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A LATENT VARIABLE MIXED-EFFECTS LOCATION SCALE MODEL WITH
AN APPLICATION TO DAILY DIARY DATA
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Amixed-effects location scalemodel allows researchers to studywithin- and between-person variation
in repeated measures. Key components of the model include separate variance models to study predictors
of the within-person variance, as well as predictors of the between-person variance of a random effect, such
as a random intercept. In this paper, a latent variable mixed-effects location scale model is developed that
combines a longitudinal common factor model and a mixed-effects location scale model to characterize
within- and between-person variation in a common factor. The model is illustrated using daily reports of
positive affect and daily stressors for a large sample of adult women.

Key words: second-order latent variable model, positive affect, intraindividual variation, latent state trait
theory.

Psychological investigations that rely on repeated-measures study designs typically aim to
studywithin- and between-person variation in a response over repeated occasions. Popular models
for these kinds of problems are latent curve and mixed-effects models (Bollen and Curran 2006;
Singer and Willett 2003; Skrondal and Rabe-Hesketh 2004). Often these models are applied to
describe the typical longitudinal trajectory of a population and individual differences in the features
that describe the trajectories (e.g., Ricker et al. 2018). Other investigations additionally include
study of the within-person variation of the repeated measures (e.g., Kim and Cicchetti 2009). For
time-intensive data collections over relatively short periods of time, the study of within-individual
variation may be the primary focus (e.g., Allaire and Marsiske 2005). Many applications of latent
curve and mixed-effects models have emphasized inference from the subject-specific model and
the random effects that distinguish the individual trajectories, often while assuming that the errors
in the occasion-levelmodel have equal variance, not only acrossmeasurement occasions but across
individuals. Otherwise, a number of options, largely restricted to data that are equally spaced with
regard to time, in specifying the residual covariance structuremay be considered to better represent
variation (and possibly covariation) of scores within individuals, even if only to improve inference
about the fixed effects of the model and individual differences in the coefficients of the subject-
specific model. In some types of investigations that rely on repeated measures data, heterogeneity
of the occasion-level residual variance may be a particularly interesting feature of the response,
potentially offering further insight into individual differences in repeatedmeasures. Depending on
a study’s goals, examination of both within- and between-person variation in repeated measures
data can be important in fully understanding and characterizing psychological variables (Molenaar
1985; Nesselroade 2004).

A mixed-effects location scale model offers a way to explicitly model within- and between-
person variation in repeated measures data and possesses key features that distinguish it from
typical formulations of a latent curve or mixed-effects model. An extension of a standard mixed-
effects model, a mixed-effects location scale model includes a model for the variance of a random
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coefficient relating to the subject-specific model and a model for the variance of the residual
relating to the occasion-level model (Hedeker et al. 2008). Under this model, the variance of
a random coefficient and the variance of the occasion-level residual can depend on covariates.
Notably, the model for the occasion-level residual variance additionally includes a random subject
effect to allow for between-person differences in the occasion-level residual variance. Motiva-
tions for using a mixed-effects location scale model may stem from a need to explicitly model
heterogeneity of variance within, as well as between, individuals.

Similar to applications of latent curve and mixed-effects models that assume the response
data are free of measurement error, a mixed-effects location scale model does not account for
measurement error in response data. Given scores measured without error, the variance of the
occasion-level residual will reflect true variation of scores within subject. If the scores include
measurement error, however, the residuals will reflect a combination of within-subject variation
from the fitted model and measurement error. This can pose a significant problem in evaluating
how well a model fits the observed data, but importantly for investigations that include study
of the within-subject variation, added measurement error can naturally inflate the magnitude of
the within-subject variation (e.g., Goldstein et al. 2018; Hedeker et al. 2012; Rast et al. 2012).
Measurement error has been addressed in latent curve and mixed-effects models by relying on a
common factor model to represent the manifest variables, with a latent growth model applied to
the latent variables (Blozis 2007; Harring 2009;McArdle 1988;McNeish and Dumas 2017; Sayer
and Cumsille 2001). Given the benefits of a latent variable model, the mixed-effects location scale
model can benefit from a latent variable approach. To capitalize on the flexibility of amixed-effects
location scale model to allow for within- and between-person heterogeneity of variance and on
a latent variable model to address measurement error, this paper uses a latent variable model to
expand a mixed-effects location scale model for repeated measures of a latent variable.

1. Repeated Measures from Daily Diary Studies

Data from daily diary studies often display fluctuations in scores within individuals. An
example is a set of daily positive affect scores for 9 individuals shown in Fig. 1 that come from
the Midlife in the United States (MIDUS 2): Daily Stress Project (Ryff and Almeida 2004-2009).
The data are part of a larger longitudinal study that began in 1995 (MIDUS 1) and included
a nationally representative random-digit-dial sample of noninstitutionalized, English-speaking
adults residing in the contiguous USA. Participants of MIDUS 1 were invited to participate in a
second longitudinal wave (MIDUS 2) about 10 years later, along with a newly added adult cohort.
FromMIDUS 2, a subset of participants were selected at random to participate in the Daily Stress
Project. Participants were interviewed by telephone to obtain daily self-reports for 8 consecutive
days.Multiple scaleswere administered daily tomeasure different psychological constructs. Here,
responses for 435 women with complete data on 5 survey items designed to reflect daily positive
affect are considered. For instance, the first item asked "Did you feel in good spirits?" Items were
measured using a 5-point ordinal response scale: 0=none of the time to 4=all of the time. In Fig.
1 are daily scores for 9 women, with scores computed as the daily mean of the 5 scale items.
Calculating an average or summed score is a common way to handle responses obtained for a set
of items designed to measure a common construct (e.g., Hedeker et al. 2012; Rast et al. 2012).
Although a measurement model for these items is provided later in Section 4, it is useful to first
consider the usual approach to handling responses to multiple items. As shown in Fig. 1, the solid
horizontal line that is common to all panels of the display is the mean score of 2.8 calculated
across days andwomen. The dashed horizontal line unique to each plot is the individual’s response
averaged across days. From the display, it can be seen that within individuals, scores fluctuate
from day to day relative to the individual’s mean, and the extent of the daily variation within
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Figure 1.
Daily positive affect scores (yi ) and daily positive affect scores averaged across days (ybari ) for 9 study participants,
plotted with the mean score (2.8) across days and all participants.

person varies between people. The mean responses of individuals differ from the overall mean
and from each other. It is also interesting to note that for some individuals, scores reach the
maximum possible score of 4 (Case 10186) while also displaying vary little variation across
days. Although standard mixed-effects model might be effective in characterizing the differences
between individuals with regard to their mean affect levels, the model would not address the
between-subject heterogeneity of the intraindividual variation. Indeed, it is the between-subject
differences in the within-subject variation that is a notable feature of the affect scores. Thus, a
mixed-effects location scale model that permits the within-subject variance to vary by subject
would seem to be quite suitable in characterizing the scores. This, in particular, would help to
address possible ceiling effects in measurement (Hedeker et al. 2012).

