Pry dings of the Edinburgh Math, ical Society (1985) 28, 369-380 ©

LINEAR DIOPHANTINE EQUATIONS WITH CYCLIC
COEFFICIENT MATRICES AND ITS APPLICATIONS TO
RIEMANN SURFACES

by NOBUMASA TAKIGAWA
(Received 18th September 1984)

Let cy,¢y,...,¢,—; be the nonzero compliex numbers and let C=(c,+1,,+1)=(Chsu-v)>
0Zu,v<n—1, be a cyclic matrix, where n+u—v is taken modulo n. In this paper we
shall give the solution of the linear equations

n—1
Z cn+u—uyn—u=Lu (Oéuén_l)s (1)
v=0

where L, (0Su=<n—1) is a fixed complex number. In Theorem 1 we shall give a
necessary and sufficient condition for (1) to have an integral solution.

As an application we shall give a nonnegative integral solution {t(v)} of the linear
Diophantine equations

p—1

Y a(uv)tv)=p{nw)+1—g} (1Susgp-1), 2

v=1

where a(u,v)=([uv/pJ+1)p—uv, p is an odd prime number and [ ] denotes the
Gaussian symbol. The linear equations (2) have first been introduced in [12] and it has
been shown that nonhyperelliptic compact Riemann surfaces S of genus g=3 with an
automorphism group <h)> of order p can be characterized by nonnegative integral
solutions of (2), where <h) is a cyclic group generated by h.

More precisely it is well known that there exists a Fuchsian surface group K such
that § can be represented by an orbit space D/K (D is the open unit disk) and a
Fuchsian group I' containing K as a normal subgroup such that <h) ~T'/K (cf. [3] and
[8]). When we consider the representation of (h) as linear transformations of the space
of Abelian differentials of the first kind on §, n(u)(0<u<p-1) denotes the multiplicities
of exp(2nui/p) as an eigenvalue of the diagonal form of that representation matrix,
where n(0) =g’ (the genus of the quotient space S/<h), J. Lewittes [6]) and i=,/—1.

Consider the exact sequence

1-K-T%Z,-1,
where Z is the ring of rational integers and I'/K~Z,=Z/(pZ). If I has a presentation
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of the form

generators: X, X,,...., X U, W,..., U, W,

r .
relations: X{=X%=---=X2=]] X, Iy—[ UVU 1 'Viti=1

=1 k=1
satisfying 2(g'—1)+(1—1/p)T >0, then #v) denotes the number of generators in I
whose image under a surface kernel epimorphism 8, is equal to v(1Sv<p—1).

E. K. Lloyd [7] asked the question: For a fixed Fuchsian group and a fixed cyclic
group, how many such epimorphisms are there? He gave an answer to this question for
cyclic p-groups (cf. [7, Chapter 5]). In this paper, we restrict our attention to the cyclic
group of order p and the following question is asked:

(I) Determine all sets {n(u),1=u<p—1} explicitly for a fixed T>4, and construct 0,
concretely for such {n(u)}.

If a surface S is given, then we see {#(v)} and so {n(u)} could be computed by making
use of (2). Conversely, if there exists a nonnegative integral solution {¢(v)} of (2) for a
given {n(u), T}, then the Riemann surface (and so 6,) could be constructed from {t(v)}.

If =0 and T>4, then the Weierstrass gap sequences at the fixed points of h is
completely determined by {n(u)} (c.f. [12]). By making use of the solution for (I), we can
determine all types of the Weierstrass gap sequences which appear at the fixed points of
h. The case p=3, the above problem (I) has already been solved by C. Maclachlan [9].

2.

In our study the following lemma is essential.

Lemma 1. Let V(xg,Xy,...,%,—1) =9 nzo(— D" " Alu+1,v+ )x4(n>1,0Sv<n—1) be
the Vandermond’s determinant. Putting F(x)=]]028(x—x,), F(x)/(x—~x,)= 52 s (u,v)x"
and W,=[Josk<isn-1(x—=x)(k#v+1), we have A(u+1,v+1)=(— 1"~ D2+ vy )W,
and V(xg, X,y Xy 1) =(—= 1)~ V2 oW F'(x ), where F'(x)=dF(x)/dx.

