This is a "preproof" accepted article for Journal of Clinical and Translational Science.

This version may be subject to change during the production process.

10.1017/cts.2025.10186

Enhancing Translational Research Impact Through Collaborative Process Innovation

Marisha E. Palm, MSc, PhD^{1,2}; Sharon Phares, PhD, MPH¹, Gigi Hirsch, MD¹

¹Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA

²Tufts Clinical and Translational Science Institute, Tufts University, Boston, MA

Corresponding Author: Dr. Marisha E. Palm, 800 Washington Street, #63, Boston, MA, 02111

Telephone number: 320 339 9983; Email address: marisha.palm@tuftsmedicine.org ORCID ID:

0000-0002-9760-7196

ABSTRACT

Translational science methods often fall short due to the complexity of the healthcare delivery

environment. We developed a methodology that involves multiple interest holders working

within a pre-competitive consortium to develop solutions to translational barriers. The

methodology supports innovative collaboration in a stepwise fashion: elucidating challenges,

designing solutions, enabling implementation, monitoring, learning, disseminating, and

catalyzing. Cases that benefit most from a structured collaborative methodology are those where

diverse needs require elucidation and alignment. Application of the methodology to develop

regulatory, clinical, and business innovations has shown the importance of an innovation

facilitator and the capacity-building potential of collective skill enhancement.

Key words: Biomedical innovation; innovation stewardship; translational science; collaborative

innovation; collaboration; engagement

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-

NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided

the original work is unaltered and is properly cited. The written permission of Cambridge

University Press must be obtained for commercial re-use or in order to create a derivative work.

https://doi.org/10.1017/cts.2025.10186 Published online by Cambridge University Press

INTRODUCTION

Biomedical science has advanced in profound ways over the last couple of decades, providing earlier diagnosis, better treatments, and allowing people to live healthier and longer lives. While biomedical innovation is crucial for progress, it also presents challenges that must be addressed to support the successful translation of research into health impact. Current methods often fall short due to the complex and dynamic nature of the real-world healthcare delivery environment. This leads to failure at the final hurdle: translating health research to improved population health. Reasons for this failure include real world gaps in evidence, reimbursement challenges, policies that slow innovation, social influencers of health, and limited system capacity. Developing effective and sustainable solutions for these challenges often requires input from multiple interest holder groups and buy-in across organizations.

The NEW Drug Development ParadIGmS (NEWDIGS) consortium has developed a methodology that supports systems thinking and collaborative innovation among multiple interest holders. The range of interest holders engaged include patients, clinicians, payers, life science companies, regulators, and investors, among others. Over the last 16 years, this methodology has been applied to many different complex healthcare challenges. Although the methodology is broadly applicable, NEWDIGS has worked mainly in the later stages of translation, focusing on features of the healthcare system that slow or prevent appropriate, timely, and equitable patient access to drug therapies. It has concentrated specifically on challenges that benefit from an external innovation environment that supports pre-competitive collaboration across organizational and interest holder silos.

In this manuscript, we illustrate the application of the NEWDIGS' methodology using three case studies where the method has been used to develop scalable solutions to complex translational challenges in biomedical innovation.

NEWDIGS METHODOLOGY

NEWDIGS' stepwise methodology for translating emerging science into real-world health impact is applied in an iterative cycle and illustrated in Figure 1.

For each challenge undertaken, set-up activities including selecting and framing the problem, identifying and engaging interest holders, building a safe haven, and developing a case-based strategy for learning, were key success drivers.

Selecting and framing the problem: To select translational problems, we focused on challenges that shared specific characteristics: our 'rules of three.' First, solutions required three or more interest holders; if the challenge could be successfully addressed by one or two organizations, we determined that a consortium approach was not needed. Second, at least three organizational sponsors prioritized the challenge to the extent that they provided funding and/or time, ensuring adequate resources. Finally, the timeline to implementation was 18 months to three years, avoiding pressure for immediate results while near-term enough that solutions were still relevant.