Common to many studies of a psychological variable is an implicit assumption that the
variable is composed of trait- and state-level components (Nesselroade 1987). For example, latent
state trait theory suggests that a psychological measure is comprised of three independent sources:
a latent trait, a latent state residual and measurement error (Steyer et al. 1992). The latent trait
component reflects the part of the score that is not specific to the measurement occasion, but
rather, is unique to the person. Conversely, the latent state residual component is specific to the
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measurement occasion and the individual and, as such, is expected to fluctuate about the trait-
level component according to the measurement occasions. Importantly, both the latent trait and
state components are assumed to be free of measurement error. To permit study of the two latent
components of a psychological variable, a second-order model can be applied to account for
measurement error in the observed measures (Steyer et al. 1992). An interesting application of
a mixed-effects location scale model is to problems such as the study of daily positive affect
(Hedeker et al. 2012; Rast et al. 2012). The model provides a framework for separating the trait
and state components of a measured variable (albeit assumed to be measured without error) while
allowing the state residual to be truly unique to the individual by inclusion of a random subject
effect in a model for the occasion-level residual variance (i.e., state residual variance). However,
the standard formulation of the model does not address measurement error. To address the issue
of measurement error in applications of latent state trait theory, a common factor model is applied
to repeated measures data. The variance of a general common factor is assumed to be due to
the latent trait factor and the variance of the occasion-specific factor is assumed to be due to
the latent state residual factor. Thus, a potentially useful model is a latent variable mixed-effects
location scale model that would permit partitioning of the observed item variance into the distinct
components, and additionally, provide a truly person- and occasion-specific measure of the state
residual variance.

2. The Mixed-Effects Location Scale Model

A two-level linear mixed-effects location scale model is described here (for a 3-level model, see
Lin et al. 2018; for a generalized linear version of the model, see Hedeker et al. 2016). Let yti be
an observed response at time t = 1, . . . , ni , for individual i , i = 1, . . . , N , where ni denotes that
the number of observations can vary by the individual. Missing data are assumed to be missing
at random. A linear mixed-effects location scale model for yti can be given as (cf: Hedeker et al.
2008):

yti = x′
ti (βx + υi ) + w′

iβw + εti , (1)

where xti is a p x 1 vector of covariates that vary according to the measurement occasion t and
individual i and would usually include a "1" for the intercept of model, andwi is a q x 1 vector of
covariates that vary according to the individual i . The coefficient βx is a set of p fixed regression
coefficients linking xti to yti , and υi is a set of p∗ ≤ p random subject effects that correspond to
one or more of the fixed effects in βx . The coefficient βw is a set of q fixed regression coefficients
linking wi to yti . The random effect υi is assumed to be independent and normally distributed
across individuals as

υi ∼ N (0,�υ (wi , α, ρυ)) , (2)

where the between-subject covariance matrix�υ may be a function of between-subject covariates
(wi ) and corresponding coefficient vectorα, withα = (α0, . . . , αq ) denoting the set of coefficients
that link the covariates to elements of the matrix�υ . The set of coefficients ρυ = (ρ1, . . .) are the
correlations between the random effects conditional onwi . For instance, a common application of
a mixed-effects location scale model is one in which only the intercept is random (e.g., Hedeker
et al. 2008), and so �υ = φ2

υi
with the variance of the random intercept modeled as

φ2
υi

= exp
{
α0 + α1w1i + . . . + αqwqi

}
, (3)

where α0, when exponentiated, is the variance of υi conditional onwi . The remaining coefficients
are the between-subject covariate effects on the between-subject variance. A positive effect of a
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coefficient indicates that a unit increase in a covariate corresponds to an increase in the variance
of the random effect; a negative effect indicates that a unit increase in a covariate corresponds
to a decrease in the variance. As will be shown later using an empirical example, allowing a
between-subject variance to be a function of covariates makes it possible address between-subject
heterogeneity of variance in a random effect.

At the occasion level, the residual εti in (1) is assumed to be independent and normally
distributed as:

εti ∼ N
(
0, σ 2

ε (xti ,wi , τ , ai )
)

, (4)

where the variance σ 2
ε may be a function of xti (that would usually include a "1" for the intercept)

and wi , with corresponding coefficient vector τ = (τx , τw), where τx = (τx1, . . . , τxp) and
τw = (τw1, . . . , τwq ) denoting sets of coefficients that link the within-subject and between-
subject covariates, respectively, to the within-subject variance σ 2

ε . In (4), the coefficient ai denotes
a between-subject random effect. Specifically, the variance of εti is modeled as

σ 2
ε = exp

{
τ0 + τx1 + . . . + τxp + . . . + τw1 + . . . + τwq + ai

}
, (5)

where τ0, when exponentiated, is the residual variance conditional on the covariates and for a
subject for whom ai = 0. Similar to the interpretation of the covariate effects in (2) that serve to
account for between-subject heterogeneity of variance in a random effect, a positive value for the
effect of a covariate in the model for the within-subject variance indicates that a unit increase in a
covariate corresponds to an increase in the residual variance, and a negative value indicates that
a unit increase in a covariate corresponds to a decrease in the variance. As will be shown later
using an empirical example, allowing the within-subject variance to be a function of covariates
makes it possible address heterogeneity of the individual and occasion-specific residual variance.

The model for the variance of the occasion-specific residual εti in (4) includes ai to address
heterogeneity of variance due to unobserved effects. That is, the variance of εti may differ between
individuals, even after conditioning on covariates, and so including the random effect ai allows
for heterogeneity that may remain. This may be important, for instance, in problems for which
there are between-subject differences in the variability in scores across occasions, such as if a
ceiling effect in the measurement of the response is present and this results in reduced variation in
scores for individuals whose average scores are at the extremes of the response scale. The random
effect is assumed to be independent and normally distributed as

ai ∼ N
(
0, φ2

a

)
. (6)

At the subject level of the model, the random effect υi in (1) and the random effect ai
in (4) may covary. To allow this, the random effects are stacked, with the set defined here as
ci (rx1) = (

υ ′
i , ai

)′ to include all r = p∗ + 1 random effects. It is assumed that the joint
distribution of ci is

ci ∼ N (0,�c) , (7)

where the covariance matrix is

�c =
(

�υ (wi , α, ρυ) φυa
φ′

υa φ2
a

)
. (8)

It follows that the probability distribution of ci is

hc (ci ) = 2πr/2 |�c|−1/2 exp
(
(ci − μc)

′ �−1
c (ci − μc)

)
. (9)
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Letting yi = (
y1i , . . . , yni

)′and conditional on ci , the distribution of yi is

yi |ci ∼ N
(
μy|c, �y|c

)
, (10)

where
μy|c = i (xti ,wi ) β (11)

and
�y|c = i (xti ,wi ) �υ (wi , α, ρυ) i (xti ,wi )

′ + �ε (xti ,wi , τ, ai ) , (12)

where i (xti ,wi ) is a design matrix containing the within- and between-subject covariates,
β = (

β ′
x , β

′
w

)′ is a stacked set of fixed coefficients linking the covariates to yi , and assuming inde-
pendence of the occasion-specific residuals between occasions and subjects, �ε (xti ,wi , τ ,ai ) =
Ini σ

2
ti (xti ,wi , τ ,ai ), with Ini being an identitymatrix of order ni . Then, the conditional probability

density function can be defined as

hy|c (yi |ci ) = 2π−p/2
∣∣�y|c

∣∣−1/2 exp
((
yi − μy|c

)′
�−1

y|c
(
yi − μy|c

))
, (13)

and the marginal distribution of yi is then

g (yi ) =
∫

ci
h y (yi |ci ) hc (ci ) dci . (14)

The parameters of the model are γ = (
β, α, τ, φυ, φυa, φ

2
a

)
. Given a random sample of observa-

tions, y1, . . . , yN , the marginal log-likelihood of γ is

lnL (γ ) =
N∑

i=1

ln g (yi ) . (15)

The model for yi is nonlinear in the scale random effect, ai , and consequently, the integral in (14)
does not have a closed-form expression. Estimation of the integral generally would rely on an
approximation to the integral (Pinheiro and Bates 1995), such as by implementing SAS1 PROC
NLMIXED that permits random effects to be incorporated into the within-subject covariance
matrix in (4) (see Hedeker et al. 2012).