Proof. We see that V(xy,X,,...,X,_1)

Xo U Xp—y Xy Xo+1 777 Xp-1

u—1 u—1 u—1 u—1 u—1

_ X0 Xp—1 Xp Xp+1 Xp—1

uy u u u u

Xo Xp—1 Xv Xp+1 Xn—1

u+1 u+1 u+1 u+i u+1

X Xp—1 Xy Xo+1 Xn-1
n-1 n—1 n—1 n—1 n—1

X0 Xp—1 Xp Xo+1 Xp-1
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Then V(xg, Xy, s Xy—1) =(= D" 2 W R 0200w, v)xy) and  F'(x)=) 5o (u, v)x;
Thus the assertions hold.
Suppose that det C+£0. Since C is a cyclic matrix, its eigenvalues are given by

’I_chun’ (3)

where ®, is a primitive n-th root of unity. Observing detC=[]3Z34,#0 (see
[11, p. 343(2)]), we see that (1) reduces to

Z @Y,y (Z L w“”)/lu (0Zugn-1). (4)

Consider x,=wi(0=v=n—1) in Lemma 1. Then we have

n—1n—1

= Z Z (W (u, v)o;" L, /4, F(@7)) (0Zu=n—1). )
Lemma 2. From x,=w}(0Zv<n—1) in Lemma 1, follows that
(i) F(w)=nw?""Y (0gv<n—1) and
(i) y(u,0)0=1 (0=u=gn-1).

Proof. Since F(x)=[[iZd(x—w})=(x—1(x""'+x""2+ - +x+1)=x"—1, the as-
sertions follow at once from

F(x)/(X—1)="Z:l//(u,0)x“=x"_1+x"‘2+ x4+ 1

Lemma 3. Assume that detC+0 and that L,=c=constant(0Sw=<n—1). Then (1)
has the solution y,_,=c/A,(0Zu<n—1), where

Proof. Since Y 5_bw*=0 for 1Sv<n—1, (5) is reduced to y,_,=ncy(u,0)/A,F(1)
(0Lu<n—1). Thus the assertion follows from Lemma 2.
Applying the above Lemma 2, we have
n—1n—1
=5 Y Yooy YL, /mi} (OZusn-—1). (59

v=0w=0

If y,—;=1 for a certain j(0<j<n—1) and y,_,=0 for all v(v#j0<v<n—1), then
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L, =Cpiy-j(0=w=n—1) follows from (1). We can conclude from (§') that the identities

n—1n—1

Y Y {Chrnw- ()0 Vni} =5, (0<usn—1) (6)

v=0w=0

hold, where 6, is the Kronecker symbol.

Theorem 1. Let
Z ch v {Z bn vCn— wbn UEZ (O<v<n—1)}

The linear equations (1) have an integral solution {y,_,} if and only if
n—1
(i) L,e Y Zc,-, for every w(0<w<n—1) and
v=0
n—1
() Y L,eZi,.
w=0

Proof. From u=0 in (3) and (4), follows that A,) 228 y,—,= w=oL,- Thus if there
exists an integral solution of (1), then (i) and (ii) hold. Conversely, if {L,} satisfy the con-
ditions (i) and (ii), then they can be written in the form L,=)7-3d,_ic,s,-(d,- ;€ Z).
(5") and (6) yield

n—1n—1

n—1
=y ¥ { (1, )™+ D). .Zod"‘fc”w“"/nl”}
j=

v=0w=0

v=0w=0

=ni1 (nzl nzl {lp ", U) w,;(w+l)cn+w J/nl })

n—1
=) 0,d,-;=d,_., (0Zu=zsn-1).
“o b j

Remark. It can happen that, for the condition (i) only, all L, (0<w<n—1) have the
same common value. And then, as can be seen from Lemma 3, (1) does not necessarily
have an integral solution.

