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Abstract

Instantaneous streamlines, particle pathlines and pressure contours for a cavitation
bubble in the vicinity of a free surface and near a rigid boundary are obtained. During the
collapse phase of a bubble near a free surface, the streamlines show the existence of a
stagnation point between the bubble and the free surface which occurs at a different
location from the point of maximum pressure. This phenomenon exists when the initial
distance of the bubble is sufficiently close to the free surface for the bubble and free
surface to move in opposite directions during collapse of the bubble. Pressure calculations
during the collapse of a cavitation bubble near a rigid boundary show that the maximum
pressure is substantially larger than the equivalent Rayleigh bubble of the same volume.

1. Introduction

One of the most likely causes of cavitation damage to turbomachinery blades is a
high speed liquid jet that forms late in the collapse phase of a cavitation bubble.
The jet can reach velocities of 130 to 180 ms~' in water for realistic situations
(Plesset and Chapman [13]). Rayleigh [15] examined the growth and collapse of a
spherical cavity in an infinite fluid demonstrating the very large dynamic pres-
sures arising during the collapse phase of the bubble life. Since Naude and Ellis
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[9] showed that a bubble collapses asymmetrically when close to a boundary there
have been a number of studies dedicated to the behaviour of a pulsating bubble
near a boundary (Benjamin and Ellis [1], Gibson [5], Mitchell and Hammitt [11],
Chahine [4], Gibson and Blake [6], [7] and Blake and Gibson [3]). The implica-
tions of these studies is that for a vapour cavity near a boundary the jet forms on
the rearward side of a migrating bubble. For the two cases considered in this
paper the jets move in differing directions during collapse of a bubble; away from
a free surface and towards a rigid boundary.

Recently Chahine [4] examined the interaction between a collapsing bubble and
a free surface showing that nonlinear theory should be used when the initial
bubble centroid is within 2.2 maximum radii from the surface. Moreover, both
Chahine [4] and Blake and Gibson [3] demonstrated the nonlinear interaction
between the free surface and the cavity, showing that they move in opposite
directions during the collapse phase when the centroid is approximately within
one maximum radius. Clearly a stagnation point (that is, zero velocity) exists in
such situations, although this point will move because it has an acceleration.
Furthermore, the point of maximum pressure is generally not at the stagnation
point. These two features are the product of the unsteady flow phenomena we are
studying (in direct contrast to steady flow).

On the other hand an examination of bubble collapse near a rigid boundary
reveals that much larger pressures develop in the vicinity of the jet on the
opposite side of the bubble to the boundary. These pressures are found to be
much larger than those near a similar sized Rayleigh bubble (see for example,
Gibson [5]). Thus the rigid boundary intensifies the pressures surrounding a
collapsing vapour bubble and these high pressures manifest themselves in the very
high speed liquid jet.

The study of time dependent flows is one of the most rapidly developing areas
in fluid mechanics due primarily to the advent of faster and larger computers
together with improved algorithms for numerical techniques. Often our experi-
ence with steady flows is of little assistance in understanding unsteady flows as
the flow fields are often totally different. For example in this paper, we obtain a
stagnation point and a separate point of maximum pressure within the fluid (i.e.,
not at the boundaries). In addition bubbles may deform and become multiply
connected and hence admit circulation around the bubble. All of these features
will be described in greater detail later in the paper.

In Section 2 we briefly describe the theory and the approximate integral
equation technique suggested by Bevir and Fielding [2] and later used by Gibson
and Blake [6]. Stagnation point flow is examined in Section 3 and the computa-
tions and results are discussed in Section 4.
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2. Theory

We will assume the fluid is incompressible, inviscid and that surface tension
and gravitational effects are negligible for most of the bubble lifetime (Plesset and
Chapman [13], Blake and Gibson [3]). With these assumptions we may represent
the velocity as the gradient of a potential which, in turn, satisfies Laplace's
equation. That is

u = v*, V2<f> = 0, (1)

where u is the Cartesian velocity vector and <j> is the potential. The boundary
conditions on the fluid at infinity are

u^>0 and p ->pm, (2)

where p is the pressure and px is the constant pressure at infinity and on the free
surface. On the cavity surface we have

», = u, p= pe, (3)

where us is the velocity of a particle on the surface and pc is the saturated vapour
pressure in the cavity and which is assumed constant. Applying the dynamic
boundary condition on the cavitation bubble surface yields,

Pc = P00-p-fo- 2"P|«I . (4)

where p is the density of the fluid.
For the rigid boundary case there is no flow across the boundary, thus,

! * = 0 atx = 0. (5)

For the nonlinear free surface problem we equate the Bernoulli pressure to that
on the free surface (that is, p^) to obtain

^ + ^|u|2 = 0 onx = { ( r , 0 , (6)

where £(r, 0 is the displacement of the free surface.
The growth and collapse phases of a cavitation bubble are modelled using a

combined Lagrangian-Eulerian description of the bubble and fluid motion: a
Lagrangian approach to describe the bubble surface and an Eulerian representa-
tion of the flow field.

