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ON PRIME DISCRIMINANTS
LARRY JOEL GOLDSTEIN®

1. Introduction.

Let L = Q(/d ) be a quadratic field of discriminant d. We say that d
is a prime discriminant if d is divisible by exactly one rational prime. It is
classically known that the prime discriminants are given by

p—1
—4, +8, (=1) * p (p an odd prime).

Further, it is known that every discriminant 4 of a quadratic field can be

written uniquely in the form
d=dy--d,

where d,, - - -,d, are distinct prime discriminants. (See, for example, [2, p.
75].) In this paper, we will prove a generalization of these facts.

Let K be an algebraic number field of narrow? class number 1 and
let L be a quadratic extension of K. Let &7 (resp. ¢7.) denote the ring
of integers of K (resp. L). Since K has class number 1, L has a relative
integral basis {e;, a;} over K. The relative discriminant

Adyg(ey,e)
is a non-zero integer of K. Furthermore, if {af,«}} is another relative
integral basis of L over K, then
dp/x(el, ;) = e2dy/k(ay, o), 1

where eeUy, Uyg = the group of units of 7. Let
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» Let Ix denote the group of all K-ideals, P% = the group of all principal K-ideals («),
with « totally positive. The narrow class number of K is the order of Ix/P%. Class field
theory implies that the narrow class number 1 is if and only if K has no non-trivial abelian

extension which is unramified at all finite K-primes. If the narrow class number of K is 1,
then the ordinary class number of K is 1.
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S (K) = {dr/x(et, a)}

. where L varies over all quadratic extensions of K and {ej, @} varies over
all relative integral bases of L over K. An element of $/(K) is called a
K-discriminant. A K-discriminant which is divisible by exactly one K-prime
is called a prime K-discriminant. We say that two K-discriminants d, d’ are
equivalent if d = e*d’ for some eé€Ug. The first main result of this paper is

THEOREM A. Let K be totally real of narrow class number 1, and let de &7 (K).
Then d can be written in the form

d=m++m,

where 7; 1<1i<1t) are distinct prime K-discriminants.

Let d =7+« -7, ==x]+ + -x{ be two decompositions of the K-discriminant
d into the product of distinct prime K-discriminants. We will say that the
two decompositions are equivalent if s =1¢ and, after suitably renumbering
7, + + *,m, we have =; equivalent to z} for 1<<i=<¢. Our second main
result is

TaeorREM B. Let K be totally real of narrow class number 1, and let
de S (K) and let L be a quadratic extension of K having d as the discriminant of
some relative integral basis of L over K. Let d be divisible by ¢ distinct K-primes,
and let L* = the maximal abelian extension of K which is unramified over L at all
Sinite primes. Then:

(1) deg (L*/L)=2:"",
(2) Al decompositions of d into a product of prime discriminants are equivalent
to one another < deg (L*/L) = 2'~1,

The author wishes to thank Professor Tomio Kubota for several valuable
suggestions.

2. Generalization of Furuta’s Genus Formula.

In this paragraph, let K be any number field and let L/K be an abelian
extension. Let L* denote the maximal abelian extension of K which con-
tains L and is such that L*/L is unramified at all finite L-primes. We will
refer to L* as the weak genus field of L/K, and deg (L*/L) as the weak genus
number of L/K. Furuta [1] has introduced a similar notion which assumes
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that L*/L is unramified also at infinite L-primes. In this case, we will refer
to the strong genus field of L/K and the strong genus number of L/K.

Let 2x denote the ordinary class number of K, S.. = the set of infinite
K-primes, S.,; = the set of real K-primes, S.., = the set of complex K-primes,
7; = the number of elements in S.,; (i =1,2). We will prove

THOEREM 2.1. The weak genus number of LK is given by

hK2Tl n €p
P& S .
deg (LIK)[Ug : Up/kl

deg (L*/L) =

where p runs over primes of K, ep = the ramification index of p in L|K, Ug=the
group of units of the ring of K-integers, Up/x = the group of units of the ring of
K-integers, which are local norms at all finite primes and are totally positive.

Our proof will follow the derivation of Furuta’s formula [1] for the
strong genus number.

LeEMMA 2.2.[1, p. 282]. Let ], denote the group of ideles of L and let H
be an admissible subgroup of J., L = the class field over L corresponding to H.
Let L, be the maximal abelian extension of K which is contained in L. Then
K*«(NyxH) is the admissible subgroup of Jx corresponding to L, where Nyx
denotes the idele norm from L to K.

Lemma 2.3, Let H* denote the admissible subgroup of Jx corresponding to
L*, where ]y = the idele group of K. Then

H*=K*- T R.x [l C* I NUsy,

PESw, 1 PESx, 2 PE&ESe

where R, = {xeR|z >0}, C*=C — {0}, B =a prime divisor of p in L,Up=the
local unit group at BB and N = the local norm from L to Kp.

Proof. Let L = the maximal abelian extension of L which is unramified
at all finite L-primes. Then the admissible subgroup of J, corresponding
to L is given by

L T R T €*x I Us
B real B complex B finite
But L* = the maximal abelian extension of K contained in L. Thus, the
Lemma follows from Lemma 2.2.

