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Abstract

We use a graph to define a new stability condition for algebraic moduli spaces of rational
curves. We characterise when the tropical compactification of the moduli space agrees with
the theory of geometric tropicalisation. The characterisation statement occurs only when the
graph is complete multipartite.

2020 Mathematics Subject Classification: Primary: 14D20; Secondary: 14T20

1. Introduction

A strong trend in modern algebraic geometry is the study of moduli (parameter) spaces.
Broadly, a moduli space parameterises geometric objects. An important and well-studied
moduli space is M0,n, the moduli space of smooth rational curves with n marked points.
The space M0,n is not compact, which is undesirable for algebraic geometers because of the
many applications that require such a condition. A ‘nice’ compactification of M0,n brings
along with it a modular interpretation, that is, a compact space containing M0,n as a dense
open subset has a boundary (equal to the complement of M0,n) that parametrises n-marked
algebraic curves that may not be smooth. The most notable compactification, M0,n, is due to
Grothendieck [9], then constructed as an iterated blow-up by Knudsen [13]. The boundary of
their compactification is comprised of nodal curves with finite automorphism group called
stable curves. It is interesting to know what alternate compactifications exist and how the
boundary combinatorics differs in each case. Another important family of compactifications,
M0,w, alters the original stability condition by assigning a weight to each marked point. The
moduli spaces of weighted stable curves were established by Hassett in the context of the
log minimal model program [11].

Tropical mathematics offers tools to investigate the structure of the boundary of compact
moduli spaces by relating complex algebraic varieties to piecewise linear objects. A strength
of tropical geometry is that it allows us to look at a linear skeleton of a potentially compli-
cated variety, reducing algebro-geometric questions to those of combinatorics. For instance,
the tropical moduli space Mtrop

0,n is a cone complex which parameterises leaf-labelled met-
ric trees. The combinatorial relation between algebraic moduli spaces and tropical moduli
spaces is that the cones of Mtrop

0,n are in bijection with the boundary strata of M0,n.
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2 ANDY FRY

Recently [5], a new family of stability conditions were defined for tropical moduli spaces
of rational marked curves determined by the combinatorics of a graph �, called graphic
stability. This paper investigates how graphic stability is applied to the algebraic moduli
spaces and how the algebraic and tropical moduli spaces relate to each other. Previously, the
relationship between algebraic and tropical moduli spaces in the weighted stability setting
was investigated by Cavalieri-Hampe-Markwig-Ranganathan [2].

Algebraically, we define a compactification of M0,n using graphic stability called the
moduli space of rational graphically stable pointed curves, denoted M0,� . Taking the inte-
rior,M0,� , to be smooth �-stable curves, these new moduli spaces have many characteristics
that we would expect from a modular compactification of M0,n; namely their boundaries are
divisors with simple normal crossings. We also construct an embedding of M0,� into a torus
using the Plücker embedding of the Grassmannian.

For a smooth subvariety of a torus with a simple normal crossings compactification, the
theory of geometric tropicalisation relates the combinatorics of the boundary to a balanced
fan in a real vector space. Using this theory we show that the tropicalisation of M0,� is
identified with a projection of the tropical moduli space Mtrop

0,n .

This tropicalisation doesn’t necessarily line up with the tropical moduli space Mtrop
0,� .

The obstruction is a lack of injectivity in the tropicalisation map. Specifically, the divisorial
valuation map π�:�(∂M0,�) → NR may not be injective, this fact is highlighted in equation
(3·5). The main result of this work is a classification result stating precisely when the tropical
compactification of M0,� agrees with the theory of geometric tropicalisation for rational
graphically stable curves.

THEOREM 3·3. For � complete multipartite, there is a torus embedding

M0,� ↪→ T(n
2)−n−N = T�

whose tropicalisation trop(M0,�) has underlying cone complex Mtrop
0,� . Furthermore, the

tropical compactification of M0,� is M0,� , i.e, the closure of M0,� in the toric variety
X(Mtrop

0,� ) is M0,� .

The motivation for this paper comes from the theory of tropical compactifications, geo-
metric tropicalisation, and log geometry. From work of Tevelev [17] and Gibney-Maclagan
[7] it has been shown that there is an embedding of M0,n into the torus of a toric variety
X(�) where the tropicalisation of M0,n is a balanced fan � ∼=Mtrop

0,n . This embedding is

special in the sense that the closure of M0,n in X(�) is M0,n. Cavalieri et al. [2] show a
similar embedding can be constructed for weighted moduli spaces when the weights are
heavy/light. Although graphical stability doesn’t completly generalise weighted stability,
each heavy/light space in [2] can be viewed as a graphically stable space for some com-
plete multipartite graph. In this sense, [2, theorem 3·9] is a corollary to theorem 3·3 of this
paper.

Graphical stability can be viewed as a special case of the simplicial stability described by
Blankers and Bozlee [1] as follows. An independent set of a graph is a set of vertices in a
graph, no two of which are adjacent. The independence complex of a graph is a simplicial
complex formed by the sets of vertices in the independent sets of the graph. Let � be a
graph on n − 1 vertices, and let �′ be the graph defined by adding an nth vertex to � and
edges connecting the new vertex to all other vertices. Then the Blankers–Bozlee simplicial
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Moduli spaces of rational graphically stable curves 3

compactification of Mg,n given by the incidence complex of �′ agrees with the graphical
stability compactification of Mg,n associated to �.

The paper is organised as follows. Chapter 2 discusses preliminary definitions in the
algebraic (Section 2·1) and tropical (Section 2·2) settings which are necessary for this
manuscript. Section 2·3 describes the process of geometric tropicalisation and briefly covers
this process applied to M0,n.

