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Abstract

For any group S let Ab(S) ={4|A4 is an abelian subgroup of S of maximal order}. Let G be a
Chevalley group of type A,, B,, C, or D, over a finite field of characteristic p and let UeSyl,
(G). In this paper Ab(U) is determined for all such groups.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 G 40.

Introduction

Let ¢ =p*, p a prime number. For an odd prime r different from p, a theorem of
Alperin (1965) shows that an r-Sylow subgroup of GL (n,¢) has a unique largest
normal abelian subgroup and that no other abelian subgroup has order as great.
Goozeff (1970) considered a p-Sylow subgroup U of GL (n,q) where ¢ is odd. He
bounded the order of an abelian subgroup of U and showed that this bound is always
attained. Goozeff also pointed out that, if # is even, U has a unique largest abelian
subgroup. Thwaites (1972) considered a p-Sylow subgroup U of GL (n, p). He showed
that if n is even, U contains precisely one abelian subgroup of maximal rank, while
if nis odd and n> 5, U contains precisely two abelian subgroups of maximal rank.
Theorem 2.1 of this paper identifies Ab(U) where U is a p-Sylow subgroup of
SL(n,q) and hence of GL (n,q) with no restriction on whether g is even or odd.
If nis even |Ab(U)| = 1; while if nis odd and n> 5, [Ab(U)| = 2. Finally if n = 3
then |Ab(U)| =g+1. In all cases Ab(U) contains groups which are elementary
abelian and so the abelian subgroups of maximal rank can be read from the list of
groupsin Ab (U). Hence Theorem 2.1 generalizes the results of Goozeff and Thwaites.
In Sections 2-5 solutions to the problem for groups of type B,, C, and D, are also
59
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presented and the results are arranged in order of difficulty. In Section 6 we calculate
the Thompson subgroup J(U) of U and we note that J(U) = {A|A< U, A abelian
of maximal rank).

Most of the results of this paper were contained in the author’s doctoral thesis which
was written under the direction of Professor Warren J. Wong at the University of
Notre Dame. The author wishes to thank Professor Wong for posing this problem
in the first place, and for his patience and encouragement during its solution. Thanks
too are owed to the Department of Mathematics at Notre Dame for its generous
support throughout.

1. Notation and terminology

The current standard references for the theory of Chevalley groups are Steinberg
(1968) and Carter (1972). In this section we will fix our notation and dwell a little
on those aspects of Chevalley groups which we will need.

F will always denote a finite field of ¢ = p* elements where p is a prime number.
Let ® be a root system for a simple finite-dimensional Lie algebra g over C. Then
@+ will denote the set of positive roots and Il = {r,r, ..., r,} the fundamental set
relative to some ordering. The universal Chevalley group of type g over F, denoted by
g(q), is obtained from a particular representation of g over C by choosing an admissible
lattice and ‘going mod-p’. Thus A,(g) will mean the universal Chevalley group of
type A, over F and the meaning of B,(g), C,(q9) and D,(g) is now clear.

Now

A9)=SL(n+1,9), Ciq)=Sp(2n,q),
B{(q) = Spin(2n+1,9) and D,(q)=Spin(2n,q)

where Spin{(2n+1,q) (respectively Spin(2n,q)), is the universal central extension
of Q (2n+1,q) (respectively Q (2n,4)), the commutator subgroup of O2n+1,q)
(respectively O*(2n,q)) using the notation of Carter (1972), p.6.

Let G = g(g). Then G = {X(r)|re ®)> where the root subgroup

X(r)=x(r,t)|teFy=F

as an additive group. We define the subgroup U = {X(r)|re®*>.Now Uisa p-Sylow
subgroup of G. We shall be concerned with Ab(U).

Let B be the normalizer of U in G. Then B is a semi-direct product of U with H
where H is an abelian p’-group. The parabolic subgroups of G are those subgroups
which contain B and there is a natural bijection between the family of subsets of
IT and the parabolic subgroups of G.

THEOREM 1.1. Suppose G is a Chevalley group amd P; the parabolic subgroup
naturally associated with J<T1. Then P; = L; U,, a semidirect product with U,<]P,, is

https://doi.org/10.1017/51446788700016645 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700016645

[3] Large abelian subgroups of Chevalley groups 61

known as the Levi decomposition of P;. Here Uy = {X(r)|[re®* —®,>, L, = {H, S;),
Sy = {X(r)|re®,> and @, is the root system with J as the fundamental set.

We next define a partial order on @ as follows: if r,se® then r>sif r—sisa
non-negative linear integral combination of elements of II.

EXAMPLES. In Theorem 1.1, if J = IT—{sy,...,s,} then U; = {X(r)|r =s; for some
jsuch that 1 <j<r).

Throughout this paper, the Dynkin diagrams of the indecomposable roots systems
of type A,, B,, C,, and D, will be labelled as in Humphreys (1972), p. 58.

The root system @ can be thought of as a subset of R” where [1 = {r,,r,,...,r,}isa
basis for R™. If R" is equipped with an inner product (,) we define a new form {,> on
R" as follows:

<r’ S> = 2(r1 S)/(S,S)

for all r,seR", 5£0. A vector 1eR" is called an abstract weight provided that (4, r)
isintegral for all r € ®. These vectors form a lattice A which has a basis of fundamental
dominant weights {1,,4,, ..., 4,} for which {4,,r;> = J,;.

A dominant weight is any non-negative linear integral combination of the A;,
1<i<n. Denote by A* the set of all dominant weights. For each A A* there is
(to within isomorphism) exactly one irreducible g-module V(1) over C whose highest
weight is A and this weight occurs with multiplicity 1. By choosingan admissible lattice
and ‘going mod-p’ we construct a g(g)-module over F which we denote by V(g,n,4)
where n is the rank of g.

2. The solution for 4,(g), any ¢, and C,(q), q odd

THEOREM 2.1.
() LetG = A,,.,(q)and B = {X(r)|r>r,.,> ThenAb(U) = {B}and|B| = q"+"".
(b) Let G = A,,(g), B(1) = <X(r)|r=r,> and B(2) = <X(r)|r=ru+1). Then
@ if n>1, Ab(U) = {B(1), BQ2)};
(ii) if n =1, Ab(U) = {B(1), B(2), B(a)|ac F*},
where B(a) = {x(r;,t) x(r,,at), X(r, +ry)|t€F). Further, any element of Ab(U) has
order "+ 1),

PRrooF. We will prove only (b) from which the method of proving (a) will be quite
apparent. We proceed by induction on n.

Consider n = 1. Then U = {X(r,), X(r,), X(r,+r2)>. If Ac Ab(U) then clearly
Z(U)= X(r,+r,)<A. Now

Cuy(x(ry, 1)) = <X(ry), X(ry+712))

https://doi.org/10.1017/51446788700016645 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700016645

62 Michaet J. J. Barry (4}

and
Cy(x(ry, at) x(rp, 1)) = <X(ry,as) x(r3, 5), X(ry+r,)|seF) if t#0.
Gathering these pieces of information together and noting that these centralizers
are abelian we get part (ii) of (b).
We now assume the result is true for any integer r where 1 <r<n. Let P, be the
parabolic subgroup of G = A4,,(q) associated with J = I1—{r,r,,}. Then

Sy = {X(r)lre ®,>= 45,-2(q)
and
U, ={X()|rzryorrzry,).

Further, [U,, U;] = X(ro) = Z(U,) where ro =r;+r;+... +7,, is the highest root.
From now on let ¥V = U,. Let U; = (X(r)|re®;>. Then U, €Syl, (S,)and by induc-

tion,
Ab(U,) ={B,(1), B,(2)} ifn>2
= {B,(1), B,(2), B,(a)|lacF*} ifn=2,
where
B,(1) = {X(n)|re @7, r=r,),
B,2) =LKX()|red®), rzr,
and

B,(a) = {x(rz, t) x(r3,at), X(ry+r3)|teF.
LEMMA 2.2. If Ce Ab(¥), then |C| = ¢*".

PROOF. LetK = {re®*|r#ry, r>ryorr>r,,} and let’ be the natural epimorphism
of V on ¥V|Z(V)=V'. Then V' is abelian since Z(V) = [V, V]. Now ¥V’ can be
made into a vector space over F with basis {x(r, 1)|r € K} by defining

tx'(r, 1)+ ux'(s, 1) = x'(r, t) x'(a, u)
for all r,seKkK, t,uckF.
Moreover it is even possible to equip ¥’ with an alternating bilinear form (,) as
follows:

x(rO’ (Ul" vz’» = [Ula Uz]

for all v,,v, € V'. Note this definition is independent of the choices of the preimages
vy, D, in V since the kernel of = Z(V) = [V, ¥V]. The form is non-degenerate since
(v/,v") = 0 for all v’ e ¥’ implies [v,,v] = 1 for all ve ¥ which implies v, e Z(V) and
finally that », = 0.

It is clear that a subgroup W of V is abelian if and only if (W)’ is contained ina
totally isotropicsubspace of V’. The maximal dimension of a totally isotropic subspace
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of V' =dimV’/2 =2n—1. Therefore W abelian implies that |W’|<g?*"~! and
hence |W|<g¢*". In fact (X(r)|r>r,)> is an abelian subgroup of V of order ¢*. This
completes the proof of Lemma 2.2.

Let
Vi) =<X(D)|rzri+...+r,orrzr,+...+ry)
and
Vi) =KX rzri+...4rps 1 OTr2rp i+ +ra.
LEMMA 2.3.

@) V()< U, i=12.

(b) V(i) Ab(V) and hence Co(V,(i)) = Vi(i), i = 1,2.
(©) CyAB() =1 (D)Y,i=1,2

(d) [B.()), Vi(D)] = 1 and B() = B,() V1 (i), i = 1,2.

PRrOOF.

(a) This follows from Chevalley’s commutator formula.

(b) V,(i) is abelian, |V,(i))] = ¢*" and so V,(i)e Ab(V) by Lemma 2.2. Hence
V() = V,(i), i = 1,2.

(c) This follows by inspection.

(d) This follows from the commutator formula and the definitions of B(i), 8,(/)
and V,(i),i=1,2.
This completes the proof of Lemma 2.3.