2.1. Example: Manifest Measures of Daily Mean Positive Affect

The daily mean positive affect scores described earlier for the 435 women are analyzed using a
mixed-effects location scale model (Hedeker et al. 2012; Rast et al. 2012). Within individuals,
daily measures of positive affect may not be expected to change systematically with the passage
of days, but rather, vary across days. Additionally, scores averaged across days within individuals
would be expected to naturally vary between individuals. Accordingly, the manifest measures of
mean positive affect are assumed to follow a random intercept model:

yti = β0i + εti ,

where, for participant i, yti is the observed mean positive affect score on day t, β0i = β0+υi is the
expected response across days, and εti is the discrepancy between the observed andfitted responses
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on day t. The random intercept β0i represents the trait component that varies by individual, and
the residual εti represents the state component that varies by both individual and occasion. The
random intercept is assumed to be normally distributed: β0i ∼ N

(
β0, φ

2
υ

)
, where

φ2
υ = exp {α0} .

This expression of the variance of the random intercept becomes useful later when covariates are
added to the model to address between-subject heterogeneity in the random intercept variance.
The residual is assumed to be normally distributed: εti ∼ N

(
0, Iσ 2

ε

)
, where

σ 2
ε = exp {τ0 + ai } ,

and ai is a random subject effect that is assumed to be normally distributed: ai ∼ N
(
0, φ2

a

)
. At

the subject level, the random intercept and the random effect of the within-subject variance may
covary: cov (υi , ai ) = φυa . The model has five parameters: γ = (

β0, α0, τ0, φ
2
υ, φυa

)
.

To assess the need to include the random effect in the model for σ 2
ε , estimates were obtained

for a reduced form of the model, henceforth called Model A1, that assumed homogeneity of the
residual variance, and so φ2

υ = 0 (1st set of estimates in Table 1 corresponding to Model A1).
Thus, Model A1 is a random intercept model with a fixed intercept β0 and includes parameter α0
of the variance model for the random intercept (φ2

υ = exp {α0}), and parameter τ0 of the variance
model for the residual (σ 2

ε = exp {τ0}). Model A1 and the mixed-effects location scale model,
henceforth calledModel A2, were fit using SAS PROCNLMIXED version 9.4 using nonadaptive
Gaussian quadrature with 7 quadrature points. Increasing the number of quadrature points beyond
7 or using a Laplacian approximation (Vonesh 1996) did not result in a converged solution for
Model A2. Maximum likelihood (ML) estimates of Model A2 are given in Table 1 (second set
of estimates). Starting values for the estimation of these models involved fitting a fixed-effects
model first, followed by adding a random intercept (for Model A1), then a random effect in the
within-subject variance model and the covariance between it and the random intercept (for Model
A2). ML estimation carried out using SAS PROC NLMIXED with a Laplacian approximation).
Model A2 that assumed φ2

υ > 0 yields an improvement in model fit in terms of the AIC, from
6, 087 (Model A1) down to 5, 547 (Model A2) suggesting between-subject heterogeneity of the
within-person variance. A likelihood ratio test (LRT) of the goodness-of-fit between the two
models using 2 df is χ2

2 = 6, 081 − 5, 537 = 544, p < .001, supporting the need to include
the random effect in the occasion-level residual variance model. From Model A2, the estimated
common variance of the residual is exp(−1.84) = 0.16, and the estimated standard deviation of
the random effect in the model for σ 2

ε is 1.16. These results suggest between-subject differences
in the extent to which daily positive affect scores vary from day to day. The estimated correlation
between the random intercept and the random subject effect for the within-subject variance is
r = −.36, suggesting a tendency for those with a relatively low day-to-day variation in positive
affect scores to also have a relatively high positive affect score averaged across days. Thus, either
those with relatively high levels of positive affect across days are also relatively stable in their
affect, or the result is an indication of a ceiling effect in the measurement. Finally, from the
second of the two models, the estimated mean positive affect score across days and participants
is β̂0 = 3.00 (se = 0.006), indicating a rather high average across days and participants.

2.1.1. Daily Stressors Extensive research has demonstrated a clear relationship between nega-
tive affect and daily stress, but positive reactivity to daily stress is not as well understood. Several
studies report mixed findings in terms of the direction of the relationship, suggesting that the

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 21:40:18, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


S. A. BLOZIS 1555

Table 1.
ML Estimates of a mixed-effects location scale model of manifest measures of daily mean positive affect (n = 435).

Model Aa
1 Model Ab

2 Model Ab
3

Mean structure
β0, intercept 2.81(0.032) 3.00 (0.006) 3.05 (0.012)
β1, DS

∗
ti −0.075 (0.013)

β2, DMSi −0.36 (0.030)
Covariance structure
Between-subject
α0, intercept −0.90(0.073) −0.65(0.039) −1.81 (0.026)
α1, DMSi 0.36 (0.070)
φa 1.16(0.056) 1.11 (0.053)
ρυa −0.36(0.061) −0.34 (0.042)
Within-subject
τ0, intercept −1.42(0.026) −1.84(0.065) −2.29 (0.10)
τ1, DS

∗
ti 0.30 (0.049)

τ2, DMSi 0.78 (0.15)
Deviance 6081 5537 5245
AIC 6087 5547 5265

Notes: aML estimation carried out using SAS PROC NLMIXED with a Laplacian approximation to the
integral. bML estimation carried out using SAS PROC NLMIXED with nonadaptive Gaussian quadrature
with 7 quadrature points

relationship is complex and highly individualistic (Schilling and Diehl 2014). Here, the mixed-
effects location scale model is extended to include the number of daily stressors reported for
each interview day, denoted by daily stressorsti . Scores were based on a sum of responses to
7 questions scored as 1=yes and 0=no; the first in the set of questions, for instance, was “Did
you have an argument or disagreement with anyone since (this time/we spoke) yesterday?” The
possible minimum and maximum scores were 0 and 7, respectively. Given repeated measures
of the number of stressors, both the within- and between-subject effects of daily stressors on
daily mean positive affect scores were studied. To do this, the variable was centered about the
individual’s mean number of stressors across days: DS∗

ti= daily stressorsti − DS.i ), where DS∗
ti

denotes an individual’s daily stress count centered about their mean count across days, with the
latter denoted by DS.i . Daily stressor counts for the sample ranged from 0 to 5; individual-level
mean counts ranged from 0 to 2.38, with an overall mean of 0.53 and standard deviation of 0.42.
The person-mean centered and mean values of the daily stressor measures were included in the
model to predict the observed daily mean positive affect score:

yti = β0i + β1DS
∗
ti + β2DS.i + εti .