Chapter 3 is composed of original work. Section 3·1 contains a proof that M0,� is not only
a modular compactification of M0,n, but indeed a simple normal crossings compactification
of the locus of smooth �-stable curves, M0,� . To invoke geometric tropicalisation, we also
need a torus embedding of M0,� . Section 3·2 begins by identifying the interior of the moduli
space with the quotient of an open set of the Grassmannian, thus creating the necessary torus
embedding. We notice that the divisorial valuation map, which furnishes the combinatorics
of the boundary with a fan structure, does not in general have the desired underlying cone
complex, Mtrop

0,� . Indeed, we achieve this compatibility only when � is complete multipartite.
After the main theorem, we conclude with an example where the graph is not complete
multipartite. In this case, the toric variety does not have enough boundary strata to contain
the modular compactification.

2. Preliminaries
2·1. Algebraic moduli spaces

The moduli space M0,n parameterises isomorphism classes of smooth, genus 0 curves
with n marked points. A point of M0,n is an isomorphism class of n ordered, distinct marked
points on P1 which we denote (p1, . . . , pn). Two points (P1, p1, . . . , pn), (P1, q1, . . . , qn) ∈
M0,n are equal if there is � ∈ Aut(P1) such that �(pi) = (qi), for all i. Using cross ratios, we
may assign any n-tuple (p1, . . . , pn) to (0, 1, ∞, �CR(p4), . . . , �CR(pn)) where �CR is the
unique automorphism of P1 sending p1, p2, and p3 to 0, 1, and ∞. The first two nontrivial
cases occur when n = 3 and n = 4. As varieties, M0,3 is a point, as we send (p1, p2, p3) to
(0, 1, ∞) and M0,4 = P1 \ {0, 1, ∞} because the fourth point is free to vary as long as it
doesn’t coincide with the other 3 markings. In general, this shows that M0,n is an n − 3
dimensional space and

M0,n =
n−3 times︷ ︸︸ ︷

M0,4 × · · · ×M0,4 \{all diagonals}.
From the n = 4 example, we can see thatM0,n is not compact in general. The most notable

compactification, M0,n, is due to Deligne and Mumford which allows nodal curves with
finite automorphism group; such curves are called stable curves [4, 13].

Definition 2·1. A rational marked curve (C, p1, . . . , pn) is stable if:

(1) C is a connected curve of arithmetic genus 0, whose only singularities are nodes;

(2) (p1, . . . , pn) are distinct points of C \ Sing(C);

(3) The only automorphism of C that preserves the marked points is the identity.

Stable nodal curves arise as the limit of a family of smooth curves where a number of
points collide, e.g., p1 �→ p2. In Figure 1, we see an example of a nodal curve in M0,4

where the marked points p3, and p4 have collided. This curve also arises if p1 and p2 collide.
The dual graph or combinatorial type of a stable curve in M0,n, is defined by assigning a
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Fig. 1. A marked algebraic curve and its dual graph.

vertex to each component, an edge to each node, and a half-edge to each marked point, as
shown in Figure 1. An alternative definition of stability can be posed in terms of dual graphs.

Definition 2·2. A rational marked curve (C, p1, . . . , pn) is stable if its dual graph is a tree
where each vertex has valence greater than 2.

We define the boundary of M0,n to be ∂M0,n =M0,n \M0,n; it consists of all points
corresponding to nodal stable curves. We call the closure of a codimension one stratum a
boundary divisor. The boundary is stratified by nodal curves of a given topological type
with an assignment of marks to each component. In other words, ∂M0,n is stratified by dual
graphs of stable nodal pointed curves. Dual graphs of boundary divisors partition the set of
markings into two sets I 	 Ic. We adopt the convention that the marking 1 ∈ Ic; therefore, a
boundary divisor D : = DI is uniquely identified by its index set I.

2·2. Tropical moduli spaces

We begin by introducing necessary background terminology on tropical moduli spaces.
For a more thorough survey of tropical moduli spaces, see [14]. Consider the space of
genus 0, n-marked abstract tropical curves Mtrop

0,n . Points of C ∈Mtrop
0,n are in bijection with

metrised trees with bounded edges having finite length and n unbounded labelled edges
called ends. By forgetting the lengths of the bounded edges of C we get a tree with labelled
ends called the combinatorial type of C. The space Mtrop

0,n naturally has the structure of a
cone complex where curves of a fixed combinatorial type with d bounded edges are param-
eterised by Rd

>0. We obtain Mtrop
0,n by gluing several copies of Rn−3

≥0 via appropriate face
morphisms, one for each trivalent combinatorial type.

The space Mtrop
0,n may be embedded into a real vector space as a balanced, weighted,

pure-dimensional polyhedral fan as in [6]. We briefly recall this construction. A weighted
fan (X, ω) is a fan X in Rn where each top-dimensional cone σ has a positive integer weight
associated to it, denoted by ω(σ ). A weighted fan is balanced if for all cones τ of codimen-
sion one, the weighted sum of primitive normal vectors of the top-dimensional cones σi ⊃ τ

is 0, i.e., ∑
σi⊃τ

ω(σi) · uσi/τ = 0 ∈ V/Vτ ,

where uσi/τ is the primitive normal vector, V is the ambient real vector space, and Vτ is the
smallest vector space containing the cone τ . See [6, construction 2.3] for a construction of
the primitive normal vectors uσi/τ .

For a curve C, define dist(i, j) as the sum of lengths of all bounded edges between the
ends marked by i and j. Then the vector

d(C) = (dist(i, j))i<j ∈R(n
2)/�(Rn) = Qn (2·1)

identifies C uniquely, where � : Rn →R(n
2) by x �→ (xi + xj)i<j.
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In [5], an alternate stability condition using a combinatorial graph is introduced for ratio-
nal pointed tropical curves. Let � be a simple graph on n − 1 vertices, labelled 2, ..., n with
at least one edge. Denote E(�) as its edge set. The graph � controls which pairs of markings
are allowed to collide. Edges in � correspond to pairs of points that cannot collide, while
missing edges, with respect to the complete graph Kn−1 ⊇ �, correspond to pairs of points
that can collide.