Let ¢ be the natural epimorphism of U on U/V=>U,, and let A Ab(U). Then
|4]| >¢g""*V = |B@i)|, i=1,2. Further, (A)p = A4,<U, and |4| = |4,||AnV].
Therefore

|1BG)| <|4] = |4, [An V| <|B(Dlg> = |B,G)| |V,G)] = 1B@), i=1,2,

making use of Lemmas 2.2 and 2.3. Hence 4, e Ab(U,) and AnV e Ab(FV). Calling
on our induction hypothesis 4, € Ab(U,) means that A, = B,(1) or B,(2) if n>2
and A, = B,(1) or B,(2) or B,(a) if n = 2.

We consider the case n = 2 and A4, = B,(a) for some ae F*. Clearly

(AnVY <C)'(By(a)).

An easy calculation gives Cy, (B, (a)) = {X'(ry +r,+r3), X'(r; +ry+r;)). Thisimplies
[(4nV)'| <q* and hence |4n V| <q>. This contradicts AnV e Ab(V) and so we have
ruled out the case A, = B,(a) for some ae F.* Therefore A, = B,(1) or B,(2) in all

cases.
We may suppose that 4, = B,(1). Then 4<B,(1) V. Note that B,(1)nV = 1.
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Let ve ANV, ac A. Then a = bv, where be B,(1) and v, € V. Now
1 = [a,v] = [b,0]" [V, 0].
Hence [b,v]'+ € Z(V) = [V, V] and hence [b,v]€Z(V).

Now since 4, = B,(1), given any be B,(1) there exists a€ A4 such that a = bw for
some we V. Therefore [B,(1),v]<Z(V) and so v’ € Cy(By(1)). By Lemma 2.3(c)
veV,(1) and so ANV < V,(1). Since |[AnV| = |V,(1)] we get equality.

Again letac A, a = bv, wherebe By(1) and v, € Vandletve An¥V = V,(1). Then

1 = [a,v] = [b,v]"s [v4,0] = [14,0]
since [B(1),V,(1)] =1 by Lemma 2.3(d). Therefore v, e C,(V;(1)) = V(1) by
Lemma 2.3(b). We have proved 4 < B;(1) ¥,(1) = B(1).|4| = | B(1)| gives equality.
This completes the proof of Theorem 2.1.

Note 2.4. Two techniques in this proof will be used again and again. Firstly J
will always be chosen so that [Uj, U;] = X(r,) € Z (U;) wherer, is the highest root and
Z(Uj) is the direct product of root subgroups. In this way by putting a non-degenerate
alternating form on U,/Z(U,) we will always be able to get an exact bound on the
elements of Ab(U,). Secondly, whenever we have a situtaion where 4 € Ab(U), we
have identified 4, and A~ U,, and we can compute that AnU; € Ab(Uy), [4,, AnU;]
= 1 and that the centralizer of 4, in U, is (4nU,)’ where ' maps U, naturally onto
U,/ X(ro), then we shall be able to prove that 4 = 4, x (AnU,) exactly as we did
towards the end of the above proof.

THEOREM 2.5. Let G = C,(q) where n>2 and q is odd. Let B = (X(r)|r=r,>. Then
Ab(U) = {B} and |B| = g"+V/2,

ProoF. The proof is by induction on n. If n = 2,
B = {X(ry), X(ry+rz), X(2ri+r2))
and |B| = ¢°. In Wong (1969) it is established that in PSp (4,9),q odd, and hence in
C,(g), U contains a unique largest abelian subgroup of order ¢3. Hence B is this sub-
group and the result is true for n = 2.

We now assume the result for any integer r where 2 <r <n. Let P, be the parabolic
subgroup of G = C,(q) associated with J=1II—{r,}. Then S; = (X(r)|re®,)x
C,_1(g), and U, = (X(r)|r=r,>. Further, [U), U,] = X(ro,) = Z(U,;) where r, =
2ry+2r,+...4+2r,_, +r, is the highest root. Note that if ¢ is even [U,, U;] = 1.
From now on let V = U,.

Let U, = <X(r)|re®; ). Then U,€eSyl,(S;) and by induction Ab(U,) = {B,}
where B, = {X(r)|re®;, r=r,>. Finally let ¥V, =<X(r)r=r,+r,+...+r,>. Then
using the techniques of Theorem 2.1 one forces, for any A€ Ab(U), that A, = B,
and AnV =V, and finally that 4 = B, V, = B. Hence Theorem 2.5.

What about C,(q), g even? This will be attended to in Section 4.

https://doi.org/10.1017/51446788700016645 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700016645

M Large abelian subgroups of Chevalley groups 65

3. The solution for D,(q)

THEOREM 3.1. Let G = D,(q). Then Ac Ab(U) implies |A| = q5. Further,
(a) if g is odd, Ab(U) = {B,, B,, B3} where B, = {X(r)|r>r>, B, = {X(r)|r=r3>
and By = {X(r)|r=ra);
(b) if q is even and g >4, Ab(U) = {B(1,a), B(2,b), B(3,c)|a, b, ce F} where
B(1,a) = {x(ry, t) x(rs, aty), x(ry+ry, ) x(ry+ra,aty), x(ry+r,+r4,t3)
x(ry+r3+ra,ats), X(D)|r=ri+rp+rs, t€F)

and B(2,c) and B(3, c) are defined in a similar fashion;
(c) if g =2, Ab(U) is as in (b) with one additional element, namely A* which is
defined in Lemma 3.10.

THEOREM 3.2. Let G = D,(q) wheren>5. Then A€ Ab(U) implies |A| = g""~ 12,
Further,

(a) ifgisodd, Ab(U) = {B,, B,} where B, = {X(r)|rzr,_,>andB, = {X(r)[r=r,>

(b) if q is even, Ab(U) = {B,, B(1,a)lacF} where B, is as in (a) and

B(l’a) = <x(rat)x(’-5at)’X(S)|r>rn—l’r}rn-—z'*'rn—l+rms>rn—2+rn—l+rmtEF>’

Where Fy =1ry, Fp ="TFay...sFy_2 =Tn_3y Fooy = FysFn="re_; and — is extended by
linearity to ®.

Before we attempt the proofs of Theorems 3.1 and 3.2 we establish some notation
for this section and we prove some general results. Let P; be the parabolic subgroup
of G associated with J = I1—{r,}. Then, if necessary, by Barry (1977), Theorem 3.2
we have S; = M x N where M = {X(r,), X(—r)>=A,(g)and N = {X(r)|re Dg)>x
D,_(g)where K = I1—{ry,r,} Also Uy, = {X(r)|r=r,>and [U;, U} = X(ro) = Z(Uy)
where ro =r,+2r,+...+2r,_,+r,_,+r, is the highest root. From now on let
V= U;. Mx N acts on V by right conjugation and by Barry (1977), Theorem 3.2
we have

VIV, V]I=V(4,1,A,)®W as an M x N-module
and

VIIV,Vi=W®W as an N-module,
where W = V(D,n—2,4,) can be identified with <X (r)|r >r,, rEr.

Let X = X(r,)and Y = {X(r)|re®%)>. Then X x Y eSyl,(Mx N)and U= XYV.
Let ¢ be the natural epimorphism of U on U/V and ' that of ¥V on V/[V, V].

LeMMA 3.3. Let xe X andye Y. Let {e,f} be a basis of V(4, 1, A,) such that ex = e
and fx = f+ae. Then

(1) if x#1,a#0; further, eQu+fQveCy. (xy) if and only if uckery (y—1)?
and v = —u(y—1)/a where u,ve W and so dim Cy (xy) = dimkery (y —1)%.

(2) e®u+fQuve CyAy) if and only if u,ve Cy(y).
3
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PROOF.

(1) V(4,1,2,)isthe natural representation for A(q) = SL (2, g) and hence is faithful.
Therefore if x#1,a#0.

Let eQu+f@ve Cy(xy) where x+1. Then

e@u+fQv = (e@u+f@v) xy.

= eQuy+(f+ae)@vy

= e®(uy+avy)+fQuy.
Uniqueness of expression gives vy = v and u = uy+avy. Therefore v(y—1) =0
and v = —u(y—1)/a. So 0 = v(y—1) = —u(y—1)?/a gives us that uckery (y—1)>2.
The result in the other direction is trivial. Since u determines v and ueker » (y—1)?
we have dim Cy.(xy) = dim kery(y—1)2.

(2) Trivial.

We record
LeMMA 3.4. If Ce Ab(V) then |C| = ¢g*"~3.
REMARK 3.5. Note that ¥V = V, V, where V, = (X(r)|r>r,+r,)AU and V, =
X(Drzry, rer). Let xe X, ye Yand v,eV,, i = 1,2. Then
[xy,v102] = [x, 0] [x,01]°7 [y, 0] [y, 0,]%

= [x, v2]y [,V, 02] [y’ vllv2

since [x,v,] = 1. If [xy,v, v,]€ X(ro) then [y,v,] = 1 and hence
[xy,v102] = [x,0.]) [y, 0,1
since x* = x and v} = v,.

ProoOF oF THEOREM. 3.1. This will follow in a series of lemmas.

