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NECESSARY AND SUFFICIENT CONDITIONS
FOR THE EQUALITY OF L(f) AND

WALEED DEEB

Introduction. Let f beamodulus, e; = (8;,) and E = {e;, 1 = 1,2,...}.
The L(f) spaces were created (to the best of our knowledge) by W.
Ruckle in [2] in order to construct an example to answer a question of
A. Wilansky. It turned out that these spaces are interesting spaces. For
example 7, 0 < p < 1isan L(f) space with f(x) = x?, and every FK
space contains an L( f) space [2]. A natural question is: For which f is
L(f) a locally convex space? It is known that L(f) C /!, for all f
modulus (see [2]), and [! is the smallest locally convex FK space in which
E is bounded (see [1]). Thus the question becomes: For which [ does
L(f) equal I'? In this paper we characterize such f. (An FK space need
not be locally convex here.) We also characterize those f for which L( f)
contains a convex ball. The final result of this paper is to show that if f
satisfies f(x-y) < f(x)-f(y) and L(f) # ' then L(f) contains no
infinite dimensional subspace isomorphic to a Banach space.

Throughout f will be a modulus and

By =1X € L(f): |X],; = a}.

LEMMA. If for some a > 0, B;u) ts convex then for any finite collection

of positive real numbers {cy, ..., c,} with >.c, = 1 we have f(a) =
2 flew).
Proof. Let X, = ae,,m = 1,2, ..., nthen X,, € By, for all m and

X = Y.¢; X, is in By, since By, is convex. So |X|; < f(a). But
X, = 2 flea) < f(a).

On the other hand
fla) = f(Xew) = 2 fca),

SO

fla) = 2 f(ca).

TaEOREM 1. For f @ modulus, L(f) = I' if and only if there exist two
positive numbers v and e such that f(x) < rx for all x in [0, €).

Proof. Assume that for every positive real number 7 and for every
positive real number ¢, there exists an x in (0, €] such that f(x) > rx. So
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for every positive integer n there exists x, in (0, 1/#2] such that
f(x,) > nx,. Since f is continuous [2], we have for every n there exists
an interval I, € (0, 1/#?) such that f(x) > nx for all x € I,. For each
n choose a finite number of points x,,, %4, - . . , X5,y in I, such that

1(n)
l/n2 < Ex,m < 9/n2.
k=1
This can be done because, for all x in I,, x, £ 1/%? so pick any point

x,, in I,, then choose x,,, . . ., %,y such that

t(n)—1 1(n)

> xw = 1/n* and lenk > 1/n".
k=
Let
X = (X1, X1y« ooy 1,00y X2ay e v vy X2000)y + - )
then

o Un) o tn) © t(n) 1

|x|f=n§];f(xm) é;};ﬂxnk:;n-;xm = Zn

so X ¢ L(f), while

2_1_

n

2

w 1(n)

BUEDIIIED VT

so X € Mand L(f) # I\

Conversely, suppose f(x) =< rx in (0, €] for some positive real numbers
r and ¢, so I! C L(f), but L(f) CI* for all f modulus (see [2]). So
L(f) = 1I' as sets, and this with the theorem in [4, page 203] imply
their equality as topological spaces.

ww

THEOREM 2. For f modulus, the following are equivalent:
(1) By is convex for some a > 0;
(2) there exists a positive real number a such that

for all x in [0, al;
(3) there exists a positive real number b such that By is convex for all
r £ b.

Proof. (1)=>(2): Let n be any positive integer. By the lemma we have

f(a) = nf(a/n).
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Let m be a positive integer m < #; then

f(a) =f(%a+n—%ﬁa) =f(;Lm—a+;l;a+i-a+...+i-a),

:f(gz a) + (n — m)f(;l;a)

by the lemma. So

(n — m) times

fla) = f(f; a) + 5 ().

Hence
i) = ()

So for any rational number r < 1 we have f(ra) = rf(a). By the con-
tinuity of f we have

f(xa) = af(a) for any x € [0, 1].

Now for any y € [0, a], y/a £ 1. So f(y) = y/a f(a).
(2) = (3):
_ (@)
t

flx) = b for all x € [0, a],

sol' = L(f)andforanyr < «

B, ={X € L(f):|X|; =7}
=X € L(f): [|X] = [X|/a = v/a}, @ = f(a)/a

={X ¢ /u || X]|\ £ r/a}.

So B, is a convex set for all » < «.
(3) = (1) is trivial.

Remark. The equality of L(f ) and I' does not guarantee the existence
of convex balls in L(f). Take for example f(x) = x/(1 + x). f is a
modulus. Since f(x) < 2f(x/2) for all x, no ball is convex. And it is clear
that L(f) = I.

The final theorem is a generalization (in the method of the proof and
the conclusion) of the one given by Stiles [3], for the /” spaces 0 < p < 1.
In the proof we will use his terminology.

THEOREM 3. If L(f) # I and f satisfy f(xy) < f(x)f(y) then L(f)
contains no infinite-dimensional subspace isomorphic to a Banach space.

Proof. First we will show that if B is a closed infinite dimensional
subspace of L( f ), then B contains a subspace isomorphic to L( f ).
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Now if B is infinite dimensional, it contains a sequence {b,} such that
[b,|; = 1 where b, is of the form
b, = (0,...,0,0%, 0%,..,0,...)
where &, is chosen arbitrarily large. Select b, such that
> bl < 12
k=kn +1
Let
Co=(0,...,0,000,...,060,,-1,0,...),n=1,2 ...
{C,} is the basic sequence equivalent to {e,} in L(f) for

o kn+1—1

=575 e = (78 )

n=

[

)IP WA

n=1

= S5 = 5 mact)= S (Ewe- 5 Wl.))

n=1 kn n tn +1

> 51— 55)) 2 Sramn 2L S

1 2 n=1
On the other hand

MG
n=1

w  kn+1—1 @ kn v1—1

;= ,21 Z FInabi"| = ;ﬂm Z £1be|

< 2 Sl - fbaly = Ny
We also have {C,} equivalent to {b,}, for if >_\,b, converges then Y_\,C,
converges from the definition of {C,}. On the other hand,

n=1

m

; MO, . 0,88 )

e

< Z > FInabi"|

n=1 kn 1

m

PP ok
n=1

the last inequality coming from (x). So {b,} is a basis for a subspace of
B which is isomorphic to L(f).

Now if L(f) contains an infinite dimensional subspace isomorphic to
a Banach space S then by the above result L(f) is isomorphic to a
subspace of S. But L( f ) 5 I' so by Theorem 1, L( f ) contains no convex
neighbourhood, which is a contradiction.

=D WIS WINED WM TS WINE

kn +1
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