To evaluate the effect of daily stressors on the variation of positive affect scores within and across
days, after adjusting for the within- and between-person effects of daily stressors, both measures
of daily stressors were included in the model of the occasion-level residual variance:

σ 2
ε = exp

{
τ0 + τ1DS

∗
ti + τ2DS.i + ai

}
.

Thus, this model was used to evaluate whether higher daily counts of stressors or an overall high
level of stressors across days was related to the daily variation inmean positive affect scores across
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days. The variance of the random intercept was also evaluated for between-subject heterogeneity
by including the mean daily stressor count in the model of the random intercept variance:

φ2
υ = exp {α0 + α1DS.i } .

Starting values for the effects of covariates were set to 0, and the remaining parameters were
set equal to the values obtained from fitting the unconditional model described in the previous
section. The model was fit using SAS PROC NLMIXED version 9.4 using nonadaptive Gaussian
quadrature with 7 quadrature points. Estimates of the conditional model, referred to as Model A3,
are in the last column of Table 1. The mean positive affect score for those with no daily stressors is
estimated to be 3.05 (se = .012), a value that is slightly greater than that obtained underModelA2.
The estimates further suggest an overall negativewithin-person effect (β̂1 = −0.075, se = 0.012),
as well as a negative between-person effect (β̂2 = −0.36, se = 0.030), of the number of daily
stressors on daily mean positive affect, with the magnitude of the between-person effect being
nearly five times the size of the within-person effect (H0 : β1 = β2, χ2 (1df) = 164, p < .001).
The within-person effect indicates that, on average, a higher number of daily stressors correspond
to a relatively low daily mean positive affect score, and the between-person effect indicates that a
higher mean number of daily stressors corresponds to a relatively low daily mean positive affect
score. Conditional on these effects, greater daily variation in affect scores corresponds to a higher
number of daily stressors (τ̂1 = 0.30, se = 0.049), as well as a higher mean number of daily
stressors (τ̂2 = 0.78, se = 0.15), with the latter of the two effects being the largest (H0 : τ1 = τ2,
χ2 (1df) = 7.5, p = .006). Additionally, the variance of the random intercept is positively related
to the mean number of daily stressors (α̂1 = 0.36, se = 0.070), such that the between-subject
variation in mean positive affect scores increases with an increase in the mean number of daily
stressors. That is, individuals increasingly differ from each other with an increase in the mean
number of daily stressors. Overall, it seems that between-subject differences, relative to within-
subject variation, in the number of stressors relates most strongly to the different aspects of daily
positive affect.

3. The Latent Variable Mixed-Effects Location Scale Model

The mixed-effects location scale model is a two-level model for observations nested within
individuals (Hedeker et al. 2008). The responses are assumed to be free of measurement error. To
address measurement error, a second-order model is developed here. In a second-order version of
the model, the repeated measure is a latent variable. That is, at each occasion, a set of manifest
variables is assumed to reflect a latent variable that varies by time and person. The subject-
specific model is then applied to the repeated measures of the latent variable. Let yti be a set of
mti indicators of the latent variable ηti observed at occasion t for individual i . Across Ti occasions,
let yi = (

y1i , . . . , yTi
)′ and Mi denote the number of observations in yi across indicators and

occasions. It is not necessary that each measurement occasion have the same set of indicator
variables to represent the latent variable, as long as all share a common indicator that anchors
the latent variable over time (Bollen and Curran 2006), and data across occasions need not be
complete. Missing data are assumed to be missing at random. A longitudinal measurement model
for yi is

yi = τi + �i (λ)ηi + δi , (16)

where τi is an Mi x 1 intercept vector, �i (λ) is an Mi x Q matrix of factor loadings, ηi is a Q x
1 latent variable vector observed according to Ti , and δi is an Mi x 1 unique item factor vector.
The subscript i used for both τi and �i indicates that both may vary by i with regard to their
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dimensions but not otherwise, whereas both the values and dimensions of ηi and δi may vary by
i . The latent variable ηti is assumed to follow a mixed-effects location scale model:

ηti = x′
ti (βx + υi ) + w′

iβw + εti , (17)

where xti is a p x 1 vector of within-person covariates that would usually include a "1" for the
intercept of the model, and wi is a q x 1 vector of between-subject covariates. The coefficient
βx contains p fixed coefficients linking xti to ηti ; υi is a set of p∗ ≤ p random subject effects
that correspond to one or more of the fixed effects in βx . The coefficient βw contains q fixed
coefficients linking wi to ηti . The random effect υi is assumed to be independent and normally
distributed across individuals as

υi ∼ N (0,�υ (wi , α, ρυ)) , (18)

where �υ is a function of wi , α = (
α0, . . . , αq

)
, and ρυ = (ρ1, . . .). The residual εi , specific to

the individual with elements specific to the occasions, is assumed to be normally distributed:

εi ∼ N (0,�ε (xti ,wi , τ ,ai )) , (19)

where �ε is a function of xti , wi , τ , and ai , with τ = (τx , τw) similar to (4) in which the
coefficients are the effects of within- and between-subject covariates, respectively. Assuming the
residuals are independent between occasions, then �ε = σ 2

ε Ini , where σ 2
ti is a function of xti and

wi with random effect ai , and where ai is assumed to be normally distributed: ai ∼ N
(
0, φ2

a

)
.

Thus, the model for the observed response yi is

yi = τi + �i (λ) (i (xti ,wi ) βi + εi ) + δi . (20)

where i (xti ,wi ) is a design matrix containing the within- and between-subject covariates, and
βi = (

(βx + υi )
′ , β ′

w

)′ is a stacked set of coefficients linking the within- and between-subject
covariates, respectively, to yi . The residual δi is assumed to be normally distributed:

δi ∼ N (0, �i ) , (21)

where �i is a diagonal covariance matrix of the unique item factors.
Similar to the model for manifest variables, the random effect vector υi of (18) and the

random effect ai in (19) may covary. To allow this, υi and ai are stacked in a vector defined by
ci (rx1) = (

υ ′
i , ai

)′ that includes all r = p∗ + 1 random effects. The joint distribution of ci is
assumed to be

ci ∼ N (μc,�c) , (22)

where the mean vector and covariance matrix are

μc =
(

βx

0

)
(23)

and

�c =
(

�υ (wi , α, ρυ) φυa

φ′
υa φ2

a

)
, (24)

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 21:40:18, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1558 PSYCHOMETRIKA

respectively. Corresponding to this, the probability distribution of ci is

hc (ci ) = 2πr/2 |�c|−1/2 exp
(
(ci − μc)

′ �−1
c (ci − μc)

)
. (25)