LemMMA 3.6. Let x = x(ry, t,), y = x(rs,aty), t, #0. Then
Cyvxy) =
{X'(ry+ry,dy) X'(ry+rs, —N(ry,ry+r,)N(ry,rp+r3)ad)),
X (ry+ra+rad) X' (ry+r3+ry, —N@ra,ry+ra+rg) Niry,ro+ r3'+r4) ad,),
X'(ri4+ra+ry), X(ry+ry+ry+ry)|dieF, i=1,2).
PROOF. Let v, v, be an element of the preimage of Cy,.(xy) in V where v,eV,,

i=1,2. Then v, = x(r, +r3,u,) x(ry +r3+rq, u;) by Remark 3.5.
Suppose

vy = x(ry+ra,d ) x(ri+ry4+r3,dy) x(ry+ra+re,dy) x(ry 4 ra4ry+r,,dy).
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We are ignoring any component of Z(¥) in v,. Then
[x,v2] = [x(ry, 1), x(ra+r3,u;) x(ry+r3+ry,u,)]
=x(ri+rytrstry, Nirora+ry+ry)t u,)
xx(ry+ry+rs, N(ry,ro+rs)tiuy)
using Chevalley’s commutator formula. Also
vl =x(ry+ry+rstry, N(rs,ri+ry+ry)at, ds)
xx(ry+ry+rs, N(ra,ry+ry)at d,)
again by Chevalley’s formula.
Now [y,v,]”2 = [y, v,]. Therefore
[xy,v,0,] = x(ry+ry+r3, N(ry,rao+r3)tsu + N(rs,ry+rr)at, dy)
xx(ry+ry+ry+ry, N(ro,rodrs+ry)t u,+N(ra,ry+r,+rg)at, ds).
Therefore [xy, v, v,]€ X(ro) implies that

Uy = —N(ry,ra+r3) N(rs,ry+ry)ad,
and
Uy = —N(r,ra+rs+r) N(ra,ry+ry+ry)ad,

since N(r,s) = +1 in these cases. This completes the proof of Lemma 3.6.
LEMMA 3.7. Let x = x(r,t,), y = x(rs, t3) x(ry, at3), t,, ts and a#0. If q is odd then
Cyvxy)=Lx'(ry+ry+ri,d)x'(ri+ry+r,,d;)
X' (ratratra, —(tsti YN ra+rs+r) N(ra,ri+ra+ry)(dy +ad,)),
X'(ry+ra+rst+ry)|dieF, i=1,2>.
If q is even then
CyAxy) = X'(ry+r0,d ) X' (ry+ry, t3t7 1 d) X' (ry+rg, a(ts ty V) d,)
X X'(ry+rs+ry, atittd,),
X(rydry+rs,d)) X (ry+ry+rg,d) X' (ry+ry+rg, (8317 1) (ds +ady)),
X(ry+ry+rs+r)|dieF,i=1,2,3>.

Here it should be noted that we are choosing N(F,5) = N(r,s) where F;, = r,,
Fy =r,y, F3 =r, and F, = ry. That we can so choose follows from Steinberg (1959),
Lemma 3.2. "

PROOF. Let v, v, be an element of the preimage of C,.(xy) in V where v,e V,,
i=1,2. As before [y,v,]=1 and so v, = x(ry+rs,u) x(ry+ry,— N(ra,ry+rs)
X N(ry,ro+r)au,) x(ro+ry+ra,u;).
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Since we are choosing N(7,5) = N(r,s) we get

N(rgsra+r3) N(ra,ra+r) =1
and so
vy = X(ry+r3,uy ) x(ry+ry, —au) x(ry +r3+ry, ).

Computing we get
[X,02] =x(rytry+rs+ry, N(rosratrstry)tyu) x(ri+ry+r,,
N(ry,ra+ry)(—atyuy)) x(ri+ry+rs, N(ry,ra+rs)t u)z
where ze Z(V) = X(ro). In similar fashion
Do d=x(ri+ratry+ry, N(rs,rotra+ry)tsds
+N(r3,ry+r)) N(ry+ra+ra,rg)atid, + N(ry,ri+ry+ri)atsd,)
XX(ry+ry+r3, N(rasry+r)dyt3) x(ry +r,+r4, N(rg,ry+r,)d, ats).
Now [y, v,]%2 = [y,v,}mod Z(V). Therefore
[xy,0,0,]Jmod Z(V) =x(r, +ry+r3, N(ry,ra+ri)tyu, + N(ra,ry+r,)d; t3)
xx(ry+ry+ry, Nry,ratry)(—atyu )+ N(ry,ry+ry)d; ats)
Xx(ri+ry4r3+re, N(ro,ro4+ra+ry)tiu,+ N(ra,ri+t,+ry)tsds
+N(ra,ry+ry+r3)atydy+ N(rasri+r) N(ry+ry+r3,1,) at3d,).
Therefore [xy, v, v,]€Z(V) implies that
@) uy = = N(ry,ra+r3) N(rs,ry+r) st dy,
(b) uy = N(ry,ry+r ) N(rg,ri+ry)tat; 1 dy and
©) uy = —N(ry,ra+rst+r)t{ "(N(rs,ri+ra+ry)tsds
+N(rg,ri+ry+ry)atsdy+ N(rs,ri+r) N(ry+ry+rs,r)at2d,).
If ¢ is odd then (a) and (b) force d; = u; = O since N(r,,ry+r3) = N(ri,ra+r,)
and N(rs,r,+r;) = N(rg,r, +r,). In this case
Uy = —N(ry,ry+r3+r) N(ra,ry+ra+ry) tst; }(d;s +ad,).
If ¢ is even, since N(r,s) = 1 in all cases, (a) and (b) are the same equation, namely
u, = tyt; 1d,, and (c) becomes u, = t; '(t3d; +at; d, +at 3d,). This completes the
proof of Lemma 3.7.

Let A€ Ab(U). Then |4| >4° since U contains abelian groups of this order. Also
(A)p = A, <Xx Y and |A4| = |4,||AnV]|. Note that ANV =Z(V) = X(r,) by the
maximality of 4 since X(ro)<Z(U). Suppose a, €A, and ve AnV. Then a,v,€ 4
for some v, € V. Then

1 = [a,v,,v] = [ay, 0] [v,,0].
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Therefore [a,,v]e Z(V) = [V, V] and so [4,, AnV]< Z(V). It follows that
AnV) < CypA4,).

Now Cy(4,) is a vector space over F and so |Cy, (4,)| = ¢’ for some integer f>0.

LEMMA 3.8. Let xcX and y,y, € Y with x,y, #1. Then xy and y, cannot both be
elements of A;.

PROOF. As observed
VIIV,V]=V'=V(4,1,))®W as an M x N-module
~W®W as an N-module.

Choose e, f as in Lemma 3.3. Now e®@u+ f®v e Cy (xy) if and only if u e kery (y — 1)*
and v = —u(y—1)/a, and e®u+f@®ve Cy.(y) if and only if u,ve Cy(y). Therefore
e®u+fQve Cy(xy)NCy(y)impliesthat uc ker(y — 1)2°nCy(y)andv = —u(y — 1)/a.
Therefore xy and ye A, implies dim Cy.(4,)<dim Cy (). Identifying W with
{X(r)r=ry, rkry) we see easily that y#1 gives dim Cy(y) = 2. Therefore dim
Cy(A4,)<2.Since (AnV) < Cy(A4,) it follows that | An V| <g3. Now [ 4] >¢°® and so
|A4;| >¢3. Recall that ¥ = X(r3) x X(r,) and so | Y| = ¢>. Therefore 4 = Xx Y.

Now the preimage in ¥V of Cp (X x Y) is {<X(r,+r,+r3+rs), X(ro)). Therefore
|AnV|<q* and so |4| = |4,| |AnV| <q® which is a contradiction. With this contra-
diction the proof of Lemma 3.8 is completed.

LeMMA 3.9.If =3, b = x(ry, t,) x(rs, t,) x(r4, t3), ty, t2, t3 70 cannot be an element
of A;.

PRrOOF. Suppose be A4,.

Observation (a). If x(ry,d,)z(rs,d,) x(r,,d;)€ A, where at least one of the d,
is zero then all of the d; are zero or we get a contradiction by the symmetry of r, r5
and r, and Lemma 3.8.

Observation (b). If x(ry,d,) x(rs,d,) x(rs,d;)€ A, such that d, = ¢, then either
d, = t, and d; = t; or we get a contradiction again by Lemma 3.8. By the symmetry
of r,, r; and r, we could replace the condition d, =¢, byd, = t, ord; = t;. And so
our conclusion now reads: if d; = ¢, for any i then d; = ¢, for all i, 1 <i<3.

Observations (a) and (b) force | 4| <q and force elements of A, —{1} to be of the
form x(ry,d)x(rs, t) x(rq, u) where d,t,u#0. If |4,| <g, then since by Lemma 3.4
|AnV|<q® we get |A| <q® which is a contradiction. Hence |4,| =gq.

If g is odd we are done since by Lemma 3.7 we get that |C(b)| = ¢ which gives
[AnV]|<q* and so |4| <g°—a contradiction. Suppose ¢ is even and ¢>4. Since
>3, we can choose two distinct non-identity elements of 4,, x, and x, where
xy = x(ry, ¢,) x(r3, ¢) X(rq, acs) and x, = x(ry, b;) x(r3, b3) x(rs, a, bs). If Cy(x1)#
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Cy (x,) then |Cy, (4,)| <¢® by Lemma 3.7 and so | An V| <q* which gives the contra-
diction |4| <¢®. Hence Cy.(x,) = Cypx,).

Using the notation of Lemma 3.7 this implies (i) u; = (c3 ¢y V) d; = (b3 b7 V) d,
foralld, e Fand (ii) u, = (c3c7 V) (ds+ad, ca+ady) = (b3 by ) (ds+a,d, by +a, dy)
for alld,,d,,ds eF. (i) implies c; c; ! = b3 by ! which in conjunction with (ii) implies
ad,c3+ad, = a,d,b;+a, d, for all d,,d, €F. This is a contradiction which we see
as follows. If @ = a, take d, = 1 and d, = 0 to get ¢; = b, (recall x, #x, implies
c3#bs); if a#a, take d;, = 0 and d, = 1 to get a = a,. This completes the proof of
Lemma 3.9.

LemMma 3.10. If |[F| = 2and x = x(ry, 1) x(r3, 1) x(r4, 1) € A, then the only possibility
for A is
A* = {xv, Vi|vex(r,+ry+r, )V}
where
Vi=<x(ri+ra ) x(ry+r3, 1) x(ry+ra, ) x(ry +r3+7r4, 1),
x(ri+ry+rs,d)x(ri+ry+ry,dy))x(ry+ry+ry,dy+ds),

X(ri+ra+ry+ry), X(ro)|dy,d,eF).

PROOF. As in Lemma 3.9 |4,| = ¢ = 2 in this case and so 4, = {1, x}. Let

Yi=x(ry+r, Dx(ro+rs, Dx(ry+rg, Dx(ra+rs+rs,1)
and

yodi,do) = x(ri+ry+rs,d ) xX(ri+ra+rs, dy) x(ry +ry+r4,dy +dy).
Using Lemma 3.7 one gets that the preimage V, of C,(4,) in V equals
y1:¥2d1,dz), X(ri+ra+r3try), X(ro)|dy,d, €F).
One checks that V, is abelian.
Now |4,| = 2 and [A] > 26 forces |[AnV|225. But AnV <V, andso AnV = V.
Now [x,y;] = x(rs, 1), [x,y2(d1,d2)] = 1 and [x, W] = 1, where

W= X(ry+ry+r3+ry) x X(ry).

