 3.5. If p � a and e > ep,k, then there is at most one element of Sk,a,b(n) which
is divisible by pe.

Proof. Suppose that there exist two integers i and j such that pe|b + (n + i)a and
pe|b + (n + j)a, where 0 � i < j � k. We then have pe|(j − i)a. Since gcd(p, a) = 1, we
get pe|(j − i). From it we deduce that vp(j − i) � e > ep,k. This is a contradiction. �

Lemma 3.6. Let e be a positive integer. If p � a, then any pe consecutive terms in the
arithmetic progression {b + ma}m∈N0 are pairwise incongruent modulo pe. Furthermore,
if e � ep,k, then there is at least one element of Sk,a,b(n) that is divisible by pe.

Proof. Suppose that there exist two integers i and j such that b+(m+ i)a ≡ b+(m+
j)a (mod pe), where m � 0 and 0 � i < j � pe −1. Then pe|(j − i)a. Since gcd(p, a) = 1,
we have pe|(j − i). This is impossible. Thus the first part is true.

Now let e � ep,k. Then 1 � pe � k. Hence Sk,a,b(n) holds pe consecutive terms and one
of these is divisible by pe by the above discussion. Therefore the second part holds. �

By Lemma 3.5, we know that all the terms on the right-hand side of (3.1) are 0 if
e > ep,k. By Lemma 3.6, there is at least one element divisible by pe in the set Sk,a,b(n)
if e � ep,k. Therefore, by (3.1) we obtain

gp,k,a,b(n) =
ep,k∑
e=1

fe(n), (3.2)
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where fe(n) := #{m ∈ Sk,a,b(n) : pe|m} − 1. Since b + (n + i + pe)a ≡ b + (n + i)a
(mod pe) for any i ∈ {0, 1, . . . , k}, we have fe(n + pe) = fe(n). Therefore, pe is a period
of fe(n). Hence fe(n + pep,k) = fe(n) is true for each e ∈ {1, . . . , ep,k}. This implies
that gp,k,a,b(n + pep,k) = gp,k,a,b(n). Consequently, pep,k is a period of gp,k,a,b(n). Thus
Pp,k,a,b|pep,k . It follows immediately that the Pp,k,a,b are relatively prime for different
prime numbers p. But Lemmas 3.1 and 3.4 tell us that Pk,a,b = lcmp prime, p�k, p�a(Pp,k,a,b).
Therefore, we get the following result.

Lemma 3.7. We have

Pk,a,b =
∏

p prime, p�a, p�k

Pp,k,a,b,

where Pp,k,a,b satisfies that Pp,k,a,b|pep,k .

According to Lemma 3.7, it suffices to compute the p-adic valuation of Pp,k,a,b for the
prime numbers p satisfying p � a and p ∈ (1, k]. Now let us determine the p-adic valuation
of Pk,a,b for these prime numbers p.

Proposition 3.8. Let a � 1 and b � 0 be integers such that gcd(a, b) = 1. Let k � 2
be an integer and let p ∈ (1, k] be a prime number such that p � a.

(i) If vp(k + 1) < ep,k, then vp(Pk,a,b) = ep,k.

(ii) If vp(k + 1) � ep,k, then vp(Pk,a,b) = 0.

Proof. (i) Since pep,k is a period of gp,k,a,b, it suffices to prove that pep,k−1 is not the
period of gp,k,a,b, from which it follows that pep,k is the smallest period of gp,k,a,b. By
(3.2), we have

gp,k,a,b(n) =
ep,k∑
e=1

fe(n) =
ep,k−1∑

e=1

fe(n) + fep,k
(n).

Since pep,k−1 is a period of
∑ep,k−1

e=1 fe(n), it is sufficient to prove that pep,k−1 is not the
period of fep,k

(n). We claim that there exists a positive integer n0 such that fep,k
(n0 +

pep,k−1) = fep,k
(n0) − 1.

By vp(k +1) < ep,k, we deduce that pep,k � (k + 1) and pep,k � k. We can suppose that
k + 1 ≡ l (mod pep,k) for some 1 � l � pep,k − 1. We divide the proof of part (i) into the
following two cases.