Identifying and engaging interest holders: To identify the problem solvers to engage in solution development, we mapped interest holders impacted by the innovation challenge and any emergent solution, as well as those critical for the implementation of solutions. The group often represented a strategic microcosm of the relevant community. Engaging end users in the design process can increase the likelihood of success and accelerate the adoption of new solutions.¹⁰

Building a safe haven: Once interest holders were identified and invited to participate, we developed a safe haven to support collaborative productivity. A safe haven was differentiated from safe harbor in that there were no legal provisions; rather, safety was built via trust and cocreation of a shared culture. Explicit and implicit steps were taken to facilitate cross-silo collaboration (see Table 1) and applied to support development of distinct environments depending upon project and interest holder needs.

Developing a case-based learning strategy: For each innovation challenge, we developed a learning strategy anchored in case studies that provided practical, real-world considerations for solution design and implementation planning. We defined the nature and scope of cases, as well as a portfolio of cases that allowed probing of different aspects of the challenge. Cases sometimes focused on a disease, and other times on a specific product or a product class. We

used historical, synthetic, or prospective cases, depending upon availability and illustrative value, as well as willingness of interest holders to share proprietary data.

Following the set-up, the collaborative innovation process steps include:

- 1. **Elucidate challenges** identify specific barriers to desired outcomes, including incentives, risks, and interdependencies across interest holders.
- 2. **Design solutions** co-create solutions to specific identified challenges through structured dialogue and interactive design.
- 3. **Enable implementation** identify potential barriers and enablers to implementation of solutions created.
- 4. **Monitor and learn** track uptake of solutions in real-world settings and how they evolve in practice, identifying opportunities for improvement.
- 5. **Disseminate and catalyze** share learnings throughout the design process to relevant audiences to support implementation of solutions.

Table 2 summarizes application of the NEWDIGS methodology in three projects: Adaptive Licensing, Learning Ecosystems Accelerator for Patient-centered Sustainable innovation ("LEAPS"), and Financing and Reimbursement of Cures in the US ("FoCUS"). These projects were selected because they each illustrate a different type of innovation that required different strategies, indicating the diversity of application. For each project, we include an overview of the set-up activities as well as steps one through three in the collaborative innovation process. Steps four and five are summarized in the Findings section.

FINDINGS

Three lessons relevant to the application of NEWDIGS methodology across different settings were identified. First, the methodology worked best for challenges requiring interest holders to work together to find a solution meeting everyone's needs. It became clear that the cases most benefiting from a structured collaborative innovation process were those where diverse needs required elucidation and alignment.

Second, collaboration and development of solutions were best supported by a facilitator, an "innovation steward," to strategically steer the set-up and advance innovative collaboration. The term innovation steward has been used previously in different settings with varying definitions

(e.g. ^{13,14}). We use it to capture a specific concept; a neutral but strategic intermediary that establishes and guides interest holder collaboration. In this context, the innovation steward enabled interactive design across interest holder silos and used the collaborative innovation process to support alignment of incentives, accelerate implementation readiness, and drive impact toward shared goals.

Third, our collective skills in collaborative health system innovation were enhanced through our work together. NEWDIGS' experience across diverse challenges helped to advance our understanding of collaborative tools, processes, and success drivers. This capacity-building work is important as the need for collaboration to tackle complex biomedical challenges grows.