Letae A—(AnV).Thena = xv, forsome v, € V. Now [a, AnV] = 1 forces vy, y;,] =
x(ro, 1), [vy1,y.(dy,d3)]l = 1 and [v,, W] = 1. Hence v, € C(y,(d,, d,),W|d;,d, €F))
which turns out to be <V, x(r, +rs+rq, 1)>. Now [v,,y,] = x(ro, 1) gives

viex(ry+ritrg, 1)V,

So we have that A is a subset of 4*. One computes that A* is an abelian group of
order 25 and so A = A*. This completes the proof of Lemma 3.10.

Lemma 3.11. Ifx(r,,tl)x(rs,at,)eA,, t,#0 then A, = <x(r1,t)x(r3,at)|teF>,

PRrOOF. (a) Suppose a = 0. Then by Lemma 3.8 and the symmetry of |, ryand ry
we get that 4, contains no non-identity elements of the form x(rs,b,) x(r4, b,) or
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x(ry, ¢1) X(rs, €3), €270, or x(ry,d,) x(rs, d,) x(r4, ds), d; #0, all i. (b) Suppose a#0.
Then A, contains no non-identity elements of the form

x(r3, b1) x(rg,b;) or  x(ry,c;) x(ra,c2) or x(ry,d) x(r3,d;) x(r4, ds),

again by Lemma 3.8 and the symmetry of r,, r3 and r,. (a) and (b) force
A, <X(r)x X(r;) and so |A4,| <q®. Note we know |4,|>q since |AnV|<q° and
|A| =4°.

Suppose x; = x(r,t,)x(rs,at,) and x, = x(ry,d,) x(r3,a,d;) be non-identity
elements of 4, with a#a,. Then Lemma 3.6 gives us that

dim Cy(4,)<dim Cyp. ({x1, X,0) < 2.

Therefore |AnV|<q® and so |4|<g°—a contradiction. Hence a must equal a,
and this combined with |A4,|>q forces the desired conclusion. This completes
the proof of Lemma 3.11.

One notes that by the symmetry of r,, r; and r, we might just as well consider
elements of the form x(r,, t,) x(ry, at,) and x(r,, t,) x(ry,at,), t, %0, in Lemma 3.11
and we would get the appropriate conclusion.

LemMa 3.12. Ae Ab(U) implies |A| = ¢°.

ProoOF. Lemmas 3.10 and 3.11 tell us that the possibilities for A, are
<X(r1, t) x("s, a, t)lt€F>, <x(r3’ t) x(r4, a, t)ItEF>’ <X("4, t) x(rh as t)|t€F>,
where a,, a, and a; range over F, and {(x(ry,t) x(rs, 1) x(r4, t)|t € F), this last one
being possible only when |F| = 2. Now each of these possibilities has order ¢. Since
|AnV|<q® it follows that | 4| <g¢°. Since we know |4} >¢® we get that |A4| = ¢°.
Hence Lemma 3.12.
LemMA 3.13. If q is odd the possibilities
Ay = {x(r, ) x(ry,at)[teF) or {x(rs,t) x(rg,at)|teF> or
{x(rgy ) x(ry,at)|teF)
do not occur when a#0.
PRrOOF. Suppose 4, = (x(ry, t) x(ry,at)|te F) for some a#0. Lemma 3.6 tells us
that
Cv'(Ax) =
X'(ry4r2,d) X' (ra+r3, —N(ra,ri+r2) N(ry,ra+rs)ad,),
X(ry+ry+re,d)) X' (ra+ry+ry, —N(rs,ri+ry+r N(ry,ra+rs+ra)ads),
X'(ry+ra+r3), X'(ri+ratry+ry)|deF).
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To simplify calculations choose N(#,5) = N(r,s) where now 7, =r,, 7, =r,,
F3 = r, and r, =F,. Steinberg (1959), Lemma 3.2 again justifies the legitimacy of this
procedure. Then

Cy4,) = <x'(.’1 +ry,d )X (ry+r;, —ady), X' (ry+ra+ra, dy)) X' (ry+ry+ry, —ad,),
X(ry+ra+r3), X(ri+ryt+rs+ry)|dieF).

Now
(x(ri+r2,d) x(ra+rs, —ady), x(ry+ry+rs,d2) X(ry +r3+r4, —ad,)]
= [x(ry+radi), X(ra+r3+ry, —ad))] [x(ry+ 3, —ady), x(ry+ry+7r4,d5)]
= x(ro, [N(rl+r2,r2+r3+r4)+N(r2+r3,r1+rz+r4)](—ad1d2)).
Since

N(ri+ra,ra+rs+ry) = Nrs+ra,ra+r3+ry) = N(rg+ra,ri+ry+r,)

these elements commute if and only if g is even.

Therefore, if g is odd, then ANV is properly contained in the preimage of Cy.(4,)
in V. This means that |AnV|<q® and as a consequence |4| <¢g®—a contradiction.
Thus 4, = {x(r,, t) x(rs,at)|teF) is not a possibility if g is odd and a#0. The two
other configurations for 4, are disposed of in like manner. This completes the proof
of Lemma 3.13.

We are ready now to wind up the proof of Theorem 3.1. If ¢g=2 and 4, =
x(ry, 1) x(r3, 1) x(rq, t)|t€F) then by Lemma 3.10 A = A*. The other possibilities
when ¢ is even are A, = {x(r,t) x x(r;,at)|te F) for some acF and the ry—r, and
r4—r, mixtures. Suppose A, = {x(ry, t) x(r,, at){t € F)>. One checks that the preimage
V, of Cy(A4,) in V is abelian of order ¢°>. Now ANV <V, and in fact AnV =V,
by order considerations. One hasthat An Ve Ab(V),[4{, AnV] = 1 and so we prove
that A = A, x (AnV) which turns out to be B(1, a). The other remaining possibilities
for A, are handled in similar fashion.

Ifgisodd 4, isone of X(ry), X(r;) or X(r,).1f 4, = X(ry)then 4 = B,,if 4, = X(r,)
then A = B, finally if A = X(r,) then A = B,. This completes the proof of Theorem
31

PrROOF OF THEOREM 3.2. We start with
LEMMA 3.14. Let y€Y, y#1. Then dim Cy(y) <2n—6.

PRrROOF. Recall W = V(D,n—2,4,) as an N-module. Then N is represented on W
as a subgroup of the orthogonal group O*(2n—4,q) using the notation of Carter
(1972), p. 6, Y being represented faithfully. Since N = [N, N], N maps into (actually
onto) Q(2n—4,q) = [0*(2n—4,q9), O*(2n—4,q9)]. However, Q(2n—4,q) contains
no transvections and hence our lemma follows immediately.

The proof is by induction on n. Let 4 € Ab(U). First we consider the case n = 5.
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Then |A4|>q'° since abelian subgroups of U of this order exist. As usual (4)p =
A;<XxY and |4| = | 4,||AnV]|. Now N2 A4;(g) and so by Theorem 2.1(a) Y
has a unique largestabelian subgroup<X(r){ir = r,, r £ r,)> of orderg*. Hence |4, | <¢°.
Now by Lemma 3.4 we have |AnV|<q’. Hence | 4] <q'2.

LemMA 3.15. Let xe X, ye Y. Then no element of the form xy occurs in A, where
x#1. Hence A, < Y.

PROOF. Suppose thereexists xy € 4, withx# 1. Notethat |4, | >¢3since|AnV| <q".
We claim that there exists y, € Yn A with y, # 1. Suppose not. Then all elements of
A, are of the form x, y, where x, = 1 implies y, = 1. If there exists x, € X such that
x,y3 and x,y,€A, with y;#y, then y, = y;y; €4, which is a contradiction.
If there exists no such x; then |4,| <g which is another contradiction. Our claim
holds.

Soxyand y, € A;. Now Cp {A4,) < Cp {xy)nCy (y,). Choose {e, f} asin Lemma 3.3.
Then e®u+f®uveCy(xy)nCyy,) implies ueker, (y—1)>’NnCy(y,) and v =
—u(y—1)/a. Hence dimCy(A4,)<dimCy(y,)<4 by Lemma 3.14. Therefore
|AnV|<q®. This forces |4,]>¢° which in turn forces 4, to be the unique largest
abelian subgroup of X x Y of order ¢°, namely X x {X(r)|r = rs, r #r,). Easy calcula-
tion gives Cy(A4,) = X'(ry +r,+rs+r,). Hence |AnV| <q¢* and | 4] <g"—a contra-
diction. This completes the proof of Lemma 3.15.

LEMMA 3.16. |A,| = gs. If q is even then
Ay = (xrg, ) x(rs,at), x(ry+ra, d)x(rs+rs,ad), X(rs+ry+rs)|t,deF)

for some fixed acF or A = {X(rs), X(r3+rs), X(rs+ro+rs)). If q is odd then A, is
one of the two choices which remain when a = 0.

ProoF. 4,<Y by Theorem 3.15. This implies |4,| <g* since Y has a unique
largest abelian subgroup of order ¢*.

Suppose dim Cy(4,)<2. Then dim Cy(4,) = 2dim Cy(4,) <4 which gives
jAnV|<q° and | 4] < ¢°—a contradiction. Hence dim C,,(A) > 3. Identifying W with
{X(r)|r=ry, rer,)> we get that A, x Cy(A4,) is an abelian subgroup contained in
P ={X(r)|re®f >whereL = I1—{r,}. NowPeSyl,(G,)where G, = (X(r)|re® >
D(g). Hence Theorem 3.1 implies |4, x Cy(4,)| <4°.

Therefore |4, <q¢> But we know already that |4,| >¢>. Hence |4,| =¢> and
|4y X Cy(A4,)| = ¢°, thatis, 4, x Cy(A4,)€ Ab(P). Checking through the elements of
Ab(P) we find that A, is as desired. This concludes the proof of Lemma 3.16.

Forall 4, in Lemma 3.16 we find that the preimage D, of C,,.(4,) in Visanelement
of Ab(V) with [4,, D,] = 1. Order considerations force An¥V = D, and we prove
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that A = A, D, in our usual fashion. This settles Theorem 3.2 forn = 5. Assume now
that Theorem 3.2 is true for any integer k such that 5<k<n and we deal with
UeSyl, D,(q). Let A€ Ab(U). Then |A| >¢""~1)/? since abelian groups of this order
exist in U. As usual (Ad)p = A; <X x Y and |4| = |4,||AnV]|. By Lemma 3.4
|[AnV| < g* 3. 1f Le Ab(Y)then |L]| = g~ 2"~ 32 by ourinduction hypothesis and

Theorem 3.1. Therefore |A,|<<qg®~2®=342+1 and |4|gq~D-32+2m-2 -
qll(n—l)/2+1.