Let Z§ and R denote the set of all nonnegative integers (0e Zg ) and the field of real
numbers, respectively.

Corollary 1. Suppose that 0<c,_,eR and O0<L,eR (0=v,w=<n—1). The linear
equations (1) have a nonnegative integral solution {y,_,} if and only if L€ _4Z5c,_,
for every w(0<w<n—1) and Y 2L L,eZg 4.

Corollary 2. Suppose that O<L,eR(0=w=n-—1). Let c,_,=m,_,/l,-, (m,_,,
l,_,eZgs, 1,_,#0, (m,_,,1,_,)=1 for 0Sv<n—1). Then the linear equations (1) have a
nonnegative integral solution {y,_,} if and only if L, € Zg (1/l) for every w(0Sw<n—1) and
Yr_oL,e€Zjl, where lis the least common multiple of {I,_,}.
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3.
Throughout the remainder of this paper the following symbols will be used:

Q: the field of rational numbers

H,(p): the first factor of the class number of the cyclotomic field
Q(exp (27i/p))

¢=p—1, s=¢/2 and w,=exp(2ni/¢)

r: a primitive root (mod p) (In [1,p.266] the notation g is used instead
of r)

R(u) for ue Z: the least positive residue of u(mod p)

r;=R(r)) for jeZ (the indices j are taken mod ¢)
a@'(u,v)=o(p—u,v)/p=R(uv)/p(1 Su,v=p—1).

We investigate the fundamental properties of the coefficient matrix 4,=(a(u,v)) of (2).
Replace A,=(a'(u+1,v+1))=(R((u+1)(v+1))/p) by C,=(Cus1,p+1)=114,1,, where I,
and I, are the permutation matrices corresponding to the permutation I,:r,—»u+1 and
Lyry_,»v+1 for 0Su,v<¢p—1(ro=ry=1). Then c, iy 41 =R T4_,)/P="4+u-u/D-
Hence (2) is reduced to

¢—1

Zo(r¢+u—u/P)t(r¢-u)=n(P—r..)+l—g' (0=usgo-1). 2)
Since

rotrsey=0 (0=Zv<s-—-1) ([10,p.11 Hilfssatz 2]), 7
we have

¢—1 .

T= 3} try-)=n(p—r)+np—r.y,)+2—2¢g (OSuss—1). (8)
v=0

It follows from (2'), (7) and the Riemann-Hurwitz relation that
¢—1
g=pg +5(T=2)=g'+ 3, nl(p—r.). ©)

For a fixed T>0, T=<p{n(p—r)+1-g}=(p—1DT (0=Zus¢p—1) hold. Since
{ro,r1s..»re-13=1{1,2,...,p—1} it follows that

T/pEM(p—r )ST—-T/p if T=0(modp),
[T/p]+1=M(p—r,)ST—[T/p]—1 if T#0 (modp), (10)
where M(p—r,)=n(p—r.)+1—g(0=usd—1) ([12,p.239]).

The eigenvalues of the cyclic matrix C,=(r44.-,/p) are given by

A=Y Cpoy Osusé-1) )
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Lemma 4.
(1) A0=S,
(i) Az=0 (15u=ss-1),

(i) Azm={s§:(2rv—p)w$"“>"}/p O<uss—1).
Proof. The relations
sZ;“’iu'):O (1fu<s—1) and o@*V=—@*DE*? (0su,v<s5-1) (11
hold ([10, p. 15(3.5),(3.6)]). It follows from (3'), (7) and (11) that

s—1 s—1
Ao= 3, (rotrsnnl/p=s,As= 3 {(r/p)wd™ +(p—r)/p)g® "} =0

and
Agusy =SZO {ro/p) —(1=r,/p)} G+ 0= SZO {@r,—p)/p}§ * 1.

It is well known that H,(p) is given by
s—1 {s5—1
H,(p)=(~1y2'"p UO{ZO (2r,—~ D)o */p }

=(—1)321-Sp31j:A2u+,>0 ([1,2.12)]).