In addition to methodological lessons learned, each case study had formal and informal impacts specific to the challenge, the solution developed, and the way it was implemented. NEWDIGS' positioning as an external innovation environment limited our insight into some of these due to proprietary constraints on shared information. Due to this only the known subsets of outcomes and impacts are discussed

Regulatory Innovation – Adaptive Licensing Project

Adaptive Licensing, a staged approach to regulatory approval in global settings, was originally discussed as a potential solution under the name Progressive Licensing.¹⁵ Rather than conceptualizing the model, the challenge was advancing it to readiness for evaluation in pilot activities. Implementation barriers were significant given the complex interlocking interest holder risks that would accompany change. Earlier access to medications for high-risk subpopulations of patients meant less evidence, increasing risk for regulators and payers, plus greater potential commercial risk.¹⁶ The resulting regulatory innovation was a generalizable framework for the design and implementation of the adaptive licensing paradigm. The collaborative innovation process helped move the proposed regulatory innovation from theory into action, paving the way to a European Union pilot led by the Europeans Medicines Agency (EMA).⁷

This was the first NEWDIGS project in which collaborators recognized the value of a safe haven, multi-stakeholder, pre-competitive environment for rapid cycle learning and adaptation of innovative solutions. It inspired the launch of a new consortium (ADAPT-SMART) within the

Innovative Medicines Initiative (IMI) to accelerate generalizable learnings from the EMA's pilot project on Adaptive Licensing (rebranded at Adaptive Pathways). ^{17,18} In the US, NEWDIGS leadership also tracked related policy innovation in the 21st Century Cures Act¹⁹ and were Expert Advisory Committee participants on special report by the President's Council of Advisors on Science and Technology. ²⁰

Clinical Innovation – Adaptive Point of Care Platform

NEWDIGS built on the historic precedent for clinical point of care data collection, analysis, and integration into decision-making²¹ by facilitating the engagement in the Adaptive Point of Care (APoC) design process. Based on this work, a pilot of APoC use in Rheumatoid Arthritis was proposed to enable scalable evidence generation for regime optimization. Results were disseminated via peer-reviewed publication⁹ and the clinical innovation functioned as a learning health system strategy influencing subsequent research design efforts led by our collaborators.

Business Innovation – Orphan Reinsurance and Benefit Manager Model

Cell and gene therapies face reimbursement challenges due to high costs and clinical uncertainty. One of several new payment models developed by interest holders at NEWDIGS included Orphan Reinsurer Benefit Managers (ORBM), designed to address the financial risks of high cost, potentially curative cell and gene therapies for small insurance companies and self-insured employers. Careful innovation stewardship was required in guiding interest holders to determine the scope of implementation planning work. While some interest holders wanted to co-develop a business plan within NEWDIGS, others felt that this might constrain adoption to a single interest holder group. Ultimately, the decision was to stop short of a business plan, and instead to allow the marketplace to adopt and adapt the ORBM model.

DISCUSSION

Biomedical science is advancing rapidly, and collaborative innovation is essential to enhancing our ability to translate these advancements into health impact. NEWDIGS' methodology provides a structure and process that could be adapted for use across a range of innovations. NEWDIGS is known for blending key elements to enhance capacity for innovations that require system change for success:

- external innovation environment for collaboration across organizations and interest holders,
- safe haven for fostering pre-competitive collaboration,
- neutral third party serving as innovation steward, and
- proven structured methodology to enable interactive design.

For those interested in leading or stewarding cross-functional innovation environments, it is important to know that the set-up and the collaborative innovation process are critically important to successful solution development. Together they push the boundaries of multi-interest holder collaboration to drive meaningful collective impact.

Organizational leaders may consider whether particular innovation efforts are more likely to succeed within an internal or external environment. By sharing our experience, we hope to enhance understanding of types of innovation challenges that might benefit from a multi-interest holder approach within an external safe haven. The details provided may also help to inform assessment of conditions under which collaboration value may outweigh proprietary risk.

The biggest limitation of this work is that to date our application of the methodology has been narrowly focused on addressing system barriers to the appropriate and timely real-world use drug therapies. In the future, application could be expanded to include life science products (e.g., diagnostics, medical devices); integration of new technical tools and capabilities into healthcare (e.g., digital health); and future state systems (e.g., clinical care, public health). It could also be expanded to other fields that would benefit from a structured and stewarded pathway to collaborative innovation.