Case 1. 1 � l � pep,k − pep,k−1. Since p � a, we can always find a suitable n0 such that
b + n0a ≡ 0 (mod pep,k). Consider the following two sets:

Sk,a,b(n0) = {b + n0a, . . . , b + (n0 + pep,k−1 − 1)a, b + (n0 + pep,k−1)a, . . . , b + (n0 + k)a}

and

Sk,a,b(n0 + pep,k−1) = {b + (n0 + pep,k−1)a, . . . , b + (n0 + k)a,

b + (n0 + k + 1)a, . . . , b + (n0 + k + pep,k−1)a}.
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We now have that {b + (n0 + pep,k−1)a, . . . , b + (n0 + k)a} is the intersection of Sk,a,b(n0)
and Sk,a,b(n0 + pep,k−1). So to compare the number of terms divisible by pep,k in the set
Sk,a,b(n0) with the number of terms divisible by pep,k in the set Sk,a,b(n0 + pep,k−1), it
suffices to compare the number of terms divisible by pep,k in the set {b + n0a, . . . , b +
(n0 + pep,k−1 − 1)a} with the number of terms divisible by pep,k in the set {b + (n0 +
k + 1)a, . . . , b + (n0 + k + pep,k−1)a}. By Lemma 3.6, any pep,k consecutive terms in the
arithmetic progression {b + ma}m∈N0 are pairwise incongruent modulo pep,k . Thus the
terms divisible by pep,k in the arithmetic progression {b + ma}m∈N0 must be of the form
b + (n0 + tpep,k)a, t ∈ Z. Since k +1 ≡ l (mod pep,k) and 1 � l � pep,k −pep,k−1, we have
k+j ≡ l+j−1 
≡ 0 (mod pep,k) for all 1 � j � pep,k−1. Hence pep,k � (b+(n0+k+j)a) for
all 1 � j � pep,k−1. Thus none of the elements in the set {b+(n0 + k +1)a, . . . , b+(n0 +
k +pep,k−1)a} are divisible by pep,k . On the other hand, since b+an0 ≡ 0 (mod pep,k), it
follows from Lemma 3.6 that there is exactly one term in the set {b+n0a, b+(n0+1)a, . . . ,

b+(n0 +pep,k−1 −1)a} that is divisible by pep,k . Therefore, the number of terms divisible
by pep,k in the set Sk,a,b(n0 +pep,k−1) is equal to the number of terms divisible by pep,k in
the set Sk,a,b(n0) minus 1. Namely, fep,k

(n0 + pep,k−1) = fep,k
(n0) − 1 as required. The

claim is proved in this case.

Case 2. pep,k −pep,k−1 < l � pep,k −1. Since p � a, it is easy to see that there is a positive
integer n0 such that b+(n0+pep,k−1−1)a ≡ 0 (mod pep,k). As in the discussion of Case 1,
to compare the number of terms divisible by pep,k in the set Sk,a,b(n0) with the number
of terms divisible by pep,k in the set Sk,a,b(n0+pep,k−1), it suffices to compare the number
of terms divisible by pep,k in the set {b+n0a, . . . , b+(n0 +pep,k−1 −1)a} with the number
of terms divisible by pep,k in the set {b+(n0 +k +1)a, . . . , b+(n0 +k +pep,k−1)a}. From
b+(n0 +pep,k−1 −1)a ≡ 0 (mod pep,k) one can deduce that the terms divisible by pep,k in
the arithmetic progression {b + ma}m∈N0 must be of the form b+(n0+pep,k−1−1+tpep,k)a
with t ∈ Z. Since k + 1 ≡ l (mod pep,k) for some pep,k − pep,k−1 < l � pep,k − 1, we have
pep,k − pep,k−1 + 1 � l + j − 1 � pep,k + pep,k−1 − 2 and so k + j ≡ l + j − 1 
≡
pep,k−1 − 1 (mod pep,k) for all 1 � j � pep,k−1. It follows that for all 1 � j � pep,k−1, we
have pep,k � (b + (n0 + k + j)a). That is, there does not exist an integer divisible by pep,k

in the set {b+(n0+k+1)a, . . . , b+(n0+k+pep,k−1)a}. But the term b+(n0+pep,k−1−1)a is
the only term divisible by pep,k in the set {b+n0a, b+(n0+1)a, . . . , b+(n0+pep,k−1−1)a}.
Thus the number of terms divisible by pep,k in the set Sk,a,b(n0 + pep,k−1) equals the
number of terms divisible by pep,k in the set Sk,a,b(n0) minus 1. Hence the desired result
fep,k

(n0 + pep,k−1) = fep,k
(n0)−1 follows immediately. The proof of the claim is complete.

From the claim we deduce immediately that pep,k−1 is not a period of gp,k,a,b. Thus
pep,k is the smallest period of gp,k,a,b. It follows that vp(Pk,a,b) = ep,k as desired.

