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1.

Let co,c1,...,cn-1 be the nonzero complex numbers and let C = (cu + 1?c+1) = (cn+u_i;),
O^u,v^n — 1, be a cyclic matrix, where n + u — v is taken modulo n. In this paper we
shall give the solution of the linear equations

n - l

y\ cn+u-vyn-v = Lu (O^w^n— 1), (1)
D = O

where Lu (O^u^n —1) is a fixed complex number. In Theorem 1 we shall give a
necessary and sufficient condition for (1) to have an integral solution.

As an application we shall give a nonnegative integral solution {t(v}} of the linear
Diophantine equations

p-i
£ a(u,v)t(v) = p{n(u) + l— g'} (l^u^p—1), (2)

where a(u, v) = ([uv/p~\ + l)p — uv, p is an odd prime number and [ ] denotes the
Gaussian symbol. The linear equations (2) have first been introduced in [12] and it has
been shown that nonhyperelliptic compact Riemann surfaces S of genus g^3 with an
automorphism group </i> of order p can be characterized by nonnegative integral
solutions of (2), where </i> is a cyclic group generated by h.

More precisely it is well known that there exists a Fuchsian surface group K such
that S can be represented by an orbit space D/K (D is the open unit disk) and a
Fuchsian group F containing K as a normal subgroup such that < / J > ^ F / X (c.f. [3] and
[8]). When we consider the representation of </i> as linear transformations of the space
of Abelian differentials of the first kind on S, n(u)(0^n^p— 1) denotes the multiplicities
of exp(27tui/p) as an eigenvalue of the diagonal form of that representation matrix,
where n(0)=g' (the genus of the quotient space S/</i>, J. Lewittes [6]) and i = ̂ / — 1.

Consider the exact sequence

where Z is the ring of rational integers and F/K^Zp=Z/(pZ). If F has a presentation
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370 N. TAKIGAWA

of the form

generators: X1,X2,...,XT; UltVu...,U,,Vt.

T g'

relations: X\=X\=--- =Xp
T=]\Xl f ] UkVkUk~

1Vk
 1 = 1

;=i *=i

satisfying 2(g' —1)+(1 — l/p)T>0, then t(v) denotes the number of generators in T
whose image under a surface kernel epimorphism 9P is equal to v(l ̂ v^p — 1).

E. K. Lloyd [7] asked the question: For a fixed Fuchsian group and a fixed cyclic
group, how many such epimorphisms are there? He gave an answer to this question for
cyclic p-groups (c.f. [7, Chapter 5]). In this paper, we restrict our attention to the cyclic
group of order p and the following question is asked:

^p— 1} explicitly for a fixed T>4, and construct Qp(I) Determine all sets {«(«), l ^
concretely for such {«(«)}.

If a surface S is given, then we see {t(v)} and so {n(u)} could be computed by making
use of (2). Conversely, if there exists a nonnegative integral solution {t(v)} of (2) for a
given {n(u), T}, then the Riemann surface (and so 0p) could be constructed from {t(v)}.

If g' = 0 and T>4, then the Weierstrass gap sequences at the fixed points of h is
completely determined by {«(«)} (c.f. [12]). By making use of the solution for (I), we can
determine all types of the Weierstrass gap sequences which appear at the fixed points of
h. The case p = 3, the above problem (I) has already been solved by C. Maclachlan [9].

2.

In our study the following lemma is essential.

Lemma 1. Let V(x0,xu...,xn-l) = YJ
nulo(-l)u

the Vandermond's determinant. Putting F(x) = Y\"uZo(x-xu),
and » ; = IIo«<«S..-i(**-*i)(*^«>1fe0, ^ have A(tt+l,»+l) = ( - l
and V(xo,x1,...,xn-1) = (-l)nin-1)l2 + vWuF'(xv), where F'(x) = dF(x)/dx.

^v^n-l) be

Proof. We see that V(xo,x1,...,xn_1)

1

x0

Xv-

<-l A

v+l

- 1 v-U - 1

r u + 1 y u + 1

v
v+l

Yn - 1 n - 1 n - 1

^ n - 1

xn-l
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LINEAR DIOPHANTINE EQUATIONS 371

Then K(xo,x1,...,xll_1) = (-l)-("-1>/2+''»;(5::=S^(«,»)x:) and F(x) = S=o^(«,»K-
Thus the assertions hold.