Another limitation is the absence of a framework for measuring collective impact. We have recently begun to develop a metrics framework, involving interest holders to ensure metrics are meaningful to them and capture relevant information, including costs as well as health outcomes.²² The framework will provide generalized principles that will be tailored to project context and goals.

Our capacity for scientific innovation far outpaces that of healthcare system innovation and there are a growing number of transformational biomedical products that are entering a market that is unprepared for them. We believe that our collaboration methodology is a dynamic way to address complex challenges in healthcare at a time of tremendous opportunity. While its use has been

focused on biomedical products, its potential to provide a platform for innovative solution design could have a much broader reach.

Sources of Support: Drs. Palm, Phares, and Hirsch and received support from the NEWDIGS consortium under the Tufts Center for Biomedical System Design.

Conflicts of Interest: Authors report no competing interests.

REFERENCES

- 1. Austin CP. Opportunities and challenges in translational science. *Clin Transl Sci.* 2021;14(5):1629-1647. doi:10.1111/cts.13055
- 2. Hartl D, De Luca V, Kostikova A, et al. Translational precision medicine: an industry perspective. *J Transl Med*. 2021;19(1):245. doi:10.1186/s12967-021-02910-6
- 3. Grimshaw JM, Eccles MP, Lavis JN, Hill SJ, Squires JE. Knowledge translation of research findings. *Implement Sci.* 2012;7(1):50. doi:10.1186/1748-5908-7-50
- 4. Woolf SH, Purnell JQ, Simon SM, et al. Translating evidence into population health improvement: strategies and barriers. *Annu Rev Public Health*. 2015;36:463-482. doi:10.1146/annurev-publhealth-082214-110901
- 5. Phares S, Trusheim M, Emond SK, Pearson SD. Managing the challenges of paying for gene therapy: strategies for market action and policy reform in the United States. *J Comp Eff Res*. 2024;13(12):e240118. doi:10.57264/cer-2024-0118
- 6. Adachi T, El-Hattab AW, Jain R, et al. Enhancing Equitable Access to Rare Disease Diagnosis and Treatment around the World: A Review of Evidence, Policies, and Challenges. *Int J Environ Res Public Health*. 2023;20(6):4732. doi:10.3390/ijerph20064732
- 7. Eichler H, Baird L, Barker R, et al. From adaptive licensing to adaptive pathways: Delivering a flexible life-span approach to bring new drugs to patients. *Clin Pharmacol Ther*. 2015;97(3):234-246. doi:10.1002/cpt.59
- 8. Hirsch G. Leaping Together Toward Sustainable, Patient-Centered Innovation: The Value of a Multistakeholder Safe Haven for Accelerating System Change. *Clin Pharmacol Ther*. 2019;105(4):798-801. doi:10.1002/cpt.1237