Definition 2·3. The root vertex of a stable tropical curve C is the vertex containing the
end with marking 1. A stable tropical curve C with n ends is �-stable if, at each non-root
vertex v of C with exactly one bounded edge, there exists an edge eij ∈ E(�) where i and j are
ends adjacent to v. Define Mtrop

0,� to be the parameter space of all rational n-marked �-stable
abstract tropical curves.

Note that there are two types of graphs in this definition. The graph C corresponds to a
stable tropical curve, which we will reference using the terminology bounded edges, ends,
unmarked vertices, and markings labelled 1, . . . , n. Whereas the graph � is a combinatorial
graph with edges and vertices labelled 2, . . . , n.

As a cone complex, Mtrop
0,� is a subcomplex of Mtrop

0,n . Using graphic stability, there exists

a projection map from the vector space Qn =R(n
2)−n to R(n

2)−n−N that forgets the coordi-
nates corresponding to the N edges removed from Kn−1 to obtain �, see [5, equations 7, 8].
Although there are two projections defined, lemma 3·18 of [5] identifies them via a linear
transformation, so we will use pr� to refer to both projection maps. We will see in lemma
3·3 that pr� is the tropicalisation of a regular map between algebraic tori.

2·3. Geometric tropicalisation for M0,n

Two theories, developed simultaneously, arise when dealing with tropicalisations of
subvarieties of tori: tropical compactification and geometric tropicalisation. The former,
introduced by Tevelev [17], describes a situation where the tropical variety determines a
good choice of compactification. Specifically, the tropical compactification of U ⊂Tr is its
closure U in a toric variety X(�) with |�| = trop(U). The latter, introduced by Hacking,
Keel and Tevelev [10] and further developed by Cueto [3], explores the converse statement,
how a nice compactification determines its tropicalisation.

We recall some useful definitions for geometric tropicalisation. We note that geometric
tropicalisation can be completed with more relaxed conditions, such as replacing a smooth
compactification with a normal, Q-factorial compactification and replacing simple normal
crossing by combinatorial normal crossings. For explicit details, see [3].

Let U be a smooth subvariety of a torus Tr and Y be a smooth compactification containing
U as a dense open subvariety. The boundary of Y , ∂Y = Y \ U, is divisorial if it is a union
of codimension-1 subvarieties of Y . We say (Y , ∂Y) is a simple normal crossings (snc) pair
when the boundary of Y behaves locally like an arrangement of coordinate hyperplanes.
In other words, ∂Y is an snc divisor if a non-empty intersection of k irreducible boundary
divisors is codimension k and the intersection is transverse. The boundary complex of Y ,
�(∂Y), is a simplicial complex whose vertices are in bijection with the irreducible divisors
of the boundary divisor ∂Y , and whose k-cells correspond to a non-empty intersection of k
boundary divisors. The cells containing a face τ correspond to the boundary strata that lie in
the closure of τ ’s stratum.
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Fig. 2. The boundary complex of M0,5 with divisors (vertices) labelled by their index set.

Let φ1, . . . , φr ∈O∗(U). The φi’s define a morphism �φ from U to a torus Tr, send-
ing u ∈ U to (φ1(u), . . . , φr(u)). When there are enough invertible functions, this map
is an embedding. Given an irreducible boundary divisor D ⊂ ∂Y we can compute the
order of vanishing of each φi on D, ordD(φi), yielding an r-dimensional integer vector
�vD = (ordD(φ1), . . . , ordD(φr)) living inside the cocharacter lattice of Tr, NTr ⊆ NR =Rr.
Let π :�(∂Y) → NR be the map defined by sending a vertex vi to �vDi and extending linearly
on every simplex. We call π a divisorial valuation map. Geometric tropicalisation says pre-
cisely that the support of the tropical fan is the cone over this complex and this result is
independent of our choice of compactification Y , i.e., trop(U) = cone(Im(π)). As we will
see later, π is not necessarily injective, so trop(U) may not be the cone over �(∂Y).

Tevelev [17, theorem 5·5] first computes the tropicalisation of M0,n via geometric trop-
icalisation by combining results of [12, 16]. This result is generalised by Gibney and
Maclagan [7, theorem 5·7]. They use the fact that M0,n can be embedded into a torus of
dimension

(n
2

) − n using the Plücker embedding of the Grassmannian G(2,n) into P(n
2)−1.

For explicit details, see [7, 14]. Comparing the algebraic Plücker embedding to the tropi-
cal distance coordinates we realise that the distance coordinates from equation (2·1) can be
recovered from the tropicalisation of the Plücker coordinates, for details see [8, section 3·1].

Example 2·4. For M0,5, we have an embedding into T(5
2)−5 = T5. In the boundary of

M0,5, there are 10 irreducible boundary divisors; they are labelled by their index sets in
Figure 2.

We may define Mtrop
0,n alternatively as the cone over �(∂M0,n). Geometric tropicalisation

states precisely that cone(�(∂M0,n)) = trop(M0,n). The following theorem, due to Tevelev
and Gibney-Maclagan, states that Mtrop

0,n = trop(M0,n).

THEOREM 2·1 ([7, 17]). The geometric tropicalisation of M0,n via the embedding

M0,n ↪→ T(n
2)−n

gives the fan trop(M0,n) whose underlying cone complex is identified with Mtrop
0,n .

Furthermore, the tropical compactification of M0,n in the toric variety X(Mtrop
0,n ) is M0,n.
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It follows from the previous theorem that the divisorial valuation map is injective, and thus
induces a bijective map of cone complexes from Mtrop

0,n to trop(M0,n). This is an important
fact that we will revisit when discussing �-stability.