Conditional on the random effects in ci , the distribution of yi is

yi |ci ∼ N
(
μy|c, �y|c

)
, (26)

where
μy|c = τi + �iiβ (27)

and
�y|c = �i

(
i�υ′

i + �ε

)
�′

i + �i , (28)

where β = (
β ′
x , β

′
w

)′ , i = i (xti ,wi ), �υ = �υ (wi , α, ρυ), �ε = �ε (xti ,wi , τ, ai ), and
�i = �i (ψ). The conditional probability density function is defined as

hy|c (yi |ai ) = 2π−p/2
∣∣�y|c

∣∣−1/2 exp
((
yi − μy|c

)′
�−1

y|c
(
yi − μy|c

))
. (29)

The marginal distribution of yi is then

g (yi ) =
∫

ci
h y (yi |ci ) hc (ci ) dci . (30)

The parameters of the model are γ = (
β, α, ρυ, τ, φυ, φυa, φ

2
a , ψ

)
. Given a sample of observa-

tions, y1, . . . , yN , the marginal log-likelihood of γ is

lnL (γ ) =
N∑

i=1

ln g (yi ) . (31)

Due to the random effect ai , the model for yi is nonlinear in one of the random effects, and
consequently, the integral in (30) does not have a closed-form expression. Steps taken to estimate
the integral are described in the next section.

3.1. Simplifying the Likelihood Function

The latent variable mixed-effects location scale model is more complicated than the version
of the model for manifest variables. This is due to the measurement model needed for the set of
response variables at multiple occasions, in addition to the random effects (one of which enters
the model in a nonlinear manner) that are used in the model for the repeated measures of the latent
variable. Interestingly, it is possible to simplify the calculation of the i th individual’s contribution
to the likelihood function by analytically eliminating the random effect υi from the marginal
distribution in (30). This can also be done for the marginal distribution in (14) based on the
model for manifest variables (see Appendix A). Based on the fact that, conditional on ai , the
model is linear in υi , only the conditional distribution given ai is needed (cf: du Toit and Cudeck
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2009). Because the random effects contained in ci are jointly normally distributed, the conditional
distribution of υi given ai is also normal,

υi |ai ∼ N
(
μβ.a,�β.a

)
, (32)

with mean vector and covariance matrix (Morrison 1990, 3rd ed., p. 92)

μβ.a = β + φυa

φ2
a
ai (33)

and
�υ.a = �υ (wi , α, ρυ) − φυa(φ

2
a)

−1φ′
υa, (34)

respectively. It follows that the distribution of yi conditional on ai is normal:

yi |ai ∼ N
(
μy.a, �y.a

)
, (35)

with
μy.a = τi + �ii (xti ,wi ) μβ.a (36)

and
�y.a = �i

(
i (xti ,wi )�υ.ai (xti ,wi )

′ + �a
ε

)
�′

i + �i . (37)

Assuming independence between the residuals relating to the latent variable between occasions,

�a
ε = Ini exp

{
τ0 + τx1 + . . . + τxp + . . . + τw1 + . . . + τwq + ai

}
. (38)

The probability density function of yi given ai is

hy|a (yi |ai ) = 2π−p/2
∣∣�y.a

∣∣−1/2 exp
((
yi − μy.a

)′
�−1

y.a

(
yi − μy.a

))
. (39)

The marginal distribution of yi given ai is then

g (yi ) =
∫

ai
hy|a (yi |ai ) ha (ai ) dai , (40)

thus requiring a one-dimensional integral. The log-likelihood function is then

lnL (γ ) =
N∑

i=1

ln g (yi ) , (41)

where γ = (
β, α, ρυ, τ, φυ, φυa, φ

2
a , ψ

)
. Again, as the model for yi is nonlinear in ai , the integral

in (40) does not have a closed-form expression, and so estimation relies on an approximation. In
the empirical example presented in the next section, Gauss–Hermite quadrature is used to evaluate
the integral. A computer program, such as one written with SAS IML, may be used to carry out
estimation.
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3.2. Example: Daily Latent Positive Affect

One shortcoming of the previous analysis of the daily mean positive affect scores was the fact that
the measurement error of the manifest variables was not addressed. Here, a latent variable mixed-
effects location scale model is applied to the item-level response data. Measurement invariance is
generally required for a meaningful interpretation of a latent variable that is studied over repeated
occasions because it is necessary that an instrument perform in the same manner regardless
of the measurement occasion (Chan, 1998; Meredith 1993; Millsap 2011). Assuming a single
dimension for the set of item responses, measurement invariance across the 8 days was evaluated.
First, equality of factor loadings was tested, followed by similar tests about the item intercepts
and then the uniqueness. Relative to a model without restrictions placed on the factor loadings,
item intercepts or uniquenesses (Deviance = 31,009, BIC = 32,759), LRTs suggested equal factor
loadings by item across days (χ2 (28d f ) = 35.4, p = .16; Deviance = 31,045, BIC = 32,625),
equal item intercepts by item across days (with the exception of item 4 on day 8) (χ2 (27d f ) =
36.8, p = .10, Deviance = 31,046, BIC = 32,632), and both equal factor loadings and item
intercepts by item across days (with the exception of allowing for unique intercepts for item 10
on days 1 and 8 and item 11 day 8) (χ2 (53d f ) = 62.47, p = .18, Deviance = 31,072, BIC =
32,500). Although the BIC was lowest for a model that additionally constrained the uniquenesses
to be equal by item and across days (Deviance = 31,226, BIC = 32,441), a LRT did not support this
(χ2 (35d f ) = 154.03, p < .001). The analysis proceeded assuming equal uniquenesses, along
with equal factor loadings and item intercepts, by item across days, with the results evaluated for
the tenability of this assumption.

A latent variable model based on the daily responses to the 5-item set assumed that the
intercept of the first item equation was equal to 0 and that the factor loading was equal to 1:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

y11i
y21i
y31i
y41i
y51i
...

y18i
y28i
y38i
y48i
y58i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0
τ2
τ3
τ4
τ5
...

0
τ2
τ3
τ4
τ5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 · · · 0
λ2 0 · · · 0
λ3 0 · · · 0
λ4 0 · · · 0
λ5 0 · · · 0
...

...
. . .

...

0 0 · · · 1
0 0 · · · λ2
0 0 · · · λ3
0 0 · · · λ4
0 0 · · · λ5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢
⎣

η1i
...

η8i

⎤

⎥
⎦ +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

δ11i
δ21i
δ31i
δ41i
δ51i
...

δ18i
δ28i
δ38i
δ48i
δ58i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Elements of the unique factor score vector δi = (δ11i , . . . , δ58i ) were assumed to be indepen-
dently and normally distributed across individuals as δi ∼ N (0, �), with scores assumed to
be independent between days with constant variance across days. Let τ = (0, τ2, τ3, τ4, τ5) ,
λ = (1, λ2, λ3, λ4, λ5), andψ = (ψ1, ψ2, ψ3, ψ4, ψ5), whereψ is the vector of the unique factor
score variances relating to the five scale items. To then fit a latent variable mixed-effects location
scale model, the latent measure of positive affect was assumed to follow a mixed-effects location
scalemodel. Similar to the daily scores based on averages of the item responses, the latent measure
of daily positive affect was expected to fluctuate across days at the individual level and so was
assumed to follow a random intercept model:

ηti = β0i + εti ,
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where, for participant i,β0i is the latentmeasure of positive affect onday t, and εti is the discrepancy
between the latent score and the fitted value on day t. The random intercept is assumed to be
normally distributed:

β0i ∼ N
(
β0, φ

2
υ

)
,

where β0 is the expected latent response across days, and φ2
υ = exp {α0} . At the occasion level,

the residual is assumed to be normally distributed:

εti ∼ N
(
0, Iσ 2

ε

)
,

where σ 2
ε = exp {τ0 + ai } ,and ai is a random subject effect that is assumed to be normally

distributed:
ai ∼ N

(
0, φ2

a

)
.