Suppose that det C =£ 0. Since C is a cyclic matrix, its eigenvalues are given by

^f^X", (3)
u = O

where con is a primitive n-th root of unity. Observing detC = J~["IoA1J
:/:0 (see

[11, p. 343(2)]), we see that (1) reduces to

"lO.-^C"! KWAIK (0^u^n-l). (4)

Consider xv = a>°(0?^v^n— 1) in Lemma 1. Then we have

yn-u = " l " l MU, V)CO7LJ1VF(CO:)) (0 g « £ n -1 ) . (5)
D=0W=0

Lemma 2. From xv = a%(0^vSn— 1) '" Lemma 1, follows that

(i) F'(<»n) = n<0n<B

(ii) iA(u,0) = l

Proof. Since F(x) = njr^(x-oyn) = ( x - l ) ( x n - 1 + x n - 2 + ••• + x + l) = x " - l , the as-
sertions follow at once from

Lemma 3. Assume that detC=/=0 and that Lw = c = constant(0gw^n— 1). Then (1)
has the solution yn_u = c/Ao(0^u^n—1), where

Proof. Since £w=owr = 0 for l ^ p ^ n - 1 , (5) is reduced to yn.tt = ncil/(u,0)/XoF'(\)
(O^u^n—1). Thus the assertion follows from Lemma 2.

Applying the above Lemma 2, we have

yn-u = "^"Z{Hu,v)K'K+1)LJnXu} {0^u^n-l). (5')
v=0w=0

If yn-j=l for a certain j(O^j^n— 1) and yn_1) = 0 for all u(u=/=./,0gu5£w-l)D then
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LH, = cn + H , . ; (O^wgn-l) follows from (1). We can conclude from (5') that the identities

"l "?{c- + w - X « . » X w + 1)/nAl(} = ̂  (O^K^B-1) (6)

hold, where 8ju is the Kronecker symbol.

Theorem 1. Let

n-l (n-l

v = 0

The linear equations (1) have an integral solution {yn-v} if and only if
n-l

(i) Lwe £ Zcn-V for every w(0^w^n— 1) and
D = 0

n-l

(11) 2_, Lw£ Z,/.Q.
w=0

Proof. From M = 0 in (3) and (4), follows that A.oTj"=oyn-v = Yjw~=oLw- Thus if there
exists an integral solution of (1), then (i) and (ii) hold. Conversely, if {Lw} satisfy the con-
ditions (i) and (ii), then they can be written in the form Lw=YJ"=o dn-jCn+w-j(dn-JeZ).
(5') and (6) yield

n - l n - l

v = 0 w = 0

n - l / n - l n - l

"

Remark. It can happen that, for the condition (i) only, all Lw(0 ̂  w ̂  n — 1) have the
same common value. And then, as can be seen from Lemma 3, (1) does not necessarily
have an integral solution.

Let ZQ and U denote the set of all nonnegative integers (OeZo) and the field of real
numbers, respectively.

Corollary 1. Suppose that 0 < c n _ u e i and 0<LweU (O^v,w^n—l). The linear
equations (1) have a nonnegative integral solution {yn-u} if and only if LweY,v = o%o cn-«
for every w ( 0 ^ w ^ n - 1) and Zw=oLweZjAo.

Corollary 2. Suppose that 0<LwelR(0gwg« — 1). Let cn_u-mn_Jln^v (win_u,
/n_ueZ^, ln_vj=0, (mn-u,ln-v) = l for Orgu^n-l). Then the linear equations (1) have a
nonnegative integral solution {yn-u} if and only if LweZo (1//) for every w(0^w^n— 1) and
Ew=o^we^o '> w/iere / is t/ie /east common multiple of {/„_„}.
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3.

Throughout the remainder of this paper the following symbols will be used:

Q: the field of rational numbers
H^p): the first factor of the class number of the cyclotomic field

Q(exp(2jri/p))

4> = p — l, s = <f>/2 and co^=exp(27ti/0)

r: a primitive root (mod p) (In [1, p. 266] the notation g is used instead
ofr)

R(u) for u e Z: the least positive residue of u(mod p)
r} = J?(rJ) for j e Z (the indices ; are taken mod <p)

a'(u, v) = <x(p - u, v)/p = R(uv)/p{ 1 ^ u, v ^ p - 1 ) .