3. Tropicalising Moduli Spaces of Rational Graphically Stable Curves

We define algebraic moduli spaces parameterising rational graphically stable curves,
M0,� , and investigate its tropicalisation. The central result classifies all graphically sta-
ble moduli spaces in which the tropical compactification of M0,� agrees with the theory of
geometric tropicalisation. Unless otherwise noted we let � be as in definition 2·3, a simple
graph on n − 1 vertices, labelled 2, ..., n with at least one edge.

3·1. The moduli space of rational graphically stable curves

In [15], Smyth gives a complete classification of all modular compactifications of M0,n

using combinatorial objects called extremal assignments (theorem 1.9). In this section, we
prove that M0,� is a modular compactification of M0,n by showing that �-stability, as
in definition 2·3, is an extremal assignment over M0,n. In addition, we show that the pair
(M0,� , ∂M0,�) is an snc pair. Before we define �-stable curves and the moduli space M0,� ,
we first introduce notation that tracks the markings that may collide.

We say a subcurve of a proper algebraic curve C over an algebraically closed field is a
reduced closed subscheme of C. Let (C, p1, . . . , pn) be an n-marked curve, let x be a closed
point of C, and Z be a subcurve of C. Denote the set of markings at x to be

Mar(x) : = {i ∈ [n] | pi = x}
and the set of markings a subcurve Z to be

Mar(Z) : = {i ∈ [n] | pi ∈ Z} =
⋃
x∈Z

Mar(x).

For a subset I ⊂ {2, . . . , n} let �I be the induced subgraph of � containing the vertices
indexed by I and all edges of � between those vertices. We denote two special subgraphs of
� given by the markings at a closed point x and the markings in a subsub Z:

�x : = �Mar(x) and �Z : = �Mar(Z).

Definition 3·1. The root component of a rational stable n-marked curve (C, p1, . . . , pn) is
the component containing p1. A rational stable n-marked curve (C, p1, . . . , pn) is �-stable if
each of the conditions are satisfied:

(1) for each closed smooth point x ∈ C, E(�x) = ∅
(2) for each non-root subcurve Z ⊂ C with exactly one node, E(�Z) �= ∅.

Define M0,� to be the parameter space of all rational �-stable n-marked curves with the
interior M0,� to be all smooth rational �-stable n-marked curves.

Consider the assignment defined by

Z(C) = {Z ⊂ C | |Z ∩ Zc| = 1, p1 �∈ Z, E(�Z) = ∅} (3·1)

If we call a subcurve Z ⊂ C satisfying |Z ∩ Zc| = 1 a tail, then the assignment Z is defined
by picking out all tails of (C, p1, . . . , pn) not containing p1 that have no edges in � between
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vertices corresponding to the marked points on the tail. For the purposes of this document,
we require � to be a simple connected graph on n − 1 vertices, in which case equation (3·1)
is an extremal assignment.

By definition, the only components contracted by Z-stability are exactly those which are
contracted by �-stability. Every tail is contracted to a point of singularity type (0,1) which is
a smooth point. Therefore, M0,� =M0,n(Z) (as defined in [15]) and so M0,� is a modular
compactification of M0,n.

LEMMA 3·2. The boundary ∂M0,� =M0,� \M0,� is a divisor with simple normal
crossings.

Proof. The boundary ∂M0,� is divisorial, meaning it is a union of divisors of M0,� . In
addition, the boundary strata are parameterised by dual graphs. Each edge of a dual graph
corresponds to a node in its associated complex curve, where locally each node is given by
an equation xy = ti when ti = 0. Since a boundary stratum of codimension k is the intersec-
tion of k divisors, each divisor acts as a coordinate hyperplane ti = 0. It follows from the
deformation theory of nodal curves that the functions t1, . . . , tk are independent. Therefore,
∂M0,� behaves locally like an arrangement of coordinate hyperplanes.

3·2. Geometric tropicalisation for M0,�

For the remainder of the paper we add the condition that � is connected. We also assume
without loss of generality that � contains the edge e23. The connected assumption is used in
the proof of lemma 3·4.

The aim of this section is to walk through the process of geometric tropicalisation for the
case of �-stability and study the tropical compactification of M0,� . We begin by investigat-
ing the projection of the Plücker embedding of M0,n. Graphic stability defines a projection
map that will give a torus embedding using the remaining Plücker coordinates. Next, we
examine the divisorial valuation map from the boundary complex of M0,� into the cochar-
acter lattice of the torus. Fixing e23 ∈ E(�) prescribes a set of coordinates on the torus. The
tropicalisation is a fan which coincides with the tropical moduli space Mtrop

0,� if and only if
� is complete multipartite.

We may set up a torus embedding for M0,� in the following way. Recall that the Plücker
embedding is given by sending a 2 × n matrix, representing a choice of basis for a subspace
V , to its vector of 2 × 2 minors called the Plücker coordinates. Let Mat�(2, n) be the set of
2 × n matrices where the ijth minor, zij, is nonzero whenever i = 1 or eij ∈ E(�). Let G�(2, n)
be the open subspace of G(2,n) given by Mat�(2, n); that is, the points of G�(2, n) are given
by the subset of nonvanishing Plücker coordinates zij whenever i = 1 or eij ∈ E(�). Let k
be an algebraically closed field and consider the action of the (n − 1)-dimensional torus
Tn−1 = (k∗)n/k∗ on P(n

2)−1 given by

(t1, . . . , tn) · [zij]1≤i<j≤n = [titjzij]1≤i<j≤n. (3·2)

The Tn−1 torus action amounts to a nonzero scaling of the columns of the 2 × n matrices in
G�(2, n) modulo diagonal scaling and Tn−1 acts freely on G�(2, n).