At the subject level, the random intercept and the random effect of the within-subject residual
variance may covary: φυa = cov (υi , ai ). The model, henceforth referred to as Model B2, has
five parameters of central interest, along with the parameters relating to the measurement model
of y: γ = (

τ, λ, ψ, β0, α0, τ0, φ
2
a , φυa

)
. Code developed for use with SAS IML for estimation

of the model is provided in Appendix B.
ML estimates of Model B2 are given in Table 2. The values presented in the table are based

on an analysis carried out using a trust-region optimization method (Moré and Sorensen 1983)
available through SAS IML and used to optimize the likelihood function. The solution was eval-
uated using quadrature points that ranged from 5 to 30 with increments of 5 points, resulting in
no appreciable differences in the parameter estimates or standard errors when using the different
number of quadrature points. The estimates provided in Table 2 are based 10 quadrature points.
To obtain starting values for estimation, results from the factor analysis model supplied values for
the measurement model. A fixed-effects model was then fit, followed by adding a random inter-
cept, then a random effect in the within-subject residual variance model with its covariance with
the random intercept. To assess whether there was appreciable heterogeneity of variance in the
occasion-level residuals, estimates were obtained for a model (Model B1) that assumed φ2

a = 0
and compared to those under the model that assumed φ2

a > 0 (Model B2). The model assuming
φ2
a > 0 results in an improvement in model fit in terms of the AIC, from 33,710 down to 33,070,

suggesting heterogeneity of the within-person residual variance. A LRT of the goodness-of-fit
between the two models using 2 df is χ2

2 = 33, 678 − 33, 034 = 644, p < .001, supporting
the need for the random effect in the residual variance model. As noted earlier, the assumption
that the uniquenesses for each item were equal across the days of measurement was not tenable
according to a LRT. Thus, Model B2 was fit relaxing the assumption that the uniquenesses were
equal, with this model henceforth called Model B3. Estimates from this model are given in Table
2 (with additional estimates provided in Appendix C). A LRT comparing Model B2 and Model
B3 supports the need to allow for the unique values. From the estimates based on Model B3, the
estimated correlation between the random intercept and the random subject effect for the within-
subject residual variance is r = −.43, an increase from r = −.36 in the model that relied on
mean scores, but again suggesting a tendency for those with a relatively low daily variation to also
have a relatively high mean positive affect score across days. Similar to the analysis that relied on
the means of the item response variables, the negative correlation suggests a tendency for those
who have a relatively high mean level of positive affect across days to also have a relatively low
degree of day-to-day variability. Thus, individuals who had higher estimated averages in affect
across days also showed greater stability in their affect across days. Again, two possible conclu-
sions from this are that those with greater overall positive affect are more stable in their daily
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Table 2.
ML estimates of a latent variable mixed-effects location scale model for daily positive affect (n = 435).

Measurement Model B1 Model B2 Model B3 Model B4

τ2 −0.59(0.056) −0.58(0.056) −0.58 (0.055) −0.58 (0.056)
τ3 −0.63(0.066) −0.63(0.066) −0.61 (0.064) −0.63 (0.065)
τ4 −0.54(0.059) −0.56(0.059) −0.55 (0.058) −0.57 (0.059)
τ5 −1.4(0.079) −1.4(0.078) −1.4 (0.077) −1.4 (0.078)
λ2 1.15(0.018) 1.15(0.018) 1.15 (0.018) 1.15 (0.018)
λ3 1.13(0.022) 1.13(0.022) 1.13 (0.021) 1.14 (0.021)
λ4 1.15(0.019) 1.15(0.020) 1.15 (0.019) 1.15 (0.019)
λ5 1.32(0.026) 1.32(0.026) 1.32 (0.025) 1.32 (0.026)
ψ1 0.20(0.006) 0.20(0.006) a a

ψ2 0.22(0.007) 0.22(0.007) a a

ψ3 0.35(0.010) 0.35(0.010) a a

ψ4 0.22(0.007) 0.21(0.007) a a

ψ5 0.53(0.015) 0.52(0.015) a a

Mean structure
β0, intercept 2.99(0.028) 2.99(0.028) 2.99 (0.028) 3.20(0.042)
β1, DS

∗
ti −0.10(0.011)

β2, DMSi −0.38(0.060)
Covariance Structure
Between-subject

α0, intercept −2.41(0.15) −1.21(0.077) −1.21 (0.077) −1.21(0.11)
α1, DMSi −0.20(0.17)
φa 1.37(0.081) 1.40 (0.081) 1.29(0.079)
ρaβ0i −0.43(0.054) −0.43 (0.053) −0.40(0.056)

Within-Subject
τ0, intercept −1.93(0.041) −2.66(0.093) −2.69 (.095) −3.20(0.13)
τ1,DS

∗
ti 0.30(0.071)

τ2,DMSi 0.89(0.17)
−2lnl 33678 33034 32864 32711
AIC 33710 33070 32970 32827

Notes:ML estimation was carried out using Gauss–Hermite quadrature with 10 quadrature points to evaluate
the integral. a ML estimates are given in Appendix C

positive affect or there is a ceiling effect of measurement. Available in supplementary materials
are empirical Bayes estimates of the location and scale values based on Model B3, along with
estimated conditional residuals between the observed item scores and the fitted values based on
the ML estimates from fitting Model B3.

In the previous analysis that relied on sample mean scores, it was not possible to estimate the
state residual variance of positive affect scores without the measurement error naturally inherent
in manifest scores. In the latent variable model that accounts for measurement error, the estimated
state residual variance, assuming homogeneity of the within-person residual variance of daily
latent scores, is exp {−1.93} = 0.15, and the estimated trait variance is exp {−2.41} = 0.090, with
the state variance almost double the size of the trait variance. With a relatively high residual state
variance, variation in positive affect seems to be due more to daily variability rather than between-
person differences. Relaxing the assumption of homogeneity of the within-person residual vari-
ance, however, gives a different description of the data. First, given the improvement in model fit,
it does not seem reasonable to conclude that the residual state variance is common across indi-
viduals, but rather, that it varies according to person. The estimated residual state variance for the
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typical individual is exp
{
τ0 + .5φ2

a

}
(Hedeker et al. 2008) = exp

{−2.56 + .5 (1.32)2
} = 0.18

and the estimated trait variance is exp {−1.21} = 0.30, with the trait variance now being greater
than the magnitude of the residual state variance, thus suggesting that, for the typical individual,
variation in positive affect scores is more highly attributable to between-person differences than
within.