Lemma 3.17. Let xe X,yeY. Then no element of the form xy occurs in A, where
x#1. Hence A, < Y.

PRrROOF. Suppose xye A, where x# 1. Exactly the same argument as was used in
Lemma 3.15 forces |[AnV|<q*"~5. Hence | 4| g~ =3/2+2n-4 - gnin=1)/2-1__4
contradiction. Hence Lemma 3.17.

LemMA 3. 18. 4, e Ab(Y). Ifqis oddthen A, is one of C,, C, whereC, = (X(r)|r=
Paoyy P2y and Cy = (X(r)|rzr,, r#ry). If q is even then Ay = C, or A = C(1,a)
for some acF where

C(laa) = <x(r’ t)x(f’at), X(S)Irzrn—la r}rn-—z"'rn—l +rm s>rn—2+rn~l +rm

r,skr,, teF).

PrROOF. Lemma 3.17 implies A; < ¥ and so induction with Theorem 3.1 forces
|A,| <q®~2®==32_ Order considerations force equality and so 4, e Ab(Y). Induc-
tion again with Theorem 3.1 gives us Ab(Y). The list is not exclusive enough for
our purposes and we eliminate the undesirable options by checking that in each case
dim Cy(A4,) <n—2. This implies that |C,.(4,)| <g**~*. Since Cy(A4,) is an F-vector
space |Cy(A4,)|<g?>"~5. Hence |ANV|<qg?>"~* and |A|qn-D®-3/2+2n-4 -
g""~1/2-1__a contradiction. This completes the proof of Lemma 3.18.

For all A, in the conclusion of Lemma 3.18 the preimage D, of C,.(4,) in V is
an element of Ab(V) with [4,, D,] = 1. Order considerations force ANV = D,
and we prove that 4 = 4, D, in our usual fashion. For 4, = C, then 4 = B, and
for A, = C(1,a) then A = B(1,a). This completes the proof of Theorem 3.2.

4. The solution for B,(q), q even
With this section the lacuna in Section 2 can be filled thanks to the fact that
B(g)=C(q)if giseven. Letg=2", m>1.
THEOREM 4.1. Let G = B,(q). Let
Ay =LX(ry), X(ry+r3), X(ry+2r,)),
A, = (X(ry), X(ry+r3), X(ry+2r,)),
Az = {x(ry, ) x(ry, 1), X(ry +r3), X(ry+2r,)).
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Then
(@) if g =2, Ab(U) ={4,, 4,43},
(b) if g>2, Ab(U) ={4,,4,}.

THEOREM. 4.2, Let G = B,(q) withn>=3 and let B = {X(r)|r=r,>. Then Ab(U) =
{B} and |B| = g""* 12,

COROLLARY 4.3. Let G = C,(q) withn=3 and let B = {X(r)|r=r,>. Then Ab(U) =
{B} and |B| = g""*+ 12,

PROOF OF THEOREM. 4.1, Sinceq iseven Z(U) = {X(r, +r,), X(r, +2r,)>. Therefore
A€ Ab(U)implies that Z(U) < A. It follows that in order to pin down the elements of
Ab(U) we need only inspect Cy(x) where x = x(r,,d,), x(r;,d,) or x(r,,d,) x(r,,d,),
d,,d,#0. Now Cy(x(r,,d,)) =A, and Cy(x(r,,d,)) = A,.

Finally let x(r,,e,) x(r,,e,) € Cy{(x(ry,d,) x(r,,d,)). Then

1 = [x(ry,d\) x(r2, d3), x(r1,e1) x(r2, €3)]
=x(ry+r3,di e, +dye)x(r +2r;,d, e} +e, d3)

if and only if d, e, = d, e, and d, €3 = e, d3

if and only if e, =d, d; e, and €3 = e, d,,

ifand only if e, =d, and e, =d, ore, = e, = 0.

Gatheringtogether these pieces of information on centralizers we have Theorem4.1.

PROOF OF THEOREM. 4.2. The proof will be by induction on . First we set up some
notation. Let P, be the parabolic subgroup of G associated with J = I[1—{r,}. Then,
if necessary, by Barry (1977), Theorem 3.13 we have S, = M x N where M =
X(r), X(=ry))=A,(g9) and N = (X(r)|re @)= B, _»(q) where K = T1—{ry,r,}.

Now U, = (X(r)|r=r,> and [U,, U;) = X(ro) where ro = r, +2r;+...+2r, is the
highest root. However, since g is even

Z(Uy) = <X(r2+rs+...4r), X(ri+ra+.. 1), X(ro)).
Let V = U, from now on. M x N acts on V by right conjugation and by Barry
(1977), Theorem 3.13 we have

VIV, V1= V(A4,1,4,)®W as an M x N-module
~>W®W as an N-module,

where W = V(B,n—2,4,) can be identified with (X(r)|rzr,, rEr).
Let X = X(r) and Y = <X(r)[re®%>. Then X x YeSyl,(Mx N)and U = XYV.
Let p be the natural epimorphism of U on U/V and ’ that of V on V/[V, V].

LeMMA 4.4. Let Ce Ab(V). Then |C| = g*" 1.
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Proor. Firstly we observe that Z(V)< C. Now V = V/Z(V) can be made into a
vector space over F and indeed ¥ can be equipped with a non-degenerate alternating
bilinear form (, ) as follows:

x(ro, (0y,0,)) = [vy,0,] where 5,,0,€V.

The non-degeneracy is assured by our factoring out by Z(V).

Now it is clear, that for W a subgroup of ¥, that W is abelain if and only if W
is contained in a totally isotropic subspace of V. The maximum dimension of such
a subspace is 2n—4 since |V| = ¢**~8. Therefore W abelian implies| W|<g*"~*
and so | W] <¢?~!.In fact abelian subgroups of ¥ of this order exist, for example,
{X(@)|r=zry+...+r,. Hence Lemma 4.4 holds.

One notes that Lemma 3.3 applies in the present context even though Y, W, V/
[V, V] et cetera have changed meaning.

Let AcsAb(U). Then |A4] 24° = |B|. Also (A)p = A, <X x Y = X(r) x X(r3) and
|A| = [A4;]|AnV|. Suppose xye A, withxe X, ye Y and x## 1. Then by Lemma 3.3
we get dim Cy(xy) <dim W = 3. Therefore |An V| <q*. Now |A|>¢° forces |4, | =
q? and hence A; = Xx Y. But then C,.(4,) =<X'(ri+ro+r3), X'(ri+r,+2r3)).
This implies that |4nV|<q® and |A4|<g® which is a contradiction. Therefore
A, <Y and order arguments force equality. The preimage V| = {X(r)|r=r,+rs>
of Cy(4,) in V is an element of Ab(V). As in previous sections we prove
A = V,Y = B to conclude the case of n = 3.

Assume now that Theorem 4.2 is true for any integer k& such that 3<k <nand we
deal with UeSyl,(B,(g)). Let AcAb(U). Then |4|>|B| = ¢""*’!/2 and (A)p =
A, <X x Y. By induction Y has a bound ¢~ D®-2)2 on abelian subgroups and so
‘All Sq(n—l(n—Z)/2+1-

Suppose xye A,, with xe X, ye Y and x+#1. Then by Lemma 3.3, dim C,..(xy) <
dim W = 2n-3 and so |[AnV|<g*~ 2. Now

qn(n+1)/2<|A| — |Al IAn Vlgq(n—l)(n—l)/2+l.q2n—2 =qn(n+l)/2

implies |4,| = g"~>®-1/2+1 which in turn implies4, € Ab(X x Y) and so 4, =
X x E where Ec€Ab(Y). Induction and Theorem 4.1 provide the possibilities
for £ and by an easy calculation one finds that in each case |Cy{4,)|<q""'.
This gives |[ANV| <g"and so |A]| g~ DA=22+1 gn o gnn+ D2 gince n > 3. We have
arrived at a contradiction and so 4, < Y.

An order calculation forces 4, € Ab(U). Again by induction and Theorem 4.1 we
have 4, = <{X(r)|re®@%,rzr,yifn>5 A4, isoneof E;,i =1,2,3ifn=4andgq =2,
while A4, is one of E;,i = 1,2, if n = 4 and g >2 where

E, =<X(ry), X(rs+ry), X(r3+2r4)),

E, = (X(r3), X(rs+ra), X(rs+2r,)>
and
Es = x(rs, 1) x(rg, t), X(rs+ry), X(rs+2r,)|teF).
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One checks that |Cy(E;)| <q¢* if n=4 and i =2 or 3. Hence |[AnV|<g® and
|A| <¢® which is a contradiction. In all cases then A; = (X(r)|re®%, r>r,>. The
preimage Vy in V of Cy(A4,) = {X(r)|r=ry+r3+...+r,> is an element of Ab(U).
In our usual fashion then we get 4 = A, ¥V, = B. This completes the proof of
Theorem 4.2.

Proor oF COROLLARY 4.3. Since q is even, C,(¢)= B,(g) and so a 2-Sylow subgroup
of C,(q) is isomorphic to a 2-Sylow subgroup of B,(g). If n > 3 Theorem 4.2 guarantees
then a 2-Sylow subgroup of B,(g) and hence of C,(g) has a unique abelian subgroup
of largest order "+ /2, Now B = {X(r)|r>r,> is an abelian subgroup of order
g*"+ V12 in the 2-Sylow subgroup U of C,(q). Hence Ab(U) = {B}.