To initiate the calculations, we suppose that the cavitation bubble is very small
with a radius Ro which is very much less than the distance to the boundary. This
approximation allows us to use the potential for a spherical cavity in an infinite
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fluid as our initial condition on the bubble surface, namely

1/2

(7)

where Rm is the maximum bubble radius which is determined by px, pc and the
initial kinetic energy given to the fluid. In the free surface example, we also need
to specify the initial potential on the free surface: linear theory is adequate for
this stage which shows us that <J>0 = 0 on £ = 0.

We obtain the solution using an approximate integral equation approach
similar to that suggested by Bevir and Fielding [2]. The potential is specified in
terms of a Fredholm integral equation of the first kind and a distribution of
singularities along the axis of symmetry completely contained within the bubble is
used to solve the problem. Although there are obvious difficulties with uniqueness
using this approach, in that we can only hope to approximate the solution in a
least squares sense, we will use it because of its simplicity and accurate prediction
(Gibson and Blake [6]) of features observed experimentally. We refer the reader to
Blake and Gibson [3] for a detailed description of the numerical technique
(although they used ring distributions as against the simpler line distribution used
in this paper). Conservation of mass, momentum and energy is examined at each
time step to ensure that variation is within specified bounds.

It is advantageous to specify the problem in terms of dimensionless variables.
Following Gibson and Blake [6] linear dimensions are nondimensionalised with
respect to the maximum bubble size Rm as follows (capitals imply the dimension-
less variable, except for y which specifies the initial location of the bubble),

X = x/Rm, R = r/Rm, y = h/Rm. (8a)

The characteristic collapse velocity [(px — pc)/p]l/2 enables us to define a time
scale t* and hence dimensionless time T by

1/2

' ( 8 b )

Pressure is conveniently made dimensionless by

P = -^&-, (8c)
Poo'Pc

yielding P = 0 on the bubble and P = 1 at infinity (and on the free surface). The
potential <J> is made dimensionless with respect to /?m[(^00 — />c)/p]1/2- The
Stokes stream function may be obtained from the potential in cylindrical polar
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coordinates via the following relation,

dx r dr' dr r dx ' . K '

In obtaining the updated value for the potential on the free surfaces Blake and
Gibson [3] were able to eliminate the 9</>/9f term by using the dynamic boundary
conditions (4) and (6). However, this is not possible when calculating the pressure
through the Bernoulli condition

P = Jf
at any general point, in the fluid. In our calculations we use a backward
difference approximation,

9/ Af

<f> and | u | may be evaluated at any point (xj, /y) since at each time step the source
strength has been calculated.

The procedure for the rigid boundary case is similar to that outlined above
except that marked particles need only be taken on the cavity surface as the
solution method automatically satisfies the boundary condition (5).

To determine the instantaneous streamlines and pressure contours for both the
nonlinear free surface and the rigid boundary problems, their numerical values
are obtained at specified equispaced grid points of the (x, r) plane. A contouring
procedure is used after having determined the minimum and maximum values in
the fluid. The results will be discussed subsequently, however we first consider
flow about a stagnation point in unsteady flow.

3. Stagnation point flow

For sufficiently small y (y < 1.1) in the free surface example, an instantaneous
stagnation point appears in the fluid on the axis of symmetry between the two
free surfaces. Thus, following Longuet-Higgins [9] we may expand the stream
function about the stagnation point xo(t) to produce,

* = W) + *«(')(* - *oV + 0(*V2, xr"). (11)
The equivalent expression for <f> is,

- x0)
2 + 0(x\ x2r). (12)

https://doi.org/10.1017/S0334270000004318 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004318


36 P. Cerone and J. R. Blake 16)

We are now in a position to show that the point of maximum pressure does not
correspond to the stagnation point as it would in steady flow. From the Bernoulli
pressure condition (10) and using (12) it may easily be shown that the pressure
may be approximated by

P ™Po(t) + PKX(X - x0) - ipK2(x - xof]

wherepo(t) - px - p<S>0{t), K, = x'oa and K2 = a' + a2. J

Hence, it may be shown from (13) that, for K2 > 0, the maximum pressure
occurs at

x = x0 + K,/K2

with a value

/W=/>o(0+WA2- 04)
Thus the point of maximum pressure occurs at a different location from the
stagnation point provided K, =£ 0.