We investigate the fundamental properties of the coefficient matrix Ap = {a(u,v)) of (2).
Replace 4 , = (a'(u + l,»+l)) = (K((u+l)(»+l))/p) by Cp = (cu+Uv+1) = I1A'pI2, where I,
and I2 are the permutation matrices corresponding to the permutation Il:ru-ni+1 and
^ ' V o - ^ + l for 0^u,v^(t>-l(ro = r,t> = l). Then cu+liU+1=R(rur^_i;)/p = r0+o_u/p.
Hence (2) is reduced to

*t\r<t>+u-Jp)t(r<t>-v) = n(p-ru) + l-g' ( 0 £ u ^ - l ) . (2')
u = 0

Since

'•i; + rs+l) = p (Ogwgs-1) ([10,p. 11 Hilfssatz 2]), (7)

we have

T= t t{r*-K) = n{p-ru) + n{p-rs+u) + 2-2g' (Ogu^s-1) . (8)
D = 0

It follows from (2'), (7) and the Riemann-Hurwitz relation that

2)=g' + *fn(p-ru)- (9)

For a fixed T>0, r^p{«(p-ru) + l - f / } ^ ( p - l ) T (O^ug^ -1 ) hold. Since
{ro,r1,...,r^_1} = { l ,2 , . . . ,p- l} it follows that

(10)

if T=0(modp),

[T /p ] - l if T#0.(modp),

where M(p- r J = n(p-ru) + l - g ' ( O ^ " g 0 - l ) ([12,p.239]). .

The eigenvalues of the cyclic matrix Cp = (rlj>+u_v/p) are given by

*t\ l). (3')
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Lemma 4.

(i) A0 = s,

(ii) A2u = 0 ( l g u ^ s - 1 ) ,

(iii) A2u+1

Proof. The relations

hold ([10, p. 15 (3.5), (3.6)]). It follows from (3'), (7) and (11) that

A o = E (rv + rs + v)/P = s,A2u= Z {(rv/P)<*>lvu + ((p-rv)/p)(olis + v)u} = 0
v=O v=0

and
s - l s - l

It is well known that Ht(p) is given by

s - l

u = O

= (- l ) s 2 1 - s p S n A 2u + i>0 ([1,(2.12)]).

Thus the assertions hold.
As a consequence of Lemma 4, we get the following

Proposition 1. Rank Ap = s+I.

Hence (2') yields

u=O (w=O jl

Taking into consideration that n = s and xv=oi^v+l (O^u^s — 1) in Lemma 1, we can
conclude from (2") that

u = O (M> = 0

(5")
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Using a similar method as in the proof of (6), we get the following identities.

Lemma 5. Let an integer j(O^j^s — 1) be fixed. Then

D = 0 H> =

' ^fl f ^ j + 1F'(co2
4,"

+1)} = -SJU ( O ^ u ^
v=0w=0

Proposition 2. If T=0 (mod2) and T^2, then the following statements (i) and (ii) are
equivalent:

(i) t(r^v) = t(rs_v)

(ii) n(rv) = n(rs+v) = T/2+g'-l (O^v^s-1).

Proof. Using (7), we see that (2') can be written as

Thus if (i) holds, then (ii) follows. Conversely, if n(r^,_u) = constant(O^u^s—1), then (i)
follows from (5'). Then (2') yields n(r4>_0) = T/2+g'-1 (Ogug<£-1).

By a similar method as in Corollary 2 we get the following

Proposition 3. The linear equations (2) have an integral solution {t(r4>-u) — t(rs.u);
1} i/ and only if M(rw)eZ£(l/p) for every w(0gwg<£-l ) and

Example 1. We give an example that (2") has an integral solution even if
M(rw)i£Zo. Consider the case pJ(Hy{p), in which p is a regular prime [13,pp.61-62].
Putting T=Hl(p) and M(rw) = rwHl(p)/p for every w(0^w^$— 1), we can easily verify
that they satisfy the conditions of the above Proposition 3. Then it follows from (5") and
(6') that (2") has the solution t(l)-t(p-l) = Hl{p) and t(r0_J-j(r s_u) = O ( l ^ u ^ s - 1 ) .