5. The solution for B,(q),q odd and n=3
Let ¢ = p™, p an odd prime and m>1. Before we state the main results of this
section we need to define some abelian subgroups of U. Firstly let B = <X(r)|r=r;).
Next for (a,, as,..., a,) e F"—{0} we define
B(ay,a,,...,a,) = {x(rpsay 1) X(ry_ 1@y t) .. x(ry 1+ ...+ 1y, a,1),
X(s)|szry_1+2r, teF>.
For (a,,qa,,...,a,_,)eF"~1 —{0} we define
Clay,a,,...,8,_ 1) =LX(Py_ 1 a1} X(ry_ 2t a1 +raaszt)...
xx(ry+ry+...4ra,_1t), X(r), X r=racs,
rkr, S2r,_,+2r,_42r, teF).
Note that B(ay,ay, ..., a,) = B(by,b,, ..., b,) if and only if there exists ue F* with
(a,,a,,...,a,) = u(b,,b,, ..., b,). A similar remark holds for the groups C(a,,a,,
R S
THEOREM 5.1. Let G = Bs(q). Then

(a) Ab(U) ={B} and |B| = ¢°,
(b) if A4 is an abelian subgroup of U not contained in B, then |A| <q*.

THEOREM 5.2. Let G = B4(q). Then
Ab(U) = {B, B(a,,a,,as,a,), C(by, by, b3)*"+ |
(ay,a,5,a5,a4)#(0,0,0,0), (by,b,,b3)#(0,0,0), teF}.
Hence any element of Ab(U) has order q’.

THEOREM 5.3. Let G = B,(q) where n>5. Then Ab(U)={B(a,,a,,...,a,),
C(bl’b21 ceny b"—x)x('"' n|(a,,a2, ""an)EF"’_{O}, (bl’ b,, m,b”_l)el;m—l _{0}’ tEF}.
Hence any element of Ab(U) has order "~ 1/2+1,
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The notation we set up in Section 4 at the beginning of the proof of Theorem 2.4
will apply in this section also. However here [V, V] = Z(V) = X(r,) since we are
in odd characteristic. As a consequence of this we record

LemMA 5.4. If Ce Ab(V), then |C| = g*"~ 2.
LEMMA 5.5. If ye Y, y#1, then dim Cy(y) £dim W—-2 = 2n—1.

ProoF. This is exactly the same as the proof of Lemma 3.14.
One notes that Lemma 3.3 applies to this section as it did to section 4.

PROOF OF THEOREM 5.1. (a) Here Y = X(r;). Let A Ab(U). Then | 4| > |B| = ¢°.
Since by Lemma 5.4 |AnV|<q* we get that |4,| >g* where 4, = (4)p. Suppose
xy€e A, where xe X, yeY and x,y# 1. Then by Lemma 3.3

dim Cy (xy) = dim kery, (y — 1)2.
Now y = x(rs, t), t#0, and kery, (y — 1)?# W since x(r,, 1)(y~—1)*>#0.
([[x(r2, 1), x(r3, D), x(r3, O] = [x(rz+r3, £ X(r2+2r5, £ 12),
x(rs, )] = x(ry+2r5, +2t*)#1

since ¢ is odd. The signs here depend only on structure constants). Therefore
dimkery (y—1)2<2. It follows that |AnV|<g¢>. |A4| =¢° implies 4, = Xx Y. But
Cy(XxY)=X'(ry+r,+2r;) giving |AnV|<g* and |[4|<g*—a contradiction.
Therefore A; <X or A; < Y. Suppose that 4, < Yandletye Y, y#1. Then Cy(y) =
X(r,+2r;) and so dim Cy.(y) =2dim Cy(y) = 2. Hence |{AnV|<q® and |4| <q*—a
contradiction. Hence A, < X and now |4,| >¢ forces 4, = X. We get A = Bin our
usual fashion.

(b) Suppose A4 is an abelian subgroup of U such that | 4| > g* which is not contained
in B. Then by Lemma 5.4 A{ V. Therefore (A)p = A;#1. If A, L Y then |4,]|<q
and |ANV|<q; as in part (a) giving the contradiction |A4] <g*.

Suppose now that a = x(r,,1,)x(rs,t;)€A,, t;, t3#£0. Then dimCy.(a) =2
sincedim kery, (x(rs, £3) —1)? = 2. Therefore |AnV| <q>. Now A, < {x(ry, 1) x(r3, ct)|
teF, c=t31 ') leads to |4|<q* and a contradiction. Suppose then that a, =
x(ry,d)x(rybd)e A, with d#0, b#c. Then C,.(4,)<Cy(a)nCy(a,). But

Cyla) = (X' (ri+ry+rs, ) x'(ry+2r3,+2ct), X'(ry+r,42r3)|teF),

where the sign depends only on the structure constants. Therefore dim C,.(4,)< 1
which implies [AnV|<q¢* and |4|<g*—a contradiction. The supposition that
a, = x(r3,d)e A, with d#0 meets a similar fate. This leaves 4, < X.

Now CyAA,) =X (r)irzr,+r,)> and so ANV <X(r)|rzr +ry). |A,| <q and
|A| >g* imply |AnV|>g>. Let a,e€ A,. Then a,ve 4 for some veV. Letv =v, w
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where v, e{X(r)|rzry, rr,) and wedX()|rzry+r,)>. Let v, AnV. Nowl =
[a, vy w,0,] = [v,0,] for all v,ednV. If V| =<LX(r)[r=r,+r,> then V, is the
natural vector space for (X(r)|r e ®,)> = B,(g)where L = {r,,r;}. Nowdim Cy (v,)>3
since |[AnV| >g>. By exactly the same argument as that of Lemma 5.5 dim Cy (v,) >3
forces v; = 1. Hence A < B—a contradiction. This completes the proof of Theorem
5.1.

PRroOOF OF THEOREM 5.2. The proof will consist of a long series of lemmas. Firstly

Y =LX(r3), X(ry), X(rs+rs), X(r3+2ry)>.

LEMMA. 5.6. The representatives of the conjugacy classes of Y are as follows:
(a) 1, one class,

(b) x(r3+2r,,a), a#0, g—1 classes,

(©) x(r3,b), b#0, g—1 classes,

(d) x(r3+r,,¢), c#0, g—1 classes,

(e) x(r,,d), d#0, q—1 classes,

(f) x(ri, b) x(rs+2r4,a), a,b#0, (q—1)* classes,

(g) x(rs,b)x(ry,d), b,d#1, (g—1)? classes.

Proor. This can be gleaned from a reading of Srinavasan (1968) or onecancompute
the result by hand.

Let AcAb(U). Then |4|>|B| =q". As usual (A)p=A4,<XxY and |4]| =
|A;| |AnV|. By Theorem 2.5 Y has a unique abelian subgroup of largest order ¢>.
Hence [4,]<g*. On the other hand, by Lemma 5.4 we have |An¥V|<q® so that
|4:]>q.

LEMMA. 5.7. A< Yor A, = X.

PROOF. If 4, <X then |4,|>q forces 4, = X. We will suppose that 4, is neither
contained in X nor in Y and obtain a contradiction. Then there exists x, y#1 s.t.
xeX,yeY and xyeA,.

Suppose g% > |A4,| >¢. We claim that | YnA4,| > 1. This we see by considering the
projection epimorphism of X x ¥ onto X. Restricting to A4, this has kernel YnA4,,
image contained in X and so | YnA,||X|>|A4,|. Therefore | YnA,|>|4,|/|X]|>1
since |4,|>q. Let y, € YnA,, y, #1. Now

dim Cy(4,)< dim Cy ({xy, y ) < dim Cy(y,) <dim W—2 = 3 in this case.

Here we have used both Lemma 3.3 and Lemma 5.5. Thus [AnV|<g¢* and | 4| <q°®
which is a contradiction.

Suppose now that g* > }4,] >¢%. Using the projection of X x ¥ on X we get that
|4;nY|>q. Now |[(4,nY)x Cy(4,nY)|<qg* by Theorem 5.1. |[4;nY|>g and
Cw(A,nY) a vector space over F force |Cy(A4,nY)|<q*. Now xyeAd; and
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A;nY< A, imply dimCy.(4,)<dim Cy(4,nY)<2. Hence [AnV|<qg® and so
|4} = g*. This forces A; = X x E where E is the unique element of Ab(Y). One
checks that |Cy.(4,)| = g in this case and this leads us to a contradiction.

We are left with |4,| = ¢. The assumption is still that xye 4,, xe X, ye ¥, x, y #1.
y cannot be conjugate to x(r;+ry,c), x(rs,d) or x(r3, b) x(ry, d), b, c,d+#0, since in
each case dimkery (y—1)% <dim W = 5. This implies {C,.(4,)| <g¢* which leads to
|AnV|<q® and |A| <q°—a contradiction.

Suppose y is conjugate in Y to x(rs, b), b5£0. In fact we may syppose without loss
of generality for what follows that y = x(rs, b). Recall that the long roots of a system
of type B, form a system of type D,. Now the preimage V-, in ¥ of C,.(xy) is a direct
product of X(r, +r,+ry+r,) with D,—contribution of order ¢° as in Lemma 3.6.
This D,—contribution was found to be non-abelian for odd g in the proof of Lemma
3.13. Therefore ANV is properly contained in ¥and so |[AnV|<q¢®. Thus |4| <¢"—a
contradiction. The same argument works for y conjugate to x(r;+2r,,a), a#0 or
y conjugate to x(r3, b) x(r; + 2r,, a), a, b #0. This completes the proof of Lemma 5.7,

We suppose until further notice that 4, < Y and so ¢ < |4,| <¢?, [AnV]|<q® and
q'<|A4|<q°.

LEMMA 5.8. |A,| = q or |A,| = q* are the only possibilities.

PrOOF. Suppose g2 |4,|>q. Then by Theorem 5.1(b) and the fact that Cy(4,)
is a vector space over F, |Cy(4,)| <q?. This implies |Cy.(4,)] <g* which results in
|AnV|<q® Now |4|=q’ forces |4,] =¢°.

Suppose instead that ¢*>|4,|>4>. Again by Theorem 5.1(b) and the fact that
Cw(A,)isavectorspaceover Fweget |Cy(4,)| <q,Thus|AnV|<g*andso|4| <q®—
a contradiction. Hence the lemma.

LEMMA 5.9. Let D, = (X(r)|r=rs, r¥ryy and D, = {X(r)|r=r,, rEr,)>. Then
A, <D, or A,<D,.

PrOOF. Suppose not, then there exists y, € A4, such that y, is conjugate y =
x(r3, b)x(rq,d), b,d#0. Then |Cy(y,)| = |Cw(y)| =¢. This implies |AnV]|<q?
which leads to a contradiction. Hence the lemma.

