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ON PRIME DISCRIMINANTS

LARRY JOEL GOLDSTEIN1)

1. Introduction.

Let L — Q{ifd~) be a quadratic field of discriminant d. We say that d

is a prime discriminant if d is divisible by exactly one rational prime. It is

classically known that the prime discriminants are given by

— 4, + 8 , (—1) 2 φ (p an odd prime).

Further, it is known that every discriminant d of a quadratic field can be

written uniquely in the form

where du >dt are distinct prime discriminants. (See, for example, [2, p.

75].) In this paper, we will prove a generalization of these facts.

Let K be an algebraic number field of narrow2) class number 1 and

let L be a quadratic extension of K. Let tfκ (resp. £7L) denote the ring

of integers of K (resp. L). Since K has class number 1, L has a relative

integral basis [aua2] over K. The relative discriminant

is a non-zero integer of K. Furthermore, if [a[, a2] is another relative

integral basis of L over K, then

ΔL/K{<*[, <*I) = ε2Λz,/*(«i, α 2 ) , (1)

where ε^Uκ, Uκ — the group of units of &κ. Let
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2 ) Let Iκ denote the group of all ϋC-ideals, Po

κ= the group of all principal Zf-ideals (a),
with a totally positive. The narrow class number of K is the order of Iκ/Pκ* Class field
theory implies that the narrow class number 1 is if and only if K has no non-trivial abelian
extension which is unramified at all finite i£-primes. If the narrow class number of K is 1,
then the ordinary class number of K is 1.
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. where L varies over all quadratic extensions of K and [au a2] varies over

all relative integral bases of L over K. An element of ^{K) is called a

K-discriminant. A if-discriminant which is divisible by exactly one K-prime

is called a prime K-discriminant. We say that two if-discriminants d, dr are

equivalent if d = ε2df for some ε^Uκ. The first main result of this paper is

THEOREM A. Let K be totally real of narrow class number 1, and let d^^{K).

Then d can be written in the form

d = JΓI πt>

where πt (1 < i < t) are distinct prime K-discrimίnants.

Let d = π1 πt = π[ π's be two decompositions of the K-discriminant

d into the product of distinct prime K-discriminants. We will say that the

two decompositions are equivalent if 5 = t and, after suitably renumbering

πi, ,jΓί, we have πt equivalent to π< for l^i<t. Our second main

result is

THEOREM B. Let K be totally real of narrow class number 1, and let

d^£f{K) and let L be a quadratic extension of K having d as the discriminant of

some relative integral basis of L over K. Let d be divisible by t distinct K-primes,

and let L* = the maximal abelian extension of K which is unramified over L at all

finite primes. Then:

(1)

(2) All decompositions of d into a product of prime discriminants are equivalent

to one another <=> deg(L*/L) = 2t'1.

The author wishes to thank Professor Tomio Kubota for several valuable

suggestions.

2. Generalization of Furuta's Genus Formula.

In this paragraph, let K be any number field and let L\K be an abelian

extension. Let L* denote the maximal abelian extension of K which con-

tains L and is such that L*/L is unramified at all finite L-primes. We will

refer to L* as the weak genus field of L\K, and deg (L*/L) as the weak genus

number of LjK. Furuta [1] has introduced a similar notion which assumes
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that L*jL is unramified also at infinite L-primes. In this case, we will refer

to the strong genus field of LjK and the strong genus number of LjK.

Let hκ denote the ordinary class number of if, S« = the set of infinite

/f-primes, SΌo.i = the set of real if-primes, SΌo.2 = the set of complex X-primes,

rt = the number of elements in S»tί (i = 1,2). We will prove

THOEREM 2.1. The weak genus number of LjK is given by

where p runs over primes of K, βp = the ramification index of p in LjK, Uκ — the^

group of units of the ring of K-integers, UL/K = the group of units of the ring of

K-integers, which are local norms at all finite primes and are totally positive.

Our proof will follow the derivation of Furuta's formula [1] for the

strong genus number.

LEMMA 2.2. [1, p. 282]. Let JL denote the group of ideles of L and let H

be an admissible subgroup of JL, L = the class field over L corresponding to H.

Let Lo be the maximal abelian extension of K which is contained in L. Then

Kx {NL/KH) is the admissible subgroup of Jκ corresponding to Lo, where NL/K

denotes the idele norm from L to K.

LEMMA 2.3. Let H* denote the admissible subgroup of Jκ corresponding to

L*, where Jκ = the idele group of K. Then

H* = KX- U R+x Π Cx Π

where R+ = {x^R\x > 0}, Cx = C — {0}, $ = a prime divisor of p in L, U% = the

local unit group at $ and N= the local norm from L% to Kp.

Proof Let L = the maximal abelian extension of L which is unramified

at all finite L-primes. Then the admissible subgroup of JL corresponding

to L is given by

Lx Π R+ Π Cxx Π U*.
$ real $ complex $ finite

But L* = the maximal abelian extension of K contained in L. Thus, the

Lemma follows from Lemma 2.2.