Let us now prove Theorem 2.1. Let U denote the group of unit ideles

of K. Then
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_ deg (L*K)

"~ deg(L/K)

~ Uk H¥
deg (L/K)

_ Ux:KXUNK*U : HY

deg (L/K)
_ hx(K*U : H¥)
= T deg (LK)

deg (L*/L)

(since Jx/K*U = the ideal class
group of K)

_ hyx(H*U : H¥) . x
= %Kdeg K (since H*2K*)

_ heU:H*NU) _ kg (U:0)
— deg(L/K) deg (L/K) (H*nU:C)’

where C= [ R.x [I C*x [l NUs< H*nU (Lemma 2.3). But

PESw, 1 PESw, 2 PESw

(U:C)=2"1- 1] ep.
peESa

Further, it is easy to see that H*NU = (K*NU)-C., Therefore,
(H*nU :C) = (K*nU)-C:0)
=(K*nU: K*nUNC)
= (Ug : Upsx).

COROLLARY 2.4. Let L/K be a quadratic extension with relative discriminant
dyx. Further, assume that K is totally real and that dp/x ts divisible by t distinct
K primes. Then

deg (L*/L) = hy - 271,

Proof. Let U% = {u?lucUyx}. Then U, r2U%  Moreover, since K is
totally real, Dirichlet’s unit theorem implies that

Ug={+1}xZ"11,
Therefore,

Uk : Upgl=<[Ug : U%]
=21

Thus, by Theorem 2.1,
deg (L*/L) = hy - 20,
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3. Some Lemmas.

Throughout the remainder of this paper, let K be a totally real number
field of narrow class number 1. Let d & $(K) and let us fix a quadratic
extension L of K and a relative integral basis {a;, @} of L over K such
that d = 4;/x(ay, @;). Further, let L* denote the genus field of L/K, H*=the
admissible subgroup of Jx which corresponds to L*.

Lemma 3.1.  Gal (L*/K) is an abelian group of exponent 2 and therefore
Gal (L*K)= Z|2)®- - -® Z|(2),
where Z|(2) denotes the additive group of integers modulo 2.
Proof. By class field theory,
Gal (L¥*/K) = Jx/H*
= JxIK*-C, (2)
where C= [[ R,x [l C*x [l NUs, and where we have applied Lem-

PESe, 1 PESe, 2 peESw
ma 2.3. Let U denote the subgroup of all unit ideles of Jx. Then

Jx/K*-U is isomorphic to the ideal class group of K. But since K has
class number 1, Jx = K*:U. Therefore, in order to prove the Lemma, it
suffices to show that if aeU, then a?K*-C. But this is obvious.

LemMma 3.2. L =K(/d).

Proof. Since L/K is a quadratic extension and K has class number 1,

L =K(/y), where pek is square-free. Let us show that
d=pp* (ETk). 3)

This will suffice to prove the Lemma. In order to prove (3), let us expli-
citly construct a relative integral basis of L/K whose discriminant is of the
form p-7? (reP%). By (1), this suffices to prove (3). Let

20k = pire - Py,
where p; (1=<i=<1) denotes a K-prime. Suppose that
Pl =<i<s), p:lpdx (s+1l=si=<i).
Let »; 1<i<s) be the largest non-negative integer <a; such that

# = uf (mod pi™),
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for some K integer #;. Then a classical result asserts that the relative dis-
criminant dy/x of L over K is given by

12
piZ(a;-r,) . n piQU« 1k (4)

i=s+1

D=k

dix =
1

Further, if we choose b= so that

b=u;(modp;,”) (1<i=<s),
then b*= g (modp;?) (1<i<s). Choose =, so that p,=r;7x (1<<i<s), and
set 2 = [[5-,77. Then, by (4),

b—ip

a; =1, ay= 2

is an integral basis of L over K. And the relative discriminant of this
basis is g - (4/22).

4. Proof of Theorems 4 and B.
Let all notations be as in Section 3. By Lemma 3.1, we have
L*=K(a, - -, Va,)

for some ay, + + +,a,€K*, where 2" =deg(L*/K). By Corollary 2.4, r=¢.
Further, by Lemma 3.2, we may choose @y, - -+, @, to be K-discriminants.
For if B; is the relative discriminant of some relative integral basis of K (/a,),
then Lemma 3.2 implies that K(/a;) = K/B;). Thus, throughout, let us
assume that a;, « + +, @, are chosen to be K-dicsriminants. Note that none
of ay,+--,a, are K-units since K has narrow class number 1. If ¢ =1,
then 4 is a prime discriminant and thus we can trivially write d as a pro-
duct of prime discriminants. Thus, let us assume #>1, and let us proceed

by induction on ¢. Since #>1, we have r>1. Let p;, ---,p, be the
distinct finite K primes dividing d.