An n-tuple of (potentially overlapping) points of P1, ([x1 : y1], . . . , [xn : yn]), may
be encoded into a 2 × n matrix where each point is a column of the matrix. Thus,
([x1 : y1], . . . , [xn : yn]) is sent to (z12 : · · · : zn−1n) ∈ P(n

2)−1 where zij = xiyj − xjyi. The
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Fig. 3. Torus embedding of M0,� via Plücker map.

coordinates zij are nonzero precisely when the ith and jth points are distinct; in this way,
M0,� is equal to the quotient G�(2, n)/Tn−1.

Definition 3·3. Let Pr� be the rational map from P(n
2)−1 to P(n

2)−1−N dropping all the
Plücker coordinates zij for which eij is not an edge of �. Here N is the number of edges
removed from Kn−1 to obtain �, N = (n−1

2

) − E(�).

After applying Pr� , the images of the remaining Plücker coordinates are non-zero, mean-
ing the image of Pl

(
G�(2, n)

)
via Pr� lives inside a torus in P(n

2)−1−N . Recall that M0,n

lives inside an (
(n

2

) − n)-dimensional torus, T(n
2)−n ⊂ P(n

2)−1. The projection map Pr� is reg-

ular on T(n
2)−n; in fact, we prove in lemma 3·2 that the projection of T(n

2)−n via Pr� is
an

((n
2

) − n − N
)
-dimensional torus containing M0,� . Note the embedding into the quotient

torus is given by Pl, but then we may choose an isomorphism to a torus of correct dimension.
The diagram in Figure 3 summarises the above conversation.

LEMMA 3·4. The open part M0,� can be embedded into the torus Pr�

(
T(n

2)−n
) = T(n

2)−n−N

using the Plücker coordinates.

Proof. Let (P1, (x1 : y1), . . . , (xn : yn)) be a �-stable curve in M0,� . Using the discussion
preceding definition 3·3, this marked curve, up to the Tn−1 action in equation 3·2, cor-
responds to a point �x : = (z12 : · · · : zn−1n) ∈ P(n

2)−1 where zij = xiyj − xjyi. By �-stability,
the zij coordinates are allowed to be zero when eij �∈ E(�), which are the same coordi-

nates that are forgotten by Pr� . Since each coordinate of Pr�(�x) ∈ P(n
2)−1−N is necessarily

nonzero, Pr�(�x) lies in the big open torus of P(n
2)−1−N , denoted T(n

2)−1−N . The torus action
in equation 3·2 is carried through the projection, therefore

(Pr� ◦ Pl)(M0,�) ⊂ T(n
2)−1−N/Tn−1 : = T(n

2)−n−N .

Finally, we show that Pr� is injective on the image of M0,� . Fix �r, �s ∈ Pl(M0,�) and
suppose Pr�(�r) = Pr�(�s). Then for some λ ∈C∗, rij = λsij whenever i = 1 or eij ∈ E(�). Fix
such a λ.

We wish to show rkl = λskl whenever ekl �∈ E(�). Using the automorphisms of M0,� , we
fix the first two marked points of the �-stable curves sent to �r and �s to be (0 : 1) and (1 : 0).
We write the remaining marked points as (1 : ti) and (1 : ui) for �r and �s, respectively, so that

rij =
⎧⎨
⎩

−1, i = 1 < j
tj, i = 2 < j
tj − ti 2 < i < j

sij =
⎧⎨
⎩

−1, i = 1 < j
uj, i = 2 < j
uj − ui 2 < i < j

.

If k = 2, then r2l = tl and s2l = ul.
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2 1 2
2 1 2 2

Fig. 4. Path for lemma 3·4.

Consider the path from vertices 2 to l passing through vertices i1, . . . , im (which exists
because � is a connected graph), as in Figure 4.

This path gives us the following sequence of equations

r2i1 = λs2i1 , ri1i2 = λsi1i2 , . . . , riml = λsiml

yielding

ti1 = λui1 , ti2 − ti1 = λ(ui2 − ui1 ), . . . , tl − tim = λ(ul − uim).

By substituing the first in equation into the second we see that ti2 = λui2 . Continuing the
substitution process eventually yields tl = λul, and hence r2l = λs2l.

On the other hand, if k �= 2, we can repeat the above strategy by picking separate paths
from 2 to k and 2 to l to get tk = λuk and tl = λul, respectively. This completes the proof as

rkl = tl − tk = λ(ul − uk) = λskl.

The boundary of M0,� is divisorial in the same way that ∂M0,n is divisorial, except that
there are fewer irreducible divisors. The ratios zij/z23, for 2 ≤ i < j ≤ n, (i, j) �= (2, 3) and
eij ∈ E(�), are rational functions on M0,� and act as a choice of coordinates on the torus

T(n
2)−n−N .
Define the divisorial valuation map π�:�(∂M0,�) → NR by assigning the vector �vDI =

(ordDI (z24/z23), . . . , ordDI (zn−1n/z23)) to a divisor DI where

ordDI (zij/z23) =

⎧⎪⎪⎨
⎪⎪⎩

1 {2, 3} �⊂ I, {i, j} ⊂ I, and eij ∈ E(�);

−1 {2, 3} ⊂ I, {i, j} �⊂ I, and eij ∈ E(�);

0 else.

This means

π�(DI) = �vDI =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
i, j∈I;

eij∈E(�)

�eij {2, 3} �⊂ I;

−
∑
i, j �∈I;

eij∈E(�)

�eij {2, 3} ⊂ I.
(3·3)

The standard basis vectors of T(n
2)−n−N are given by �vD{i, j} , where eij ∈ E(�) \ {e23}.

Additionally we have �vD{2,3} = −�1. For a divisor DI with |I| ≥ 3,

�vDI =
∑

{i, j}⊂I;
eij∈E(�)

�vD{i, j} . (3·4)
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LEMMA 3·5. The tropicalisation of the map Pr� agrees with the projection pr� from
[5, equations 7, 8].