- 9. Hirsch G, Velentgas P, Curtis JR, et al. Extending the vision of adaptive point-of-care platform trials to improve targeted use of drug therapy regimens: An agile approach in the learning healthcare system toolkit. *Contemp Clin Trials*. 2023;133:107327. doi:10.1016/j.cct.2023.107327
- 10. Voorberg WH, Bekkers VJJM, Tummers LG. A Systematic Review of Co-Creation and Co-Production: Embarking on the social innovation journey. *Public Manag Rev.* 2015;17(9):1333-1357. doi:10.1080/14719037.2014.930505
- 11. Baird L, Hirsch G. Adaptive licensing: Creating a safe haven for discussions. *Scrip Regul Aff*. Published online 2013. Accessed March 3, 2025. https://insights.citeline.com/PS117496/Adaptive-licensing-creating-a-safe-haven-for-discussions/
- 12. Chatham House Rule. https://www.chathamhouse.org/about-us/chatham-house-rule
- 13. Domínguez-Escrig E, Mallén-Broch FF, Lapiedra-Alcamí R, Chiva-Gómez R. The Influence of Leaders' Stewardship Behavior on Innovation Success: The Mediating Effect of Radical Innovation. *J Bus Ethics*. 2019;159(3):849-862. doi:10.1007/s10551-018-3833-2
- 14. Saner M, Wilson J. Stewardship, Good Governance and Ethics. Published online February 19, 2010.
- 15. Yeates N, Lee DK, Maher M. Health Canada's Progressive Licensing Framework. *CMAJ Can Med Assoc J J Assoc Medicale Can.* 2007;176(13):1845-1847. doi:10.1503/cmaj.070597
- 16. Trusheim MR, Baird LG, Garner S, Lim R, Patel N, Hirsch G. The Janus initiative: A multistakeholder process and tool set for facilitating and quantifying Adaptive Licensing discussions. *Health Policy Technol.* 2014;3(4):241-247. doi:10.1016/j.hlpt.2014.10.004
- 17. Baird L, Hirsch G. EMA Adaptive Pathways Pilot. Accessed March 10, 2025. https://www.ema.europa.eu/en/human-regulatory-overview/research-development/adaptive-pathways
- 18. ADAPT-SMART. Accelerated development of appropriate patient therapies: a sustainable, multi-stakeholder approach from research to treatment-outcomes. Accessed March 3, 2025. https://www.ihi.europa.eu/projects-results/project-factsheets/adapt-smart

- 19. *21st Century Cures Act.*; 2016. Accessed March 3, 2025. https://www.gpo.gov/fdsys/pkg/BILLS-114hr34enr/pdf/BILLS-114hr34enr.pdf
- 20. President's Council of Advisors on Science and Technology. Accessed March 3, 2025. https://www.whitehouse.gov/presidential-actions/2025/01/presidents-council-of-advisors-on-science-and-technology/
- 21. Chen Z, Liang N, Zhang H, et al. Harnessing the power of clinical decision support systems: challenges and opportunities. *Open Heart*. 2023;10(2):e002432. doi:10.1136/openhrt-2023-002432
- 22. Hirsch G, Phares SE, Barlow J, et al. Optimizing Biomedical Health Efficiency: Unlocking the Full Potential of Life Science Innovation Through System Design. *Ther Innov Regul Sci.* Published online July 26, 2025. doi:10.1007/s43441-025-00847-2

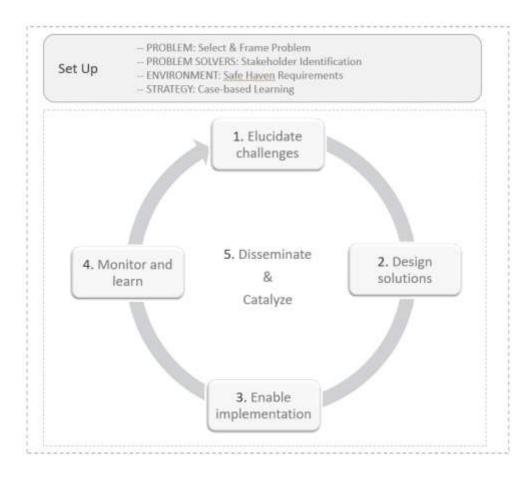


Figure 1. Overview including foundational set-up activities and the five collaborative innovation process steps (Table 2 below).

Table 1. Activities to consider in building a safe haven innovation

Action	Purpose (Assumption/Reality)	Practical Enablers		
Clearly define the purpose of the collaboration	Interest holders often assumed the goal was consensus	Explicitly state that participants are not officially representing their employer organization in discussions		
	The goal was candid dialogue to explore a broad range of possibilities as components of a solution	 Encourage participants to draw from all of their experiences, not just their current role Use of the Chatham House rule¹² to foster candid dialogue 		
	Interest holders may want to get to the "right" solution first	Share that it is okay for participants to feel lost at times in the creative process Instead of stating that a proposed		
Foster creative solution design among interest holders	More often system solutions have multiple components that must be tailored to context	 Instead of stating that a proposed solution will not work, offer ideas to improve it Structure design sessions in ways that support alignment across interest holders and organizations to develop solutions 		
Mitigate risks that may constrain collaboration value	Interest holders are sometimes more comfortable innovating within their own organizations Some challenges require external collaboration with interest holders that may be competitors, and this process must be managed	 Clearly communicate Rules of Engagement on competition, conflicts of interest Institute non-disclosure agreements when appropriate Involve a strong facilitator to keep work toward collaborative solutions moving forward 		