Thus the assertions hold.
As a consequence of Lemma 4, we get the following

Proposition 1. Rank 4,=s+1.

Hence (2') yields

SZ:) w‘(»2u+ 1)u{t(rdz—u)_t(rs—v)} = {d,g(l) w(¢2“+1)wM(p—rw)}/A2u+l (Oéués— 1) (2”)

Taking into consideration that n=s and x,=w3**' (0Sv<s—1) in Lemma 1, we can
conclude from (2”) that

t(r¢-u)—t(rs-.,)=sz: {4’2: Ylu, 20+ l)wf,,z.,+1)wM(p—rw)}/A2,,+ F(02'*) (0Zuss—1)

(5)
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Using a similar method as in the proof of (6), we get the following identities.

Lemma 5. Let an integer j(0< j<s—1) be fixed. Then

s—1¢—1

;0 ;0 {‘p(“, 20+ I)W&ZH l)wr¢+w—j/pA20+ 1Fl(w3>°+ 1)} =5jw
o ©)

1
. {U(, 20+ DG ro - j/pAg 41 Fllg” )} = =65, (0Su<s—1).

v=0w=

Proposition 2. [f T=0 (mod2) and T=2, then the following statements (i) and (ii) are
equivalent:

(W) tlry-,)=t(r,-,) (0=v=s—1)

(1) n(r))=n(ry,,)=T2+g'—1 (0=Zv<s—1).

Proof. Using (7), we see that (2') can be written as

s—1

2 {t(r([)—v) +rs+u—v(t(rs—v) —t(rdi—v))} =n(p'_ru) + 1 —g’ (O§U§¢— 1)

v=0

Thus if (i) holds, then (ii) follows. Conversely, if n(r,_,) =constant (0<v<s—1), then (i)
follows from (5'). Then (2') yields n(ry-,)=T/2+g' —1 (0=Zv<¢-—1).
By a similar method as in Corollary 2 we get the following

Proposition 3. The linear equations (2) have an integral solution {t(r,_,)—t(rs_,);
0<u<s—1} if and only if M(r,)eZs(l/p) - for every w(OZwZ<¢—1) and
$=oM(r)eZsp.

Example 1. We give an example that (2”) has an integral solution even if
M(r,)¢Z3. Consider the case pt H,(p), in which p is a regular prime [13,pp. 61-62].
Putting T=H(p) and M(r,)=r, H,(p)/p for every w(0=Sw=¢—1), we can easily verify
that they satisfy the conditions of the above Proposition 3. Then it follows from (5”) and
(6') that (2”) has the solution #(1)—t(p—1)=H,(p) and t(r,_,)—t{r,_,)=0 (1Zu<s—1).

We are ready to answer the problem (I). Let Q(p)={T, M(r,);0=<w<s—1} be a set of
s+1 nonnegative integers satisfying the conditions (8), (9) and (10). It should be
remarked that the remaining {g, M(r,); sSw=<¢—1} is determined by (8) and (9).
Putting Q*(p,g)={g,g’, T, M(r,)); 0=Sw=<¢—1}, we have

Theorem 2. Suppose that a set Q*(p,g) is given. Then the corresponding Riemann

surface (and so ) exists if and only if the linear equations (2) have a nonnegative integral
solution.
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Proof. If there exist a nonnegative integral solution {t(v)} of (2), then

- p—1

T ap—1,0)i)=Y vi(v)=0 (mod p).

v=1 v=1

It follows from the result of W. J. Harvey [4, Lemma 6] that there really exists 6,. The
inverse is obvious.

There does not necessarily exist a nonegative integral solution of (2) corresponding to
a Q*p,g), because M(r,)eQ*(p,g) (0Zw=Z¢—-1), does not necessarily imply
M(r,)eZg(1/p) or Y 42oM(r.)eZg p.