Proof. A basis of T(n
2)−n is given by zij/z23 for 2 ≤ i < j ≤ n, (i, j) �= (2, 3). These coor-

dinates are in bijection with divisors D{i, j}. The tropicalisation of representatives of such

divisors are basis elements of R(n
2)−n. Both projections Pr� and pr� , forget coordinates that

correspond to the edges deleted from Kn−1 to obtain �. The discussion above confirms that
the tropicalisation of the basis elements of T(n

2)−n−N coincide with the basis elements of
R(n

2)−n−N .

PROPOSITION 3·6. Using the embedding in lemma 3·4, the tropical variety trop(M0,�) is
equal to pr�(Mtrop

0,n ).

Proof. Geometric tropicalisation requires a simple normal crossings compactification and a
torus embedding. These two conditions are satisfied by lemma 3·2 and lemma 3·4. By lemma
3·5 the divisorial valuations of the boundary divisors yield the rays of this fan. Theorem 2·5
from [3] states that the weight of each top-dimensional cone σ ⊂ trop(M0,�) is equal to the
intersection number, with multiplicity, of the divisors corresponding to the rays of σ . A non-
empty intersection of n − 3 hypersurfaces is a single point with multiplicity 1, coinciding
with the weights on pr�(Mtrop

0,n ).

From [5], we know that Mtrop
0,� = pr�(Mtrop

0,n ) if and only if � is a complete multipartite
graph. Tropically, this characterisation comes from studying the injectivity of a restriction
morphism on graphic matroids. Algebraically, we study the injectivity of the divisorial val-
uation maps. Unlike in the M0,n case (discussed in Section 2·3), the map π� may not be
injective. There is a similar relation to equation (3·4) for M0,n that we may use to demon-
strate the simplest case of non-injectivity: consider the divisor D{i, j,k} in M0,n and its image
under the divisorial valuation map

�vD{i, j,k} = �vD{i, j} + �vD{i,k} + �vD{ j,k} . (3·5)

If exactly two of the vectors on the right correspond to �-unstable divisors, then π� can-
not be injective. This case does not happen when � is complete multipartite. Example 3·7
demonstrates the failure of injectivity for π� , while example 3·8 exhibits a case where π� is
injective.

Example 3·7. Let �̃ be the subgraph of K4 with edges e35 and e45 removed; see Figure 5.

Then we have M0,�̃ ↪→ T(5
2)−5−2 = T3 with coordinates z24/z23, z25/z23, and z34/z23. In

M0,�̃ , there are 8 irreducible boundary divisors, labelled in Figure 6(a). Comparing the cone

complexes of Mtrop
0,�̃

and trop(M0,�̃), we can see that the cones associated to the boundary

strata D{3,4}, D{3,4,5}, and D{3,4} ∩ D{3,4,5} in Mtrop
0,�̃

are all mapped to the ray given by D{3,4}
in trop(M0,�̃). Explicitly, π�̃ : �(∂M0,�̃) →R3 where the divisors have been mapped to
the following primitive vectors:

�vD{2,4} = (1, 0, 0) �vD{2,5} = (0, 1, 0) �vD{3,4} = (0, 0, 1)

�vD{2,3} = ( − 1, −1, −1) �vD{2,3,4} = (0, −1, 0) �vD{2,3,5} = ( − 1, 0, −1)

�vD{2,4,5} = (1, 1, 0) �vD{3,4,5}= (0, 0, 1)
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2

34

5
2324

25

34

Fig. 5. The graph �̃ in example 3·7.

{2,5}

{3,4}

{2,4,5}

{3,4,5}

{2,3,5}

{2,3}

{2,3,4}

{2,4}

A slice of the cone complex M
trop
0,Γ

with rays labeled
by their divisor index set.

{2,5}

{3,4}

{2,4,5}

{2,3,5}

{2,3}

{2,3,4}

{2,4}

A slice of the cone complex trop(M0,Γ ) with rays
labeled by their divisor index set.

(a) (b)

Fig. 6. Cone complexes for example 3·7.

Example 3·8. Let � = K2,2 be the complete bipartite graph obtained by removing edges

e25 and e34 from K4, as shown in Figure 7(a). Then we have M0,K2,2 ↪→ T(5
2)−5−2 = T3

with coordinates z24/z23, z35/z23, and z45/z23. In M0,K2,2 , there are 8 irreducible boundary

divisors, labelled in Figure 7(b). Explicitly, π�:�(∂M0,K2,2 ) →R3 where the divisors have
been mapped to the following primitive vectors:

�vD{2,4} = (1, 0, 0) �vD{3,5} = (0, 1, 0) �vD{4,5} = (0, 0, 1).

�vD{2,3} = ( − 1, −1, −1) �vD{2,3,4} = (0, −1, −1) �vD{2,3,5} = ( − 1, 0, −1)

�vD{2,4,5} = (1, 0, 1) �vD{3,4,5}= (0, 1, 1)

Lemma 3·9 gives useful characterisations of a complete multipartite graph also used
in [5].

LEMMA 3·9. Let G be a graph. The following are equivalent:

(i) G is a complete multipartite graph;

(ii) If eij is an edge of G, then for any vertex vk, either eik or ejk is an edge of G;

(iii) There do not exist 3 vertices whose induced subgraph has exactly 1 edge.

Proof. We can see that all three conditions express that the complement of G is a disjoint
union of cliques.
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2

34

5
2324

35

45

The graph 2,2 in Example 3·8

{4,5}

{2,4,5}

{3,4,5}

{2,3,5}

{2,3}

{2,3,4}

{2,4} {3,5}

A slice of the cone complex trop(M0 2,2 ) = M
trop
0 2,2

with
rays labeled by their divisor index set.

(a)

(b)

Fig. 7. Graph and cone complexes for example 3·8.