Table 2. Overview of NEWDIGS set up and collaborative innovation process for each project

Set Up Phase	Adaptive Licensing	LEAPS* - APoC**	FoCUS [†] – ORBM [‡]	
Problem	The traditional one-size-fits-all model of regulatory decision-making is a binary go/no go decision at a single point in the innovation lifecycle. This can delay timely product access for patients who may need it most. The goal was to evaluate and refine a previously published model involving a more flexible, staged approach to regulatory approvals, and enable piloting in global settings.	Systematic learning about drug therapies ends at the point of regulatory approval, despite continued uncertainties about their safety, efficacy, and effectiveness in real-world use. The goal was to explore a novel approach to planning, production, and use of real-world evidence to accelerate regimen optimization at scale in patient care.	Financial risks associated with emerging durable cell and gene therapies threatened access for patients in need. The goal was to develop payment innovations that ensure access for patients and sustainability for the system.	
Problem Solvers [¥]	Global regulators, health technology assessment bodies, and payers.	Pharmacoepidemiologists, clinical trialists, health economists, outcomes researchers, rheumatologists, and patients with rheumatoid arthritis.	Representatives of all major US public and private payer segments, pharmacists from integrated delivery systems, and investors.	
Environment	A safe haven was created for all projects and the case studies within them. See Table 1 for further details.			
Strategy	A portfolio of 13 case studies, each focused on an individual product under development in the global industry to explore design and implementation of the new, generalizable regulatory model.	l •	Case studies focused on three specific disease/product class pairs where access was threatened by financial risks, which required characterization, and the development of new payment models.	
Innovation Process	Adaptive Licensing	LEAPS* - APoC**	FoCUS [†] – ORBM [‡]	

Elucidate problem	Identified potential benefits and risks of the proposed new model of "adaptive licensing" for each interest holder.	Identified major decision point in Rheumatoid Arthritis clinical guidelines where better real-world evidence could significantly improve clinical outcomes.	Distilled the key financial risks of durable cell and gene therapies into actuarial, performance uncertainty, and payment timing. Identified actuarial risk and execution challenges uniquely faced by small insurers.
Design solutions	Explored application of the Adaptive Licensing paradigm in a series of case studies (i.e. drug therapies) to develop a generalizable set of principles about how to apply it.	Designed an Adaptive Point of Care (APoC) platform that is embedded in clinical decision-making structured as a prospective study designed for continuous learning and improvement. Explored impact of solution on all interest holders.	Developed model of Orphan Reinsurance and Benefit Manager (ORBM), an innovative solution for US payers that integrates healthcare financing and management to increase consistency, pool risk, and create operational efficiencies.
Enable implementation	Identified and explored implementation barriers and potential solutions such as process and policy innovations. Evaluating feasibility and critical success drivers for pilots across different global jurisdictions.	Considered implementation barriers and enablers, including ways to align incentives across interest holders and resourcing requirements for this new infrastructure to ensure scalability and sustainability.	Explored potential adoption barriers, and identified intermediaries that could provide carveouts in return for a capitated payment based on the overall size of the primary payer's plan.

^{*} LEAPS = Learning Ecosystems Accelerator for Patient-Centered Sustainable Innovation; **
APoC = Adaptive Point of Care; † FoCUS = Financing and Reimbursement of Cures in the US;
‡ ORBM = Orphan Reinsurer and Benefit Manager; ¥ Every project included patients or patient advocates, relevant providers, payers, and industry partners.