Let W(p,g)={Q*(p,g); M(r,)eZ;(1/p)for 0Sw<¢—1 and Y ¢ M(r,)eZJ p}. Then
the above Proposition 3 tells us that there exists a compact Riemann surface
corresponding to Q*(p, g) if and only if Q*(p,g)e W(p, 2).

Theorem 3. Let the nonnegative integers g and T=E(p+({>4 ({=0, {=p+1 or
2<{<p—1) be given and let ¢ and { have nonnegative partitions =Y $Z4 b(r;) and
£=3¢24 b'(r)) respectively. Put

Mr)="S Br)reu i+ {"f b'(r,)r¢+w-,-} / p Oswsé—1) (13)
j=0 j=0
and g=pg' +s(T—2). Then Q*(p,g)=1{g,8, T, M(r,); 0Sw=¢—1}e W(p,g) if and only if
¢il b'(r;)r;=0(mod p) sil b'(rjr;= sil b'(rs4 ;)r;(mod p)). (14)
ji=0 j=0 j=o0

Moreover in this case the linear equations (2") have a nonnegative integral solution

t(r¢ - u) = b(ru)p + b,(ru)

ry- ) =b(rysdp+b(ryee) C=EST 1)'} ()

Proof. Since ryy,-;j=ry-j, (modp) for O0=Zw,  j€¢—1, the conditions
M(r,)eZi(1/p) for every w and Y $_iM(r,)eZgp are equivalent to (14). Then it
follows from (5”) and (6') that

¢_1 s—1
rg-a) —tlre-i)= 3, (rp+b'(r)) 3,
{4’21 l//(u’20+ 1) w‘(ﬁ20+ l)wr¢+w—j/PAZv+ 1F’((D§,u+ 1)}
w=0

SN ORI EC AT AP

=b(r)p+b(r)—(b(rs+ Jp+b'(r54+.) (0=uss—1).
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According to Proposition 1, we regard {¢(r,-,); 1 Su<s—1} as the parameters and take
H(re-)=b(re+,)p+b'(rey,) for 1=u<s—1. Then we have t(r,_,)=>b(r,)p+b'(r,) for
1Lu<s—1. Since

s—=1

T="% (P00 + bl ) +H 00+ ) = %, {Hrg-)+20rs-),

=0
we have
dry)+t(r)=t(1) +t(p—1)=pb(1) +b'(1) +pb(p—1) +b'(p—1).
On the other hand
(1) —tp—1)=pb(1)+b'(1)— {pb(p— 1)+ b'(p— 1)}
Hence #(1)=pb(1) +b'(1) and t(p—1)=pb(p—1)+b'(p—1).

Remark. It is possible that (15) is not the only solution for (2”), corresponding to
(13), but we want to remark here that at least (15) can be given as a solution.

Looking at the above Theorems 2 and 3, we see that our problem (I) is completely
solved.

Throughout this section we consider a set Q*(p,g)={g,g'=0, T>4,M(r,); 0Sw=
¢—1}eW(p,g). Let {«(r,); 0Sw=<¢—1} be a nonnegative integral solution (2") corres-
ponding to Q*(p,g). The condition T>4 means that every fixed point Q of an
automorphism k& on S (which is determined by {#(r,)}) is a Weierstrass point (see [6]).
Let y(Q) denote the Weierstrass gap sequence at Q. If ¢(r,_,) #0 i.e., if there exists X;eI’
satisfying ry4_,=0,(X;) for a certain j (1< j<T), then h~' is locally represented as

z—oexXp (2mru/p) at Q(r¢ - u)! (16)

where Q(r, ) is a fixed point on S=D/K corresponding to t(r,_,) (or X ;) ([4, Theorem 7]).
We define the number J as follows:

1 if (=0,
J=<p—1 if (=1,
p—{+1 if 2Z{Zp—1, where T=¢p+{>4 and 0<{<p.