LEMMA 3·10. The divisorial valuation map π� is injective if and only if � is complete
multipartite. In this situation, the cone complex Mtrop

0,� is embedded as a balanced fan in a
real vector space by π� .

Proof. We begin by proving the forwards direction by contradiction. Suppose π� is injective
and � is not complete multipartite. Using lemma 3·9, fix three vertices vi, vj, and vk where
eij ∈ E(�) but eik, ejk �∈ E(�). We have the following contradiction

π�(D{i, j,k}) = �vD{i, j,k} = �vD{i, j} = π�(D{i, j}).

For the backwards direction, assume � is complete multipartite. Let DI and DJ be two
�-stable divisors such that �vDI = �vDJ . By equation (3·3), {2, 3} ⊆ I if and only if {2, 3} ⊆ J.
If {2, 3} ⊆ I, J, then we have

−�1 +
∑

{i, j}⊂I, {i, j}�={2,3};
eij∈E(�)

�eij = −�1 +
∑

{i, j}⊂J, {i, j}�={2,3};
eij∈E(�)

�eij.

If {2, 3} �⊆ I, J, then we have

∑
{i, j}⊂I;
eij∈E(�)

�eij =
∑

{i, j}⊂J;
eij∈E(�)

�eij.

In either case, this implies that the induced subgraphs �I and �J of � have the same edge
sets, E(�I) = E(�J). If I �= J, then there exists i ∈ I \ J. But vi ∈ � must be isolated in �I ,
otherwise it would be contained in an edge in E(�I) and thus i ∈ J. However, �I is a complete
multipartite graph, so it cannot have any isolated vertices. Therefore, I = J, concluding the
proof that π� is injective.

Additionally, the map π� induces a map of cone complexes from Mtrop
0,� =

cone(�(∂M0,�)) to trop(M0,�) = cone(Im(π�)) which is an isomorphism if and only if
� is complete multipartite. Furthermore, we know that Mtrop

0,� = pr�(Mtrop
0,n ) is a balanced

fan (with constant weight function 1) by [5, theorem 29].
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PROPOSITION 3·11. If � is not complete multipartite, there does not exist a balanced
embedding of Mtrop

0,� into a real vector space by any map.

Proof. If � is not complete multipartite, there exists three markings i,j,k so that eij ∈ E(�),
but eik, ejk �∈ E(�). Consider a codimension-one cone τ of Mtrop

0,n where the unique 4-valent
vertex of its tropical curve has a single bounded edge and the three markings i,j,k and all of
its rays are given by �-stable tropical curves.

In Mtrop
0,n , τ is contained in three facets spanned by the rays of τ and an additional ray

coming from one of the tropical curves D{i, j}, D{i,k}, or D{ j,k}. However, the tropical curves
D{i,k} and D{ j,k} are not �-stable, and thus their rays are contracted in Mtrop

0,� . In Mtrop
0,� , the

image of τ is a condimension-one cone contained in only a single facet, and thus cannot be
balanced in any embedding.

Before the main result of the paper, we prove a lemma that identifies the units of M0,� as
forgetful morphisms to M0,4 by extending cross ratios on M0,n to M0,� . Not all forgetful
morphisms can be considered as units of M0,� because the space may contain points corre-
sponding to curves that are not mapped to M0,4 by every forgetful morphism. For example,
if � = K2,3, M0,� contains a point corresponding to the curve with three distinct marked
points p1, p2 = p3, and p4 = p5 = p6. If p2 and p3 are forgotten, the point of M0,� doesn’t
land in M0,4. Thus we want to only keep the extended forgetful morphisms for which this
doesn’t happen.

LEMMA 3·12. The units of O∗(M0,�) are generated by cross ratios, i.e. forgetful mor-
phisms to M0,4.

Proof. The space M0,n can be viewed as the subset of (C∗ \ {1})n−3 minus the hyperplanes
xi − xj = 0. The functions which don’t vanish on M0,n are rational functions that have zeros
and poles on the hyperplanes, i.e. Laurent monomials in xi, xi − 1, and xi − xj. We claim that
we can write any monomial function as a product of cross ratios:

(P1 − P2)(P3 − P4)

(P1 − P3)(P2 − P4)

for marked points P1, P2, P3, P4.

For xi, let P1 = xi, P2 = 0, P3 = ∞, and P4 = 1.
For xi − 1, let P1 = xi, P2 = 1, P3 = ∞, and P4 = 0.
For xi − xj, take a product of xi and P1 = xi, P2 = xj, P3 = 0, and P4 = ∞.
Consider the embedding of M0,n into M0,� in the diagram below where φ is a unit of

O∗(M0,�).

M0 M0,Γ

∗

˜

From arguments above, φ̃ must be a product of cross ratios. Because M0,n is dense in
M0,� , φ must be the extension of φ̃ which does not vanish, nor acquire poles at the extra
interior points in M0,�\M0,n. Indeed, φ is also a product of cross ratios.
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Fig. 8. Dual graph of the stratum S contained in D{i, j} and D{i, j,k}.

Theorem 3·13. For � compelte multipartite, there is a torus embedding

M0,� ↪→ T(n
2)−n−N = T�

whose tropicalisation trop(M0,�) has underlying cone complex Mtrop
0,� . Furthermore, the

tropical compactification of M0,� is M0,� , i.e, the closure of M0,� in the toric variety
X(Mtrop

0,� ) is M0,� .

Proof. As in [2, theorem 3·9], we wish to show the map M0,� → X(Mtrop
0,� ) is an embed-

ding. According to [10, lemma 2·6 (4) and theorem 2·10], this occurs when the following two
conditions hold. For a locally closed stratum S of M0,� , let MS be O∗(S)/k∗ and MS

M0,�

be the sublattice of O∗(M0,�)/k∗ generated by units having zero valuation on S.