As discussed earlier, applications of a mixed-effects location scale model generally do not
account for measurement error in response data. If scores includemeasurement error, the residuals
reflect a combination of within-subject variation both about the fitted model and that due to
measurement error. To evaluate the impact of partitioning the variance of the manifest scores
as can be done using a latent variable model, a version of Model B3 was fit in which a single
variance was used to represent these combined sources. The factor loadings, item intercepts,
factor mean, standard deviation of ai and correlation between ai and υi were set equal to the
estimates resulting from fitting Models B3, resulting in an estimated combined common variance
of exp {−0.77} = 0.46. From Model B3 that partitions the variance due to measurement error
and variation due to the fitted model, the common variance at the occasion level is estimated as
exp {−2.56} = 0.08, a substantial decrease from that in which the two sources of variation are
combined.

3.2.1. Daily Stressors To study the within- and between-subject effects of daily stressors on
latent positive affect, the person-mean centered and mean number of daily stressors were included
in the latent variable location scale model, similar to what had been done when evaluating positive
affect using the manifest scores directly:

ηti = β0i + β1DS
∗
ti + β2DS.i + εti .

Additionally, the two measures of daily stressors were included in the model of the occasion-level
residual variance relating to the latent affect measures:

σ 2
ε = exp

{
τ0 + τ1DS

∗
ti + τ2DS.i + ai

}
,

and the individual mean number of stressors was included in the variance model of the random
intercept:

φ2
υ = exp {α0 + α1DS.i } .

Starting values for the effects of covariates were set to 0. Estimates of this model are in the last
column of Table 2. For those with no reported daily stressors, the point estimate of the overall
positive affect score across days and individuals is β̂0 = 3.20 (se = 0.13), a value that is
higher than the point estimate of 3.05 obtained from the model that relied on the mean of the
manifest variables. For daily positive affect, the estimates suggest an overall negative within-
person (β̂1 = −0.10, se = 0.011), as well as between-person (β̂2 = −0.38, se = 0.060), effect
of the number of daily stressors on daily mean positive affect. Thus, on average, the within-
person effect indicates that a higher number of daily stressors tends to correspond to a lower
daily positive affect level, and the between-person effect indicates that a higher mean number
of daily stressors across days tends to correspond to a lower daily mean positive affect, with the
latter being greater than the former (H0 : β1 = β2, χ2 (1df) = 22, p < .001). In the previous
analysis based on sample mean scores to represent positive affect, the relative magnitudes of
these two effects were somewhat different relative to the estimates from the latent variable model,
but inference from both models in terms of the direction of the effects is the same with the
between-subject differences in the number of daily stressors having the greater impact on positive
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affect. Conditional on these effects, greater daily variation in affect scores corresponds to a high
number of daily stressors (τ̂1 = 0.30, se = 0.071), as well as a higher number of mean daily
stressors (τ̂2 = 0.89, se = 0.17),, with the latter being greater than the former (H0 : τ1 = τ2,
χ2 (1df) = 9.7, p = .002). These estimates are comparable to those obtained under the model
that relied on manifest scores. Also under the latent variable model, the variance of the random
intercept does not have a clear relationship with the mean number of daily stressors (α̂1 = −0.20,
se = 0.17), unlike the result under the standard model where it seemed that individuals differed to
a greater extent from each other as their mean number of daily stressors increased. From this, one
might conclude that there is no appreciable association between the between-subject variation in
positive affect levels and the mean number of stressors under the latent variable model but that the
association is instead strong and positive when studied under the standard version of the model.
Finally, a comparison of the estimated standard errors of the two models overall indicates that the
precision of the estimates is generally better under the model that used the sample means scores.
As the latent variable model is preferred for the sake of accounting for measurement error in the
manifest measures, it is possible that the precision of the estimates is negatively biased in the
standard version of the model when scores do contain measurement error and are best reflected
by those values obtain under the latent variable model.

4. Discussion

A mixed-effects location scale model extends the more common applications of latent curve
andmixed-effects models to uniquely address heterogeneity of variance both in the random effects
at the second level and the within-subject residuals. Some advancements of this framework have
included extensions to bivariate versions of the model to study multiple longitudinal variables,
including dyad data involving distinguishable individuals (Pugach et al. 2014), a 3-level model
(Lin et al. 2018), and joint models to handle combinations of response distributions (Lu 2017).
Most applications have relied on ML estimation, but Bayesian estimation of these models is an
alternative (Lin et al.). One benefit of fitting a mixed-effects model that includes a model for the
variance of a random effect is that the variance can be a function of between-subject covariates.
Recalling the example presented in this paper, the variance of the random intercept reflected
the magnitude of individual differences in the expected value of positive affect across multiple
days. Using a mixed-effects location scale model that was applied to sample mean scores, the
variance of the random intercept was studied as a function of the mean number of daily stressors
reported by study participants. Based on the model, the between-subject variability in mean
positive affect levels increased with an increase in the daily mean number of stressors. Although
not considered here, it would also be possible to allow the variance of a random subject effect to
also vary according to occasion-specific covariates. Similarly, the assumption of homogeneity of
the residual variances may be relaxed by allowing both within- and between-subject covariates
to account for variation in the occasion-specific residual variance. Additionally, a random effect
may be included in the model to allow for heterogeneity of the occasion-level residuals, even after
adjusting for the effects of covariates. 1 Access to SAS software is available for free to academics
(https://www.sas.com/en_us/software/on-demand-for-academics.html).

Applications of a mixed-effects location scale model often involve psychological response
data, although the standard application of themodel assumes that the response variable ismeasured
without error. This paper aimed to extend the mixed-effects location scale model by specifying
a measurement model for repeated measures of a set of indicator variables assumed to reflect an
underlying construct. Thus, this approach permits evaluation of the assumption of measurement
invariance, and if needed, adjustments to the latent variable mixed-effects location scale model
may bemade if needed. In the empirical example provided, for instance, the assumption of equality
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of the item uniquenesses across days was not defensible, and so the model took this into account.
Thus, the model developed in this paper included important aspects of a mixed-effects location
scale model while addressing measurement error that is inherent to many psychological variables.
Thus, a clear benefit to using the latent variable version of the model is that the occasion-level
residuals relate to the latent variable, and as such, reflect true within-subject variation.

From the empirical examples provided in this paper, there were appreciable differences
between the results from the standard application of the model and those from the latent variable
version of the model, with the greatest impact falling on the estimated covariance structure of
the model. That is, the differences in the estimates based on the fixed-effects part of the model
were only slightly different between models. With regard to the covariance structure, the differ-
ences were far more appreciable in terms of the magnitude of covariate effects, and this lead to
differences about whether within-subject versus between-subject effects were most important. To
better understand important differences between the two versions of the model requires a data
simulation study. This would also allow for an examination of other factors, such as the number
of repeated measures and the number of study participants needed, for reliable estimation of these
models and to understand the biases that may come from either version of the model. Finally,
although the empirical examples relied on cases that were complete with respect to the variables
chosen for analysis, the model developed in this paper does not require complete data. Missing
data are common in longitudinal investigations, and understanding the impact of missing data on
the estimation of mixed-effects location scale models is worthy of further study.
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Appendix A

Under a mixed-effects location scale model, the marginal distribution of the repeated measures
can be expressed as a conditional distribution of the response given the nonlinear random effect
ai in (3) (cf: du Toit and Cudeck 2009), and thus, the conditional distribution requires an integral
equation of only one dimension. First, because the random effects (υi , ai ) are jointly normally
distributed, the conditional distribution of υi given ai is also normal:

υi |ai ∼ N (μυ.a,�υ.a) ,

with mean vector and covariance matrix (Morrison 1990, 3rd ed., p. 92)

μυ.a = β + φυa

φ2
a
ai ,

and
�υ.a = �υ (wi , α, ρυ) − �υa(φ

2
a)

−1�′
υa ,
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respectively. It follows that the distribution of yi given ai is normal:

yi |ai ∼ N
(
μy.a, �y.a

)
,

with

μy.a = i (xti ,wi ) μυ.a

and

�y.a = i (xti ,wi )�υ.a (xti ,wi )
′ + �a

ε .