Let us now prove Theorem 2.1. Let U denote the group of unit ideles

of K. Then
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deccleg
- d e g {L/K)

_ (IK .H*)
~ deg {LjK)

_ (Jκ : K*U)(K*U

( s i n C e JκlKκUΛUιe ideal class

group of # )

: H*

= hκ(U:H*ΠU) _ hκ (C7 : C)
deg {LjK) deg (L/X) (if* n U : C) '

where C= U R+x U Cxx U NU%^H*f)U (Lemma 2.3). But

(U : C) = 2ri Π eP.

Further, it is easy to see that H*nU= {KXC)U) C. Therefore,

{H*r\U:C) = ((K*Γ)U) C:C)

COROLLARY 2.4. Z^ί LjK be a quadratic extension with relative discriminant

dL/κ- Further, assume that K is totally real and that dL/κ is divisible by t distinct

K primes. Then

Proof. Let U\ = {u2\u^Uκ}. Then UL/KΏU2

K. Moreover, since K is

totally real, Dirichlet's unit theorem implies that

Therefore,

Thus, by Theorem 2.1,
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3. Some Lemmas.

Throughout the remainder of this paper, let K be a totally real number

field of narrow class number 1. Let d e £f{K) and let us fix a quadratic

extension L of K and a relative integral basis {au a2] of L over K such

that d = JL/K{aua2). Further, let L* denote the genus field of L/K, H*=the

admissible subgroup of Jκ which corresponds to ZΛ

L E M M A 3.1. G a l {L*/K) is an abelian group of exponent 2 and therefore

Gal (L*IK) Λ Z/(2) ® ® Z/(2),

where Zj{2) denotes the additive group of integers modulo 2.

Proof By class field theory,

Gal (L*/K) & JKIH*

XJK/K*.C, (2)

where C = Π R+X Π C x x Π NU%, and where we have applied Lem-
per, i peŜ ,a peSΌo

m a 2.3. Let U denote the subgroup of all u n i t ideles of Jκ. T h e n

JKIK* U is i somorphic to the ideal class g r o u p of K. But since K has

class n u m b e r 1, Jκ = K* t/. Therefore, in order to prove the L e m m a , it

suffices to show t h a t if α ε ί 7 , t h e n α2GUCx C. But this is obvious.

L E M M A 3.2. L = K(Jd).

Proof Since L/K is a q u a d r a t i c extension a n d i£ has class n u m b e r 1,

L = K{\/μ ), where μ^έ?κ is square-free. Let us show t h a t

(3)

This will suffice to prove the Lemma. In order to prove (3), let us expli-

citly construct a relative integral basis of LjK whose discriminant is of the

form j« τ2 ( : G ^ ) , By (1), this suffices to prove (3). Let

2<?κ = P?1 PV,

where ρέ (1 < i < ί) denotes a X-prime. Suppose that

Let r̂  (1 < / < 5) be the largest non-negative integer < at such that

μ^u\ (mod p?r0,
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for some K integer ut. Then a classical result asserts that the relative dis-

criminant dLfK of L over K is given by

dL/κ= Γ H v ^ - ^ Π Pt*a<-μ<!7κ (4)
l i +l

Further, if we choose b^£?κ so that

b ΞΞ Ui (mod$ t

rή (1 < i <s) ,

then b2Ξ=μ{mod$i2rή ( l ^ t ^ s ) . Choose *» so that ρt=jΓi£7W ( l < ί < s ) , and

set J = Πi-i*?. Then, by (4),

is an integral basis of L over K. And the relative discriminant of this

basis is μ (4/λ2).

4. Proof of Theorems A and B.

Let all notations be as in Section 3. By Lemma 3.1, we have

for some al9 ,ar(ΞKx, where 2r = deg (L*/K). By Corollary 2.4, r^t.

Further, by Lemma 3.2, we may choose au , ar to be /^-discriminants.

For if βι is the relative discriminant of some relative integral basis of K( /aΊ)9

then Lemma 3.2 implies that K^ai) = K(τ/βi). Thus, throughout, let us

assume that au , ar are chosen to be /Γ-dicsriminants. Note that none

of au , ar are iίC-units since K has narrow class number 1. If t = 1,

then d is a prime discriminant and thus we can trivially write d as a pro-

duct of prime discriminants. Thus, let us assume t > 1, and let us proceed

by induction on t. Since t > 1, we have r > 1. Let pu * ,t>r be the

distinct finite if primes dividing d.