Let a natural number r, (0Sw=<¢—1) be given, and let r,4,, (1Sk<J,0=50(k)£¢—1)
be the solution of

kr,a=r, (mod p).
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We consider the following condition

M~

(T=Y ry-op)>4 and
1

J
(494 J=1= 3, (k=1iCry ) if T# (modp)

J
p—1=Y (k—1)t(ry_,u) if T=1 (modp), [12,p.240].
L k=2

Then we have

Theorem 4. Assume t(r,_,)#0 for a certain v(0<v<Pp—1).

(i) If T>p for p>3 and T>4 for p=3, then

WQrg-))={lp+rs1u-;0SI<n(r,)—1,05u<¢p—1}. (17)

(i) If 4<T<p and the automorphism h does not satisfy the condition (A,), then
Y(Q(ry-,)) is also given by (17).
(iii) If 4<T <p and h satisfies the condition (A,), then

WQry-)) ={Ip+744u-;0SI=Zn(r,)— 1, where u runs through

all u (0=u= ¢ —1) satisfying n(r,) #0}.

Proof.

(i) Through this assumption we see that p is the first nongap value at Q(r,_,) [12,
Prop.2]. This means that n(r,)#0 for 0Su<¢—1. Using the same notation as
(12, pp.236-237], we get f;=r (compare (16) with [12, p.236 (3)]), «;(1)=p—9;=
re-v and afr,)=ro()=rr,_,=rs4u—, (modp) ([12, (14)]). Then B;-ayr,)=
T g +u-v=r, (mod p). Thus (17) follows from [12, Lemma 2 (i)].

(i) The assumption shows that n(r,)#0 for every.0§u=¢—1 (see [12, Theorem 1]
and [12, (13)]). By arguments similar to the ones which were used above, we get

(i)
Example 2. We will give all sets Q*(3,g)={g,8'=0,T>4,M(r,); w=0,1}eW(3,3).

Then ro=1 and r=r;=2. Put M(3—ry)=M(2)=b(1)+2b(2)+{b'(1)+2b'(2)}/3 and
M(1)=2b(1)+b(2) + {2b'(1) + b'(2)}/3. For any natural number m we take

T 1) b2 (1) Q) n(1) n(2) g
(i) Im+2 m—-k k 1 1 2m—k m+k 3m
(i) 3m+3 m—k k 0 3 e 2Zm—k  m+k+1 3m+1
(iii) 3Im+4 m—k k 2 2 2m+1—k m+k+1 3m+2
(O<k=Zm).
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In each case (2') has a solution

t(1) 12)
() 3(m—k)+1 3k+1,
(i) 3(m—k) 3k +1),

(iii) 3(m—k)+2 3k +2.

In each case the gap sequence at a fixed point Q(}) (of h) corresponding to t(j) are as
follows:

W) ={31+1;0<I<n(1)—1} U {31+2,0<I<n(2)— 1},
WOD)={31+1;0<I=n(2)—1} U {31+2,0<I<n(1)—1}.

In this connection see [5, Lemma 6]. We emphasize that all types of the Weierstrass gap
sequences which appear at the fixed points of h are determined explicitly by Theorems 3
and 4. We give another example.

Example 3. Consider the case T=¢p+2=pY ¢Z5b(r)+2 (£>0).
Then ) -5 b'(r;)r;=0 (mod p) and Y #-4 b'(r;) =2 have the solution b'(r,, ;)=b'(r;)=1 for
a certain j (0<j<s-1). Hence for

$-1
np—r,)= ;0 b(r)rg+w-o (O=w=¢-—1), (18)

(2') has a solution t(ry_;)=b(r))p+1, t(r,_;)=b(rs4;)p+1 and t(r,_,)=b(r,)p for every
v(v# j,0<Sv<s—1). All types of the Weierstrass gap sequences which appear at the fixed
points of h are determined explicitly by (17) and (18). Indeed, if j=0, then

yQ()={lp+r,;0=<I<n(r,)—1,0Su<sPd—1}
and

Y(Q(rs)) =y(Q(p_ 1)) = {lp+rs+u;0§l§n(ru)_ 1’0..—<_u§ ¢— 1}‘
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