4. Computations and discussion

A. Preliminaries: the Rayleigh bubble
The Rayleigh bubble solution for a spherical bubble in an infinite fluid invokes

spherical symmetry. Mass conservation implies that the velocity field can be
represented by a time-dependent mass source at the origin. Clearly the instanta-
neous streamlines are radial. Furthermore the dynamic boundary condition
enables us to obtain an algebraic expression for the dimensionless pressure as a
function of only the bubble radius R* and the radial coordinate r*, as follows,

The maximum pressure occurs at r* - r*, where

oo, J?*^ 0.6299.

For example with R* = 0.1, r,* =0.157 and Pmax = 157.7. Thus, in the forth-
coming discussion in this section, we will be highlighting the similarities and
variations from the Rayleigh bubble solution.
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B. Flow description of a bubble near a free surface

(i) Streamlines
The instantaneous streamlines were calculated for the growth and collapse

phases of a vapour cavity near a free surface. Using the approximate integral
equation technique described in Blake and Gibson [3], a small bubble of dimen-
sionless radius 0.1, initially located at one maximum radius from the free surface
was allowed to grow and collapse.

The bubble grows spherically for about a third of its life time migrating slowly
towards the 'flat' free surface. For y < 1.1 the top half of the vapour bubble
becomes elongated and is entrained within the raised free surface compared to the
more hemispherical bottom half. During the collapse phase the vapour bubble
migrates away from the free surface while, at the same time, the free surface
continues to expand. This nonlinear interaction between the free surface and the
bubble leads to the formation of two opposing jets which produce a stagnation
point on the axis of symmetry between the surfaces.

Figure 1 shows the stagnation point and instantaneous equispaced streamlines
for dimensionless time T - 0.797, 0.897, 0.993 and 1.120. Of particular interest is
the high density of streamlines joining the 'shortest distance' between the two
uppermost free surfaces. This and other aspects of nonlinear interaction between
the free surfaces will be discussed at greater length when we consider the pressure
contours.

In a recent theoretical and experimental study on the growth and collapse of a
cavitation bubble near a free surface Chahine [4] shows that nonlinear theory
should be used when the bubble centroid depth h is less than 2.2 of the maximum
radius (i.e., y < 2.2). Chahine [4] and Blake and Gibson [3] (see also Van Dyke
[16]) observed that for cases when the bubble centroid depth is approximately
equal to Rm, the free surface and the bubble move in opposite directions during
the collapse phase.

When the bubble was initially located at y = 1.5 no stagnation point was
formed and the free surface grew and collapsed with the growth and collapse of
the vapour cavity. Theory would suggest that the changeover point for the
formation of opposing jets is around y = 1.1.

(ii) Pathlines
The Lagrangian description of both the free surface and the vapour cavity

enables us to trace the path of the "marked particles" on both surfaces. Figure 2
shows the pathlines of some of these particles together with the shape of both
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Figure 1. Instantaneous streamlines during the collapse of a vapour cavity initially one maximum
bubble radius from a free surface for dimensionless time (a): 0.797, (b): 0.897, (c): 0.993 and (d): 1.12.
A stagnation point exists on the axis of symmetry during the collapse phase of the bubble. The
approximate lifetime of the bubble in this example is T = 1.4.
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Figure 2. (a) Trajectories (.) of fluid particles on the surface of the vapour cavity and on the free
surface. The bubbles shown are at the same time as in Figure 1, together with the initial cavity of
radius 0.1. (b) Movement of particles on the axis of symmetry corresponding to P, Q and R in (a) with
time.

surfaces. We may notice from the figure that the particles move radially during
the growth phase similar to the Rayleigh bubble. However, as the bubble begins
to collapse, the particles migrate towards the axis of symmetry while the jet and
free surface spikes continue to grow in opposite directions resulting in the
formation of a stagnation point on the axis.
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(a)

(b)

(c)

(d)

Figure 3. Equally spaced pressure contours for a vapour bubble near a free surface initially located at
one maximum bubble radius from the free surface. The times for (a), (b), (c) and (d) correspond to
Figure 1. A point of maximum pressure occurs on the axis between the bubble and free surface (*).
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(iii) Pressure
In Figure 3, equispaced pressure contours are shown for the case of y = 1.0.

The dimensionless times in the four examples illustrated in Figure 3 correspond
exactly to those in Figure 1. It is clear on comparing Figures 1 and 3 that the
stagnation point and the point of maximum pressure do not generally coincide, as
was anticipated in Section 3. In a recent paper Longuet-Higgins [10] analysed
Figure 10 in Blake and Gibson's [3] paper and has suggested that in the free
surface spike the constant pressure contours, which includes the free surface,
correspond to a Dirichlet hyperboloid. Although our contours are produced by a
contouring package and may not be accurate in regions of high curvature, there is
some suggestion that the contours are hyperboloidal.