(1) For each boundary divisor D containing S, there is a unit u ∈O∗(M0,�) with
valuation 1 on D and valuation 0 on other boundary divisors containing S.

(2) S is very affine and the restriction map MS
M0,�

→MS is surjective.

We note that condition (1) occurs if and only if � is a complete multipartite graph, but
condition (2) does not force � to be complete multipartite.

For condition (1), recall that the general element of a boundary divisor DI has exactly one
node and may be described by I, the set of marked points on a component. By lemma 3·12,
the units in O∗(M0,�) are generated by forgetful morphisms to M0,4 using cross ratios.
Such a forgetful morphism has valuation 1 on D if the image of the general element of D
is nodal and valuation 0 on D if the image of the general element of D is smooth. We show
forgetful morphisms with this property exists if and only if � is a complete multipartite
graph.

We prove the forwards direction by way of contradiction. Assume � is not complete
multipartite. Using lemma 3·9, fix three vertices vi, vj, and vk where eij ∈ E(�) but eik, ejk �∈
E(�). Consider the divisors D{i, j,k} and D{i, j} whose intersection yields the stratum S whose
dual graph is shown in Figure 8. Every forgetful morphism that has valuation 1 on D{i, j,k}
must not forget i and j, otherwise, the image of the general element of D{i, j,k} is smooth.
However, any such morphism also has valuation 1 on D{i, j}, a contradiction.

Now suppose � is complete multipartite. Fix a stratum S and a divisor DI containing S,
as shown in Figure 9. Our aim is to find four markings, {a, b, c, d}, such that the general
element of DI remains nodal and the general element of all other divisors containing S
become smooth in M0,4 on {a, b, c, d}. We proceed by fixing d = 1 so that a,b,c correspond
to vertices in � and without loss of generality, let a, b ∈ I and c ∈ Ic \ {1}. To ensure the
image of the general element of DI remains nodal, we must pick a,b such that eab ∈ E(�),
though, we have no additional restrictions of c because of the “global stability” the marking
1 carries with it.
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Fig. 9. Dual graphs of the stratum S and divisor DI from the proof of theorem 3·3, where dashed
edges represent potential extra components.

Consider the subcurves Z and Zc of S and Z and Z
c

of DI that share a node, as illustrated
by their dual graphs in Figure 9. We partition I in the following way. Split S into connected
components by separating S at the nodes of Z. Now, S has been deconstructed into several
connected components: Z with its markings and a connected component for each node on
Z. Let λI be the partition of I given by the markings on Z and the components previously
attached to Z, excluding the component with Zc.

For brevity, we highlight that many facts in this paragraph are justified by stability in some
way. If Z has only one node, then λI = I and we need only choose a, b ∈ I so that eab ∈ E(�).
Suppose Z has more than one node. There exists at least one part A ∈ λI with |A| ≥ 2, fix
such a part A. Let B = I \ A, which is necessarily nonempty. Fix an edge ea1a2 ∈ E(�) for
markings a1, a2 ∈ A. Lemma 3·4 says that for a marking b ∈ B, either ea1b or ea2b is in E(�).
Hence, there exists a, b ∈ I so that eab ∈ E(�) when Z has multiple nodes.

Indeed, in each of the above cases the forgetful morphism which remembers {1, a, b, c}
has valuation 1 on DI since eab ∈ E(�). Let DJ be any other divisor containing S. From our
choices of a,b,c, we know |J ∩ {1, a, b, c}| �= 2. This means that the image of the general
element DJ under the forgetful morphism which keeps {1, a, b, c} will be smooth, and thus
DJ has valuation 0.

For condition (2), a stratum S is very affine because it can be viewed as a product of
M0,�′s. Each component of the universal curve over a point S contains at least one node
which acts as the ‘special’ marking 1; the marked points behave under �′-stability, since
any subgraph of a complete multipartite graph is complete multipartite; and any extra node
serves as a marked point whose vertex in �′ is connected to all other vertices, which keeps �′
as a complete multipartite graph since a fully connected vertex serves as its own independent
set. Finally, since the boundary of M0,� is a simple normal crossings divisor, as in the case
of M0,w, the surjectivity of the restriction map follows the same proof outline as in [2,
theorem 3·9]. The local structure of ∂M0,� is an intersection of coordinate hyperplanes and
restricting the coordinates is surjective.

Many statements remain true when � is not complete multipartite. The geometric tropical-
isation of M0,� using the embedding in lemma 3·4 still equals pr�(Mtrop

0,� ) = trop(M0,�).
However, not all cones are mapped injectively. On the algebraic side, we still have a map
from M0,� to the toric variety X(trop(M0,�)), but it does not map all boundary strata
injectively. Example 3·14 highlights this observation.

Example 3·14. Let �̃ be the subgraph of K4 with edges e35 and e45 removed as in
example 3·6; see Figure 6(a). Then Figure 6(b) depicts the boundary of M0,�̃ and a slice of

Mtrop
0,�̃

while Figure 2 depicts the boundary of the closure of M0,�̃ in X(trop(M0,�̃)) and a
slice of trop(M0,�̃).

There are only 8 2D cones and 7 rays in trop(M0,�̃) while the cone over ∂M0,�̃ has 9 2D

cones and 8 rays. This means X(trop(M0,�̃)) isn’t large enough to contain M0,�̃ . In other

https://doi.org/10.1017/S0305004125101370 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101370


Moduli spaces of rational graphically stable curves 17

words, the locus of smooth curves M0,�̃ is missing the limit as the marked points 3, 4, and 5
collide. The modular compactification of M0,�̃ assigns a P1 to the limit but X(trop(M0,�̃))
doesn’t have enough coordinates to include a P1. Rather, this limit gets closed with a single
point in X(trop(M0,�̃)) (which is the intersection of two smooth curves where the marked
points 3 and 4 and 4 and 5, have collided).
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