(ii) By Lemma 3.7, we know that to prove part (ii) it is sufficient to prove that
vp(Pq,k,a,b) = 0 for each prime q with q � k and q � a. For any prime q different
from p, since Pq,k,a,b|qeq,k , we then have vp(Pq,k,a,b) = 0. In what follows we deal with
the remaining case q = p.

From vp(k + 1) � ep,k, we deduce that pep,k |(k + 1) and pe|(k + 1) for each
e ∈ {1, . . . , ep,k}. By Lemma 3.6, any pe consecutive terms in the arithmetic pro-
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gression {b + ma}m∈N0 are pairwise incongruent modulo pe since p � a. Hence for
each e ∈ {1, . . . , ep,k}, there are exactly (k + 1)/pe terms divisible by pe in any
k + 1 consecutive terms of the arithmetic progression {b + ma}m∈N0 . So we have that
fe(n) = ((k + 1)/pe) − 1 for each e ∈ {1, . . . , ep,k}. In other words, for every n ∈ N,
we have fe(n + 1) = fe(n). It then follows from (3.2) that for every n ∈ N, we have
gp,k,a,b(n + 1) = gp,k,a,b(n). Thus Pp,k,a,b = 1 and vp(Pk,a,b) = 0. Therefore, part (ii) is
proved. �

4. Proof of Theorem 1.2

In this section, we first prove Theorem 1.2.

Proof of Theorem 1.2. By Theorem 2.5, we know that gk,a,b is periodic. Denote by
Pk,a,b its smallest period. First, let gcd(a, b) = 1. Then, by Lemma 3.7, for any prime
p such that p|a, we have vp(Pk,a,b) = 0. For any prime p satisfying p � a and p � k, we
have, by Lemma 3.7, Pp,k,a,b = pvp(Pp,k,a,b) = pvp(Pk,a,b). So, by Proposition 3.8 we infer
that

Pk,a,b =
∏

p prime, p�k

pep(k,a),

where

ep(k, a) :=

{
0 if vp(k + 1) � ep,k or p|a,

ep,k otherwise.

Using the integer Lk, we obtain immediately that Pk,a,b = Qk,a as required, where Qk,a

is defined as in (1.1).
Now let gcd(a, b) > 1. If gcd(a, b) = d and a = da′ and b = db′, then gcd(a′, b′) = 1

and we can easily check that gk,a,b(n) = dkgk,a′,b′(n) for any n ∈ N. From this one can
easily derive that the periodic functions gk,a,b and gk,a′,b′ have the same smallest period,
i.e. Pk,a,b = Pk,a′,b′ . But the result for the case gcd(a, b) = 1 applied to the function gk,a′,b′

gives us that Pk,a′,b′ = Qk,a′ , with Qk,a′ defined as in (1.1). The desired result Pk,a,b =
Qk,a′ therefore follows immediately. This completes the proof of Theorem 1.2. �

It was proved by Farhi and Kane [8] that there is at most one prime p � k such that
vp(k + 1) � ep,k. We noticed that such a prime p was given in Proposition 3.3 of [8]
without the condition p � k, but such a restriction condition is clearly necessary because
otherwise Proposition 3.3 of [8] would not be true. For example, letting p be any prime
number greater than k + 1 gives us vp(k + 1) = 0 = ep,k. Comparing the smallest period
Pk,a,b of the function gk,a,b with the smallest period Pk of the function gk = gk,1,0, we
arrive at the relation between Pk,a,b and Pk as follows:

Pk,a,b =
Pk∏

prime p| gcd(a′,Pk) pep,k
,

where a′ = a/(gcd(a, b)). From this one can read that Pk,a,b = Pk if a|b.
Finally, we give an application of Theorem 1.2 as the conclusion of this paper.
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Example 4.1. Let us consider the least common multiple of any k + 1 consecutive
positive odd numbers. To study this problem, we define an arithmetic function hk by

hk(n) :=
(2n + 1)(2n + 3) · · · (2n + 2k + 1)

lcm(2n + 1, 2n + 3, . . . , 2n + 2k + 1)
(n ∈ N).

By Theorem 1.2, we know that hk is periodic and, for any integer k � 2, the exact period
Rk of hk is given by

Rk =
Lk

2e2,kDk
,

where

Dk =

{
pep,k if vp(k + 1) � ep,k for some odd prime p � k,

1 otherwise.
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