LEMMA 5.10. If x(rs, b)€ A, with b#0, then X(rs) < A4,.

ProoF. Now x(r;3,b)e D, and so by Lemma 5.9 A, < D,. One checks thatif ye D,
then y commutes with the preimage in ¥ of Cy(y). Since Cyp(A4;) =yeq,Cr(y)
we have [4,, AnV] = 1. But |4| = |4,| |An V| implies that 4; x (AnV)e Ab(U).
If x = x(rs, t)¢ A forsome ¢ #0, consider the goup<{x, 4, x (AnV)>.Then[x, 4,] = 1
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since D, is abelian and [x, AnV] = 1since [x(r3, b), AnV] = 1.Thus{x, A; X (ANV)>
is an abelian group of larger order than A—contradiction. This completes the proof
of Lemma 5.10.

LemMA 5.11. If |A,| = q then A, can only be one of the following:
(@) X(r3+2ry),

(b) X(rs),

(c) a conjugate of X(r3) by x(rs,t) for te F*,

ProoF. If ye A, and y conjugate to x(r4,d), d#0, we can suppose without loss
of generality for what follows that y = x(r,, d). Then the preimage V, in Vof C,.(y) =
{X(ry+ry), X(ra), X(s)|s=ry+r3+2r,). Clearly [V, V] = X(ro) while Z(V,) =
{X(ry+ry+rs+2ry), X(ry+ra+2ry), X(ro)). Reasoning similar to that of Lemma
4.4 gives that Ce Ab(V,) implies |C| = ¢°. Therefore |4nV|<g° and so | 4| <q°—a
contradiction. A similar argument rules outthe case of y € 4, conjugateto x(r; +r,, ¢),
c#0.

If ye A, and y is conjugate to x(rs, b) x(r; + 2r,, a), a, b0 we may assume without
loss of generality that y = x(r3, b) x(r3 + 2r,, a@). The preimage V, in V of

Cy(y) = x(ri+ra+rs, t)x(ri+ry+r3+2r,, tety), X(ry+ra+r3+ry),
X(ry+rs, ) x(ry+r342r,, tcty), X(ra+ry+ry),
X($)|s=zry42rs+2r,t,t,€F,c =ab™ "),

where the signs depend on the structure constants. Clearly [V,, V,] = X(r,). Further
since the long roots of a system of type B, form a system of type D,, the proof
of Lemma 3.13 guarantees that x{(r,+r,+rs, t)x(ry+r,+rs+2rs +ct;) and
x(ry+rs,t) x(ro+r3+2r,, +ct;) do not commute thus ensuring that Z(V,) =
{X($)|s=ry+2r3+2r,. Asfor V,,Ce Ab(V,) implies |C| = ¢°. This leads to [A4| <
¢°—a contradiction.

If ye A, and y is conjugate to x(r3, b), b#0, we may assume y = x(r;, b). Lemma
5.10 forces X(r3)< A, and |4,| = q forces equality. Any element conjugate in Y to
x(r3+2ry,a) is of course equal to x(r;+2r,,a) since x(r;+2r,,a)eZ(Y). If
x(rs+2ry,a)e A, for a0, then by an argument similar to that of Lemma 5.10 we
get X(ra+2r,)< A, and |4,| = g gives equality. By Lemma 5.9 we have considered
all the elements of Y to which an element of 4, could be conjugate and so we have
proved the lemma.

LeEMMA 5.12. If |A,| = q* then A, can only be one of the following:
(@) {X(r3+rs), X(rs+2r4)>,

(b) {x(ry, 1) x(r3+ra4,at), X(r3+2r)|teF) for some acF,

(©) <X(r3), X(rs+ra),

(d) a conjugate of {X(r3), X(ry+rs)> by x(ry,t) for some teF*.
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PROOF. (a) and (b) list all abelian subgroups of order ¢ in D,. So we concentrate
on A;<D,. Suppose y = x(r;,b)e A; for b#0. Then by Lemma 5.10 we have
X(r3)<A,. Suppose now that y, = x(ry+2r,s,a)e A,, a#0. The preimage V¥, in
V oof Cp.(0)NCy(y) =< X(ri+ry+rs+ry), X(ra+rs+ry), X©)|s=ry+2r3+2r.
Clearly [V, V1] = X(r,) while Z(V,) = <{X(s)|s=r,+2r;+2r,>. Reasoning similar
to that of Lemma 4.4 gives that Ce Ab(V,) implies |C| = g¢*. This is not suf-
ficiently large since |4,| = ¢ forces |AnV]|>¢°. Thus ye A, implies y, ¢ 4,.

Suppose that y and y, = x(ry+r4, ¢) x(r3+2ry,a)€ Ay, a, c#0. Then the preimage
V,in V of C, {y)nCy (y,) equals

xry+ra+rs, ) x(ry+ra+ry+ry, +dty)2), Z(Vy),
xX(ry+r3, ) x(ra+r3+ry, 2dey/2)|t, t,eF)

where d = ac~! and the signs depend only on the structure constants. Now Z(V,) =
Z(V)) and [V,, V,] = [V, V,] imply as above that if ye 4, then y, ¢ 4,. Therefore
if ye A, then A, <{X(r3), X(r3+r,)> and |4,| = g2 forces equality. If an element of
A, is conjugate in Y to y then A4, is conjugate to {X(r3), X(r3+r,)> by the same
element. If an element of A4, is conjugate in Y to x(r;+2r,, a), a#0, (and hence
equal), a similar argument gives 4, = (X(r;+ry), X(r;+2r)d.

We are reduced to considering 4, < D, containing no conjugates of x(rs, b), b#0,
or of x(ry+2r4,a),a#0. One notes since, for a#0,x(r;+2r,,a)¢ A; and since
|A,] =¢* then A, €£{X(rz+rs), X(rs+2r,)>=Y,. Since all Y-conjugates of
x(r3+r4, ), c#0, are contained in Y, there exists an element y € A, with y conjugate
to x(rs,b) x(r3+2r4,a), a,b#0. As usual we may assume y = x(rs, b) x(r; +2r, a),
and then by an argument similar to that of Lemma 5.10 we get

(x(ra, ) x(r3+2rq, f)|f = ab™?, te F) < A,.

If x(rs, £,) x(rs+2rs,t,)€ A, with t, ¢, 1 #f then x(r;, t;)€ A4, for t3#£0 which is a
contradiction. Therefore the rest of the elements of 4, must be of the form x =
x(ra, t) x(rs+rq, t) x(r3+2r,, t3) where t,, t, # 0 and x is not a conjugate of x(r,, t,)
or x conjugate of x(r; +r,,t) for some € F*. We claim that 4, does in fact contain a
conjugate of x(r; +r,4, t)forsome re F*. Suppose not. Then y, = x(rs, t,) x(rs +r4,¢,)
x(r3+2rq,t3)e A, for some t,,1,#0 for otherwise |4,| =¢? and A, <<{x(rs,1)
x(r3+2r,, ft)|te F)—a contradiction. Since x(rs, t;) x(r; +2rs, ft|)€ A, we get that
x(rs+ra,t;) x(r3 +2r,, t3—ft) € A;. This element is conjugate in Y to x(r;+r,,2,)—a
contradiction. Hence our claim.

We now assume that x(r;+r,,£,)€ A, for t,#0. As before X(r;+r,) <A,. Wecan
no longer assume that x(r3, b) x(r3 +2r4, a) € A, but only that some conjugate of it is
in A,. No element of the form x(r;+r,, t) x(r3 +2r,, u) € A, where u#0since then we
get x(ry+2ry,u)e A; which is in contradiction to our assumption. Further
A, £<{X(r3), X(ry+r,)) since 4, contains no element conjugate to x(rs,b),b#0.
Therefore A, contains an element of the form y; = x(rs, £) x(rs +r4, u) x(r3 +2rs,v)
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where 7, u#0 and y, is not a conjugate of x(rs, 7). But then y, = x(rs, £) x(r5 + 2r,,v)
€A,. Let y, = x(ry+r,4,1,). Then the preimage V; of C,.(y )nCy(y,) in

V=" x(r +ry+rs,u)x(ry+r,+r3+2r,, +bu,), X(s),
X(ry+ra,uy) X(ry+r3+2re, + buy)|s>r,+2rs+2r,, uy, u, €F, b= vt~ 1),

where the signs depend only on the structure constants. Now ¢ odd forces ¥ non-
abelian as in the proof of Lemma 3.13. Hence |AnV| <¢® which leads to |4| <q’.
With this final contradiction Lemma 5.12 is proved.

In Lemmas 5.7, 5.11 and 5.12 we have limited the possibilities for 4,. We will now
see that all of these possiblities do occur. We ought perhaps, at this stage, to show
that A€ Ab(U) implies |4| = ¢7 by calculating and examining the preimage of
Cy.(A4,) for each of the possible choices for 4, but this will become apparent
anyway as we determine the possibilities for 4.

If A, = X then A = Bwithout further ado. Suppose then that 4, = X(r;). Then the
preimage V, of Cy.(A,) in V equals )

XNrzratra, réar +ra+rs+2r, ra4r3+2r,).

Now Z(V,) = {X(ry+ra+rs), X(ra+rs), X(r)lr=ry+2r3+2r,>. Therefore if
V,eAb(V,) then V, is of the form

X(ra+rs+ra,by ) x(ry+ry+ry+ra,byt), Z(Vy)|teF)

for some (b5, b3)# (0, 0). Order considerations force ANV = ¥, for some (b,, b,) #
(0,0) and the usual argument gives 4 = A4, V,. A then turns out to be C(0, b,, b5).
If 4, = X(r;3)**+* then A = C(0, b,, b3) "+,
If A, = X(r;3+2r,) we get in similar fashion that 4 = B(0,0, a;, a,). Suppose now
that 4, = {X(r;), X(r3+r,)>. Then the preimage ¥V, of C,.(4,) in V equals
KX(ry+ra+rs), X(ra+ry), X(D|r=ry+2rs+2r,).