Reduction 1. We may assume that no at is divisible by all of

For assume that ^pg pίl#i. Then pi, p2, ,pt all ramify in

Since deg (L/UL) = 2 and L*/L is unramified at all finite L-primes, we see

that K(τ/au i/a2)IK(i/a1) is unramified. Therefore, the relative discrimi-

nant of K(rfau \/a2)IK is given by a\^7K. However, since the relative

https://doi.org/10.1017/S0027763000014690 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014690


PRIME DISCRIMINANTS 125

discriminant of K{Ja2)IK is given by a2tfκ, we see that the relative dis-

criminant of K{/au τ/az)IK is divisible by a\£7K. Thus, α2l«i. Let a[ =

aιaϊιe.έ?κ. Then L* = K{i/a'u i/a2, ,/α r ). Moreover, since a2 is not a

unit, and since every iΓ-prime has ramification index at most 2 in L*\K, we

see that not all of pu ,ρ r ramify in K{/a{)/K. Let a'[ be relative

discriminant of a relative integral basis of K( /a{)IK. Then K( /a[) = Kbfc^)

and not all of pi, ,p, divide a". Thus, V" — Ki^a"ly j/α2, , Jar) and

«" is not divisible by all of pi, ,p ίβ Repeating this construction, we

may guarantee that a similar condition holds for a2t ,α r , thus validating

the reduction.

Henceforth, let us assume that the reduction has been carried out. By

the induction hypothesis, at can be written as a product of prime K-

discriminants

Then

is an abelian extension of K which is unramified over L. Therefore, since

we clearly have L** Ώ L* = K{i/au ,i/αr), the definition of L* implies that

L** = ZΛ Therefore, we have

Reduction 2. We may assume that al9 , ar are prime discriminants.

By Reduction 2, each α̂  is divisible by exactly one iί-prime and this

/f-prime must be one of pi, ,pί. Let us renumber the a% so that

pi\at (l^i^t).

Let us show that

d = £2 (Xi a2 at* (*)

where ε&Uκ. This will immediately imply that d is a product of prime

discriminants.

Since L*/K{i/d ) is unramified at all finite i£-primes, we see that K{i/d )

is the largest subfield of L* which contains K and in which all of pi, , pi

are totally ramified. On the other hand, since L* = K{τ/alt ,τ/ar), we

see that K(i/cti •••«*) is a quadratic extension of K, contained in L*9 in
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I*, which all of pl9 , pt are totally ramified. Therefore,

Ktfd) =

(5)

Since deg (L*IK{/d~)) = 2r~ι and since L*/L is unramified at all finite

primes, we see that the relative discriminant dL*/κ of L* over K is given by

dϊiK = rf2-1^. (6)

Set Lo = K{)/al9 ,i/«ί). Then, since each K-prime has ramification index

at most 2 in L*jK, we see that L*/Lo is unramified at all finite primes.

But since the relative discriminant of K^a^jK is just at(^K9 and since

(*t<7κ, ajd7κ) = 1 (1 < i < ^ *),

we see that the relative discriminant of Lo/K is given by

(«i • α ί )
2 ί " 1 Λ.

Therefore, since L*/Lo is unramified at all finite primes,

<*X /JΓ = [(«i ' ^ " Λ Γ

= («i •ΛίΓ" 1^. (7)

Comparing (6) and (7) with (5), we see that 27 of (5) is a unit of Λ: , which

proves the assertion (*). This completes the proof of Theorem A.

Note also that if r > t, then the above procedure can be applied to

produce several inequivalent factorizations of d as a product of prime

discriminants. Thus, if r > t, the expression of d as a product of prime

discriminants is not unique. If r — t, and if d = ax am is an expression

of d as a product of prime discriminants, then K(ifcΓu ,i/αj/^(v^) is

unramified at all finite primes. Therefore, K{ifau , /aΰ) £ L * and tn<r.

But since au , am are prime discriminants, we see that m^.t9 which

implies that m = r and

Therefore, au , am are uniquely determined by the extension LjK9 up to

multiplication by units of (?κ. Thus, all factorizations of d as a product of

prime discriminants are equivalent in case r = ΐ. This completes the proof

of Theorem B.
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5. An Example.

Let K be a real quadratic field with fundamental unit ε. Then

Uκ = {±εn\n^Z}.

Further, we have

{εn\n€ΞZ]ΏUL/κΏ{ε*n}n<=Z}.

Moreover, a unit η^Uκ is a local norm at all ^-primes <=> η is a (global)

norm from, L, by Hasse's theorem and the fact that LjK is cyclic. There-

fore, we conclude:

UL/κ-= {εn\n(=Z} <=> NL/K(e) = + 1 and ε is a norm from L.

In all other cases,

ULIK = {e2»|

In the first case, [Uκ : UL/K1 = 2, while in the second case [Uκ : UL/K] = 4.

Therefore, by Theorem 2.1, we have deg {L*/L) = 2J in the first case and

deg (L*/L) = 2t~1 in the second case. Thus, we have

THEOREM 5.1. Let K be a real quadratic field of narrow class number 1, d

the relative discriminant of a quadratic extension L of K, ε = the fundamental unit

of K. Then d can be written as a product of prime K-discriminants. If ε is not

a norm from L, then all representations of d as a product of prime discriminants

are equivalent. In all other cases, there exist at least two equivalent representations

of d.
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