Reduction 1. We may assume that no e«; is divisible. by all of

pl; b ')pt-

For assume that pp,+ + +p,Jes. Then py, ps, + « -, b, all ramify in K(/a,).
Since deg(L/K) =2 and L*/L is unramified at all finite L-primes, we see
that K(/a;, Ja,)/K{a,) is unramified. Therefore, the relative discrimi-

nant of K(/a,, ya;)/K is given by a}Z. However, since the relative
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discriminant of K(/a,)/K is given by @k, we see that the relative dis-
criminant of K(/a;, /a;)/K is divisible by a}. Thus, a|la;. Let af =
a,e;'€7%. Then L* = K(/a], Jas, + - +,/a,). Moreover, since a, is not a
unit, and since every K-prime has ramification index at most 2 in L*/K, we
see that not all of p, - -,p, ramify in K{/ai)/K. Let a7 be relative
discriminant of a relative integral basis of K(/a{)/K. Then K(/a}) = K({/a¥)
and not all of p;, - - -,p, divide «’. Thus, L*=K(/d!, Jas, + * -, ya,) and
« is not divisible by all of p;, - --,p,. Repeating this construction, we
may guarantee that a similar condition holds for a,, - - -, a,, thus validating
the reduction.

Henceforth, let us assume that the reduction has been carried out. By
the induction hypothesis, a; can be written as a product of prime K-
discriminants

a; = 71'(1“ .. ’ﬂ'fji()i) (1 =< i =< 7).
Then

Kz, /x50, « « «, /al0,) = L**

is an abelian extension of K which is unramified over L. Therefore, since

we clearly have L** 2 L*=K(/a,, - - -,/«,), the definition of L* implies that
L* = L*  Therefore, we have

Reduction 2. We may assume that ay, « - -, @, are prime discriminants.
By Reduction 2, each a; is divisible by exactly one K-prime and this
K-prime must be one of p;, -+ -,p,. Let us renumber the «, so that

pilai (1Slét).
Let us show that
d=¢e" ar-ay -, (%)

where eeUg. This will immediately imply that d is a product of prime
discriminants.

Since L*/K(/d) is unramified at all finite K-primes, we see that K(/d)
is the largest subfield of L* which contains K and in which all of py, -+ -, p,

are totally ramified. On the other hand, since L* = K(/a,, - - -,/a,), we

see that K(/a,- -, is a quadratic extension of K, contained in L¥ in
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L* which all of p,, - - +,p, are totally ramified. Therefore,

KWd) = Kifa,+ + - )
= d=92a;++-a, nK* (5)

Since deg (L*/K(/q)) =2""! and since L*/L is unramified at all finite
primes, we see that the relative discriminant d;*x of L* over K is given by

divix = dar k- (6)

Set L, = K(/ay, » - -,/a;). Then, since each K-prime has ramification index
at most 2 in L*/K, we see that L*/L, is unramified at all finite primes.

But since the relative discriminant of K(/a,)/K is just «;7, and since
(i, e;0k) =1 (l=i<j=<t),
we see that the relative discriminant of Lo/K is given by
(@y+ + »a)® Py
Therefore, since L*/L, is unramified at all finite primes,

drvig =g+« a,)* TP
= (ay+ » c @) Tk (7

Comparing (6) and (7) with (5), we see that 5 of (5) is a unit of &%, which
proves the assertion (). This completes the proof of Theorem A.

Note also that if »>#, then the above procedure can be applied to
produce several inequivalent factorizations of d as a product of prime
discriminants. Thus, if »> ¢, the expression of d as a product of prime
discriminants is not unique. If r=¢#, and if d = a,+ - -, is an expression
of d as a product of prime discriminants, then K (ay, + + +,/a,)/K(/d) is
unramified at all finite primes. Therefore, K (/a;, « - +, Ya,) S L* and m <r.
But since ay, -+ +,a, are prime discriminants, we see that m==¢, which
implies that m =7 and

L*=K(fay, + + +, V).

Therefore, a;, + + -, @, are uniquely determined by the extension L/K, up to
multiplication by units of 7. Thus, all factorizations of d as a product of
prime discriminants are equivalent in case » = ¢, This completes the proof
of Theorem B.
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5. An Example.
Let K be a real quadratic field with fundamental unit e. Then

Ug = {F+¢e"|neZ}.
Further, we have
{(e"neZ} 22U, 2{eneZ}.

Moreover, a unit 7&Ug is a local norm at all K-primes <7 is a (global)
norm from, L, by Hasse’s theorem and the fact that L/K is cyclic. There-
fore, we conclude:

Upp={e"|neZ} & Nyxle) = +1 and ¢ is a norm from L.
In all other cases,
Upx = {e™|neZ}.

In the first case, [Ux : Uyx] =2, while Ain the second case [Ug : Usx]l=4.
Therefore, by Theorem 2.1, we have deg(L*/L) =2° in the first case and
deg (L*/L) = 2¢7* in the second case. Thus, we have

THEOREM 5.1. Let K be a real quadratic field of narrow class number 1, d
the relative discriminant of a quadratic extension L of K, € = the fundamental unit
of K. Then d can be written as a product of prime K-discriminants. If € is not
a norm from L, then all representations of d as a product of prime discriminants
are equivalent. In all other cases, there exist at least two equivalent representations

of d.
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