Physically during the bubble collapse phase fluid is drawn in towards the
bubble from the region of least impedance, or more correctly, inertance. In
practical terms this corresponds to the shortest distance, and hence least mass,
between the two uppermost free surfaces. As the fluid is drawn in, a point of
maximum pressure is created on the axis of symmetry forcing the fluid to move in
opposing directions and hence creating an instantaneous stagnation point.

C. Flow description of a bubble near a rigid boundary

(i) Streamlines
Streamlines were obtained for a vapour cavity growing and collapsing near a

rigid boundary which was initially located at y = 1.0. In the growth phase the
bubble is almost spherical with a slight flattening, as one might expect, near the
rigid boundary. This impedance of motion near the boundary results in a slight
migration of the bubble centroid away from the boundary during the growth
phase. However during the collapse phase the bubble centroid migrates towards
the boundary because of the high impedance of the boundary. A translating
collapsing bubble is unstable (e.g., Plesset and Mitchell [14]), the dominant
instability being realised in a jet which threads the collapsing bubble from the
rear.

Figure 4(a) illustrates the instantaneous streamlines soon after the formation of
the jet. Ultimately the jet will penetrate the free surface of the bubble on the other
side to form a multiply connected region. The flow field at this stage would
correspond to a ring vortex to preserve the impulse generated throughout the life
time of the bubble (see e.g., Benjamin and Ellis [1], Lauterborn [8]). In Figure
4(a) we can see the initial stages of the development of a ring vortex by the
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(a)

(b)

Figure 4. Cavitation bubble near a rigid boundary for y = 1.0 and time = 2.06. (a) Instantaneous
streamlines, (b) Pressure contours with maximum at • of 6.66.

collapsing bubble. Previous models of Plesset and Chapman [13] and Bevir and
Fielding [2] which only simulated the collapse phase of an initially spherical
cavity, obtain bubble shapes which are much more elongated than those obtained
here.

(ii) Pressure
During the growth phase the pressure contours are essentially the same as for

the Rayleigh bubble being approximately spherical. However, the major change
occurs during collapse when the spherical symmetry is completely lost. A point of
high pressure forms on the opposite side of the cavity from the rigid boundary
before there is any sign of a jet being formed. The pressures increase extremely
fast as the jet is formed (see Figure 4(b)). It is this high pressure build up and the
subsequent high jet velocities which are thought to be one of the principal
mechanisms for cavitation damage. Table 1 shows the effect of a rigid boundary
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on the pressure produced near a vapour cavity. The maximum pressure obtained
within a 4 X 3 maximum radii region is compared with pressures at the same
distance for a spherical cavity of equal volume in an infinite fluid. The pressures
are close until the jet starts to form at which stage the pressure is much greater for
the rigid boundary case. Gibson [5] shows that extremely high pressures exist
close to a small Rayleigh bubble. However for a cavity with radii greater than
0.66 the maximum pressure is ambient (that is, px). Thus the ambient pressure is
approached the further away we are from the bubble and would yield the
maximum value of P — 1 if we were to extend the grid to infinity. It is for this
reason that the maximum pressures shown in Table 1 occur at the extremities
except for the last two times at which stage the jet has begun to form.

TABLE 1. Maximum pressure in a 4 X 3 grid for a vapour cavity near a rigid boundary compared with
that of an equivalent size Rayleigh bubble. The cavity is initially one maximum bubble
radius from the rigid boundary (y = 1.0).

Time

0.22
0.62
1.02
1.42
1.82

2.02
2.06

Centroid

1.0283
1.0543
1.0363
0.9613
0.7695

0.5492
0.4806

Equivalent
Radius

0.6866
0.9382
1.0106
0.9684
0.7926

0.6154
0.5621

Distance

2.8085
2.7903
2.8029
2.8560
2.9958

0.7508
0.6194

Maximum Pressure

Rayleigh

0.7795
0.6588
0.6405
0.6580
0.7337

0.8916
1.5977

Rigid
Boundary

0.8228
0.6350
0.5891
0.6339
0.8301

3.7342
6.6606

5. Conclusion

Our description of the flow field about a collapsing vapour cavity near a rigid
boundary and a free surface has supplemented and extended the available
knowledge on the mechanisms involved. This work has demonstrated that the
spectacular movement of the free surface in the opposite direction to the jet
developed in the vapour cavity gives rise to a stagnation in the flow field which is
at a different location from the point of maximum pressure. The effect of a rigid
boundary in producing extremely high pressures which cause the formation of the
subsequent liquid jet, are shown to be larger than the pressures involved for a
bubble in an infinite fluid, possibly causing pressure initiated damage to the
boundaries in addition to the damage mechanism due to the impact of the jet.
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