V3 is abelian and |V3| =¢°. Now since AnV <V, and since |4,| =¢* forces
|[AnV|=q° we get equality.

letac A and ve ANV = V5. Thena =a,v, wherea, €4 and v,€ V. Then | =
[a,v] = [a,,v]" [vy,0] = [vy, 0] since [4,, V3] = 1. Thus

0, ECUANY) =LXW)|rzrytra, rEr +ry,+r3+2r,, ra+ry+2ry
which in turn implies
Uy =x(ry+r3+re,t)x(ri+r3+r3+re,ty)v,
where v,€4AnV. Let by, b, € A where

by = x(r3, 1) X(r3+ra, 1) x(ra+ra+ty,a, ) x(ri+ra+ry+ra,a ) w,
and
by = x(rs,u)) x(rs+ra, ) x(ry+r3+ra,cou) x(ry+ro+ry3+ry,cou)w,
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where w;,w,e AnVand t,,u,#0. Then since [b,,b,] = 1 we geta, = ¢, and a, =c,.
Again let by, b, € A where b, is as above and

by = x(r3, t) X(ra+r3+ra, 1) X(ry +ra+r3+ra,t3)wy,
where w, e AnV. Since [b,,b,] = 1 we get t, = t; = 0. Therefore 4 = C(1,a,,a,).
It A, = <{X(@r3), X(r3+ry))*"+? then A = C(1,a,,a,) ", If A, = (X(rs+r,),

X(r;+2r,)> then A= B(0,1,a;5,a,) and finally if A4, = {x(rs, 1) x(rs+rs,at),
X(r3+2r,)|teF) then 4 = B(1, a, as,a,). This completes the proof of Theorem 5.2.

ProoF OF THEOREM 5.3. We use induction on n. Consider firstly n=35. Let
AeAb(U). Then |A4|>|B(ay,a,,...,as)| =q't. As usual (4)p =4, <XxY and
|A] = |4, |A~V]. Since Y eSyl, (N) where N2 B,(q) we get |4,| <q° by Theorem
5.1. On the other hand by Lemma 5.4 |[An¥|<q® and so |4,|>¢>.

LEMMA 5.13. 4, Y.

PRrROOF. Suppose not. Then there exists xe X, ye Y such that x#1 and xye A,.
Consider the case ¢° > |A4,| >¢>. The restriction of the projection of X x Y on X to
A, has kernel 4,nY, and image <X and so |4,nY]||X|>|4,| giving

|40 Y| >|4,]/|X] 24%
By Theorem 5.2/(4,nY)x Cy(A;n Y| <q" and so |Cy(4;nY)| <q>. Now xyc 4,,
A;nY< Yand Lemma3.3 givedim Cy(4,) <dim Cy(4,;n Y)<3.Hence|AnV|<q*
leading to |A4]<q'®—a contradiction. A consideration of the cases ¢°> > |4,| >¢*
and g* > | A4,| = ¢® leads in each case to the contradiction | 4] <¢'°. Hence 4, < Y.

LEMMA 5.14. The possibilities for A, are:

(@) B(a,,a,,as), (a,,a5,a5)#(0,0,0),
(b) C(a,,a,), (a,,a,)#(0,0, or a conjugate by x(rs,t),
() By ={X(Dlrzro+2rs, rry),
(d) C, =X(r)|r = ra, ratrq or r3+2ry+2rs> or a conjugate by x(rs, t); where
B(a,,a;,a3) = {x{rs,a, 1) x(ra+rs,a ) x(ry+ra+rs,ast),
X(s)|szra+2rs, str,, teF)
and
Cay,a;) = x(ra+rs,a ) x(ry+ry+rs,a t), X(s)|teF,

S=r4,r3+ry Or r3+2r,+2rs)
PRrOOF. Since A, < Y we have ¢° > |4,| >¢>. Consider the case ¢° > |4,| >q,. By

Theorem 5.2 |4, x Cy(A4,)| <q". This implies |Cy(4,)| <g? since Cy(A4,) is a vector
space over F. Hence |Cy.(A4,)| <g* and |AnV|<q° leading to the contradiction
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|A] <q'°. The case g*>|4,|>¢>® leads in similar fashion to the contradiction
|A| <g*'. Hence |A4,| = ¢* or |4,| = q°.

Suppose |A;| = ¢*. Then |Cy(4,)| <¢°. I | Cy(A4y)] <4® then |Cy(A4,)] <g* which
implies |ANnV|<q® and |4|<¢°—a contradiction. Hence |Cy(4,)| =¢> and
|A; x Cy(A,)| = q". Theorem 5.2 now gives 4, as (a) or (b).

Suppose |4,| = ¢>. Thenasabove |Cy(4,)| = g*and |4, x Cy(4,)| =q". Theorem
5.2 again gives A, as (c¢) or (d). This completes the proof of Lemma 5.14.

If A, = B(a,,a,,a5), then A= B(a,,a,,a;,a,,a,) for some a,aseF; if
A, = C(a,,a,)*"s?, then A= C(a,,a,,as,a,)*">? for some aj,a,eF; if
A, = B,, then 4 = B(0,0,0,a,,as) where (a4,as)#(0,0); if 4, = C{"»", then
A = C(0,0,a;,a,)""s" for (az,a,)#(0,0). All these conclusions are arrived at by
calculations similar to those at the end of Theorem 5.2.

Hence Theorem 5.3 is true for n = 5 and we now assume it true for any integer
r where 5<r<n and consider the case of G = B,(q). If A€ Ab(U) then
|4]>|B(ay, a3, ....a)| = "=V, (A)p = A, <X x Y and |4] = |4,||[4nV]. By
induction and Theorem 5.2 CeAb(Y) implies |C| = g®~2®=3)/2+1  Therefore

| 4| g~2*"=3¥2+2 On the other hand by Lemma 5.4 |[AnV|<4q*~2 and so
IAII an(n-l)/2+1—(2n—2) — q(n—2)(n—3)/2.

LemMMA 5.15. 4,< Y.

ProoF. Suppose not. Then there exists xe X, ye Y such that x#1 and xye4,.
We claim that there exists y, € YNn4,, y, # 1. We have proved similar claims before
and we take this claim as true without further ado. Now xy, y, €4, implies
dim Cy.(4,)<dim Cy(y;) <dim W—2 = 2n—5 using Lemma 3.3 and Lemma 5.5
Thus [AnV|<qg*" 4.

Now |A4| >g"®~1/2+1 giyes |A,| = g~ D®-3)/2+2 which implies 4, = X x E with
Ee€ Ab(Y).Foreach possibility for E supplied by Theorem 5.2 and induction we find
dim Cy (X x E)y<n—2. This gives [AnV|<q"~ ! and so | 4| g~ D"=32+2 gn—1 =
g =3m+8)/2  nin-1/2+1 gince > 6. With this contradiction 4, < Y is forced.

Now ALY 1mphes q(n— Dn—3)/2 ¢ |A1 | <q(n—2)(n— 3DN/2+1

LEMMA. 5.16. The possibilities for A, are:

(a) B(ay,as,...,a,_5) for (a;,a,, ...,a,_,)#(0,0, ...,0),

(b) C(ay,a,,...,a,_3) for (a,,a,,...,a,_3)#(0,0, ...,0) or a conjugate by x(r,, 1),

© By =<X(O)|r=ry_+2r,, rEr,

(d) C, ={X(r), X(s)|r=rp_ 1, rry,s=ra_o+2r,_+2r,r,skr,) or a conjugate
by x(rn, t) where the definitions of B(a,a,, ...,a,_,) and C(a,,a,, ...,a,_,) are
obvious.
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PROOF. Thecaseq®~2®—3)2 < |4, | <g®~2=3V2+1 {5 ruled out in similar fashion
to the case ¢° <|4,| <¢* in Lemma 5.14.

Suppose |4,| = g®~2®=3)/2+1 Then by induction or Theorem 5.2, |4, x Cy(4,)|
L= D@-2/2+1 and 5o |Crl4,)| <q" 2. |Cw(4y)| <q"~2leadsto a contradiction as
in Lemma 5.14. Thus |4, X Cy(A,)| = g~ 1®=2)/2+1 Induction or Theorem 5.2
gives A, is one of (a) or (b). In similar fashion |4,| = g~ 2®~3)/2 gives A4, is one
(c) or (d). This completes the proof of Lemma 5.16.

Exactly the same argument as in the case n = 5 completes the picture and proves
Theorem 5.3.

6. The Thompson subgroup of U

We define the Thompson subgroup J(U) of U as {4|4€Ab(U)).

THEOREM 6.1.

(@) If G = Azn11(q) then J(U) = (X()|r>ps 1D,

(b) if G = A,(q) then J(U) =<X(r)|r=ryor r2r,. 1),

(c) if G = B,(2™) then J(U) = U,

(d) if G = By(q9), g odd, then J(U) = <X(r)|r>ry>,

(e) if G = B,(2™), n=3, then J(U) = {X(r)|rzr.,

(f) if G = Bs(g), q odd, then J(U) = <X(r)|r>r>,

(2) if G = By(9), q 0dd, then J(U) = {X(r)|r>ry, r3 or ra),
(b) if G = Bq), qodd and n>5, then J(U) =<LX(r)|rzr,_, or rzry),
(i) if G=C\q),q odd and n>3, then J(U) = {X(r)|rzr.),
(3) if G = Duq), then J(U) = X(r)|r=ry, 15 01 14D,

(k) if G = Dyq), n=5, then J(U) =X@)|lrzr,_, or rzr.

ProOOF. By inspection of the results in Sections 2-5.

COROLLARY. 6.2. If G is of type A,, B,, C, or D, then J(U) = (A|A< U, A abelian
of maximal rank).

Proor. Ab(U) in all cases contains elementary abelian subgroups of U. Thus if
A< U, A abelian of maximal rank, then A € Ab(U). Inspection of the results of
Sections 2-5 then completes the proof.

Some have defined J(U) as (4| 4 < U, 4 abelian of maximal rank} and so Corollory
6.2 assures us that these two definitions yield the same subgroup for the Chevalley
groups under consideration here.
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7. Conclusion

We have not considered the case of the twisted Chevalley groups 24,(¢%) and
2D,(¢g?) in this paper. The methods of Section 2 can be used to determine Ab(U) if
G = %4, (g%). In this case |[Ab(U)| = 1. If G = 2D,(2*™) the methods of Section 4
work eventhough |Ab (U)| £ 1. However the solutionsfor 24,,(¢?), anyq,and 2D,(¢?),
q odd, demand the introduction of more geometrical methods. Because of this and
the fact that the inclusion of the twisted Chevalley groups would mean even more
notation we felt that these cases should be presented in a separate paper.
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