4.

We are ready to answer the problem (I). Let Q(p) = {T,M(rw);0^w^s— 1} be a set of
s+1 nonnegative integers satisfying the conditions (8), (9) and (10). It should be
remarked that the remaining {g,M(rJ; s-^w^cp — 1} is determined by (8) and (9).
Putting n*(p,g) = {g,g',T,M(rw); 0 ^ w ^ < £ - 1}, we have

Theorem 2. Suppose that a set il*(p,g) is given. Then the corresponding Riemann
surface {and so 9p) exists if and only if the linear equations (2) have a nonnegative integral
solution.
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Proof. If there exist a nonnegative integral solution {t(v)} of (2), then

£ a{p-l,v)t(v)= £ pt(i;)=0(modp).
v=l v=l

It follows from the result of W. J. Harvey [4, Lemma 6] that there really exists 9p. The
inverse is obvious.

There does not necessarily exist a nonegative integral solution of (2) corresponding to
a Q*(p,g), because M(rw)eQ*(p,g) (0^w^<£ — 1), does not necessarily imply
M(rJeZ0

+(l/p) or X£-J,M(rJeZ0
+p.

Let W(p,g) = {n*(p,gY, M(rw)eZ0
+(l/p) for O ^ w ^ - 1 and ££-J,M(rJeZ0

+p}. T h e n
the above Proposition 3 tells us that there exists a compact Riemann surface
corresponding to Q*(p,g) if and only if Q*(p,g)eW(p,g).

Theorem 3. Let the nonnegative integers g' and T=£p + (>4 (£ = 0, £ = p + l or
^£^p— 1) be given and let £, and t, have nonnegative partitions £, = Yj=o Hrj) <*nd
= Yj=ob'(rj) respectively. Put

*Z b'(rj)r+ + w-j}lp (Ogw^0-1) (13)

s(T-2). Thenn*(P,g) = {g,g',T,M(rw);0^w^<j)-l}eW(p,g)ifandonlyif

b\r>)r^ '% b'(rs+j)rJ (mod p)\ (14)
j=o )

Moreover in this case the linear equations (2") have a nonnegative integral solution

Proof. Since r<t>+w_j = r<t>_jrw (modp) for O^w, j^<f> — l, the conditions
M(rw)eZ0

+(l/p) for every w and Y*,Zl
0M(rw)eZ^p are equivalent to (14). Then it

follows from (5") and (6') that

j=0 v=0

w = 0

'(rj)) -(b(rs+j)p + b'(rs+J))}duJ

'(ru)-(b(rs+u)p + b'(rs+u))
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According to Proposition 1, we regard {r(rs_u); l^ugs—1} as the parameters and take
t(rs_u) = b(rs+u)p + b'(rs+u) for l g u ^ s - 1 . Then we have t(r<t>_u) = b{ru)p + b'(ru) for
I ^ M ^ S — 1 . Since

T='if {p(b(ru) + Krs+u)) + b'(ru) + b'(rs+u)}= *£ { ( ( / > }
u=0 u=0

we have

On the other hand

Hence r(l) = pfc(l) + b'(l) and t(p-l)=pb(p-l) + b'(p-l).

Remark. It is possible that (15) is not the only solution for (2"), corresponding to
(13), but we want to remark here that at least (15) can be given as a solution.

Looking at the above Theorems 2 and 3, we see that our problem (I) is completely
solved.

Throughout this section we consider a set £l*(p,g) = {g,g' = 0, T>A,M(rw); O^w^
4> — \}eW{p,g). Let {t(rw); O^w^^ —1} be a nonnegative integral solution (2") corres-
ponding to Cl*(p,g). The condition T>4 means that every fixed point Q of an
automorphism h on S (which is determined by {t(rw)}) is a Weierstrass point (see [6]).
Let y(Q) denote the Weierstrass gap sequence at Q. If t(r<j>_v)^O i.e., if there exists XjsF
satisfying r4>_D = 9p{Xj) for a certain ;' (1 g ; ^ T), then h~l is locally represented as

z-»exp(2jrir,,/p)atg(^_1,)J (16)

where 6(r0_i;) is a fixed point on S = D/K corresponding to t{r4>_0) (or X3) ([4, Theorem 7]).
We define the number J as follows:

1 if C=0,

P - 1 if C = l,

p-C + 1 if 2 ^ C ^ P - 1 , where T=£p + C>4 and

J =

Let a natural number r K ( 0 g w | ( ^ - l ) be given, and let rv(k) (l^fc^y,O^y(/c)^</>—1)
be the solution of
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We consider the following condition

j
n = E Hr*-.<*>)>4> and

if T#(modp),

p - l = £ (k-l)t(r*-m) if T=l (modp), [12,p.240].
* 2

Then we have

Theorem 4. Assume t(r^_v)^=O for a certain v(O^v^<t>—l).

(i) / / T>p for p>3 and T>4 for p = 3, then

l}. (17)

(ii) / / 4 < T ^ p and the automorphism h does not satisfy the condition (Ao), then
iOfr-v)) is also given by (17).

(iii) If4<T^p and h satisfies the condition (Ao), then

y(Q(r<l>-u)) = {lp + r<i,+u-D;O^l^n(ru)-l, where u runs through

all u (O^u^0-1) satisfying n(rj =/=()}.

Proof.

(i) Through this assumption we see that p is the first nongap value at Q{r^,-V) [12,
Prop.2]. This means that n(ru)=/=0 for O g u ^ 0 — 1 . Using the same notation as
[12, pp.236-237], we get fa = ̂ (compare (16) with [12, p. 236 (3)]), <x/ l )=p-^ .=
r^v and (xJ(ru) = ru<xj(l) = rur<l>_v = rlt,+u_v (modp) ([12, (14)]). Then j8/a/ru) =
rvr<t>+u-v = ru (modp). Thus (17) follows from [12, Lemma 2(i)].

(ii) The assumption shows that n(ru)^0 for every 0 ^ u = >̂ —1 (see [12, Theorem 1]
and [12, (13)]). By arguments similar to the ones which were used above, we get
(ii).

Example 2. We will give all sets Q*(3,g) = {g,g' = 0, T>4, M(rw); w = 0, l}eW(3,g).
Then ro = l and r = r1 = 2. Put M(3-ro) = M(2) = b(l) + 2fc(2) + {b'(l) + 2fc'(2)}/3 and

= 2b(l) + b(2) + {2b'(l) + b'{2)}/3. For any natural number m we take

T 6(1) 6(2) 6'(1) 6'(2) n(l) n(2) g
(i) 3m + 2 m — k / e l l 2m-fe m + /c 3m

(ii) 3m + 3 w-fc /c 0 3 i.e. 2m-k m + k + l 3m+l
(iii) 3m + 4 m-k k 2 2 2w+l - f c m + k + 1 3m + 2

https://doi.org/10.1017/S0013091500017193 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017193


LINEAR DIOPHANTINE EQUATIONS 379

In each case (2') has a solution

f(l) ((2)
(i) 3(m-k) + l 3fe + l,
(ii) 3(m-k) 3(k+l),

(iii) 3{m-k) + 2 3k+ 2.

In each case the gap sequence at a fixed point Q(j) (of h) corresponding to t(j) are as
follows:

In this connection see [5, Lemma 6]. We emphasize that all types of the Weierstrass gap
sequences which appear at the fixed points of h are determined explicitly by Theorems 3
and 4. We give another example.

Example 3. Consider the case T= £,p + 2 = PYJ=O
 b(rj) + 2 (£ >°)-

Then Y$l£b'(r})rj=0 (modp) and £?"o1 b'(r}) = 2 have the solution b'(rs+j) = b'(rj) = l for
a certain j (O^j^s—1). Hence for

n(p-rw) = *f Hr»K + »-v (O^w^-1 ) , (18)
u = 0

(2') has a solution t(r4>_J) = b(rJ)p+ 1, t(rs_j) = b(rs+J)p+l and t(r<t>_v) = b(rv)p for every
v(vj= j,0Sv^s — 1). All types of the Weierstrass gap sequences which appear at the fixed
points of h are determined explicitly by (17) and (18). Indeed, if ; = 0, then

and
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