Assuming independence of the residuals between occasions, the within-subject variance is mod-
eled by

�a
ε = I exp {θ0 + τxxti + τwwi + ai } .

Conditional on ai , the model in (1) with a random effect included in the within-subject vari-
ance model in (3) is linear in νi . Consequently, it is possible to analytically eliminate νi from
the marginal distribution in (4), and as a result, the calculation is simplified. The conditional
distribution of yi given ai is

yi |ai ∼ N (μi , �i ) ,

where

μi =  (xti ,wi ) β

and

�i =  (xti ,wi ) �υ (wi , α, ρυ)  (xti ,wi )
′ + �ε (xti ,wi , τ ) .

The corresponding probability density function is

hy (yi |ai ) = 2π−2/N |�i |−1/2 exp

(
−1

2
(yi − μi )

′ �−1
i (yi − μi )

)
.

The marginal distribution of yi is then

g (yi ) =
∫

ai
hy (yi |ai ) ha (ai ) dai .

Thus, the marginal distribution of yi that is an r dimensional integral has been reduced to a single
dimensional integral. Given a sample of observations, y1, . . . , yN , the log-likelihood of γ is then

lnL (γ ) =
N∑

i=1

ln g (yi ) .

where γ = (
β, α, ρυ, τ, φυ, φυa, φ

2
a

)
.
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Appendix B

The script below is code for estimation of a latent variable mixed-effects model referred to as
Model B2 in the empirical example. The data file, "daily", is structured in long format with
variables given by: id day v y.

proc iml;
use daily;
read all var {id day v y};
* – nodes and weights for 10-point Gauss-Hermite integral approximation of marginal pdf –;
xk = {−3.4361591188377, −2.5327316742328, −1.7566836492999, −1.0366108297895,
−0.3429013272237, 0.3429013272237, 1.0366108297895, 1.7566836492999, 2.5327316742328,
3.4361591188377};
wk = { 7.640432855233e-6, 0.001343645746781, 0.03387439445548, 0.2401386110823,
0.6108626337353, 0.6108626337353, 0.2401386110823, 0.03387439445548, 0.001343645746781,
7.640432855233e-6};
Nq = nrow(xk); * no. of quadrature points;
* – specify aspects specific to the data problem –;
p = 40; * no. of manifest indicators;
Nc = 8; * no. of occasions;
Ns = nrow(y)/p; * no. of subjects;
* – parameter starting values for beta0, alp0, SD(a), rho_va, tau0, lam2-lam5, tau2-tau5, psi1-psi5
–;
th = {2.9 -1.14 1.34 -0.44 -2.59 1.18 1.13 1.15 1.38 -0.72 -0.65 -0.59 -1.5 0.20 0.22 0.40 0.23

0.52 }‘;
Nparm = nrow(th); * – no. of model parameters –;
print " ——————- Number of ———————"„
" Subjects Occasions Parms Quad. pts"„
Ns Nc " " Nparm Nq;
*– design matrix for a random intercept model –;
X = {1 1 1 1 1 1 1 1}‘;
start model(th) global(Ns,Nc,p,id,X,y,Nq,wk,xk);
pie = 3.1415927;
beta = th[1];
alp0 = th[2];
phi00 = sqrt(exp(alp0));
phi = I(2);
phi[2,1] = th[4]; phi=phi+phi‘-I(2);
phi = ((phi00//th[3]) # phi) # (phi00//th[3])‘;
tau0 = th[5];
phi_b_a = phi[1,1] - (phi[1,2] / phi[2,2]) * phi[2,1];
Va = phi[2,2];
XphX = X * phi_b_a * X‘;
lam = I(Nc) @ (1//th[6]//th[7]//th[8]//th[9]);
tau = J(Nc,1,1) @ (0//th[10]//th[11]//th[12]//th[13]);
delta = J(Nc,1,1) @ (th[14]//th[15]//th[16]//th[17]//th[18]); De = diag(delta);
Lnl = 0;
do i = 1 to Ns;
je = i#p;
js = je-p+1;
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yi = y[js:je];
Xi = 0;
do k = 1 to Nq;
ax = sqrt(2#Va)#xk[k];
mu_b_a = beta + (phi[1,2] / phi[2,2]) # ax;
mu_y_a = tau + lam * X * mu_b_a;
ei = yi - mu_y_a;
psi = I(Nc) # exp(tau0 + ax);
sig_y_a = lam * (XphX + psi) * lam‘ + De;
siv_y_a = inv(sig_y_a);
Dt = det(sig_y_a);
Xi = Xi + wk[k] # (1/sqrt(Dt)) # exp(-0.5 # (ei‘*siv_y_a*ei));
end;
*– contribution of individual i to loglikelihood –;
Xi = (((2*pie)##(-p/2)) / sqrt(pie)) # Xi;
*– loglikelihood function –;
Lnl = Lnl + log(Xi);
end;
return(-Lnl);
finish;
* – function optimization –;
call nlptr(rc,thn,’model’,th,{0 1}); thn=thn‘;
vn={’beta0’ ’alp0’ ’SD(a)’ ’rho_va’ ’tau0’ ’lam2’ ’lam3’ ’lam4’ ’lam5’ ’tau2’ ’tau3’ ’tau4’ ’tau5’
’psi1’ ’psi2’ ’psi3’ ’psi4’ ’psi5’};
* – second-order partial derivatives of the loglikelihood function, evaluated at the solution, for
SEs of the estimates –;
call nlpfdd(f,gr,Hs,’model’,thn); gr=gr‘;
* – display estimates with SEs and 95% confidence intervals, gradient and AIC value –;
se = sqrt(vecdiag(inv(Hs)));
me = 2#se; t = thn / se;
print „„ th[r=vn f=best6.] " " thn[f=10.4] se[f=10.4] t[c="thn/se" f=10.3] (thn-me)[f=12.4 c="Lb"]
(thn+me)[f=10.4 c="Ub"] gr[f=10.4];
AIC = 2#f + 2#nrow(thn); print „, " " (f‘)[f=best8. c="LogLike"] " " (2#f)[f=best8. c="Deviance"]
" " aic[f=best8.];
quit;

Appendix C

ML estimates of the uniqueness by item and day under Models B3 and B4 are given below.
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Model B3
Day 1 2 3
Item 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
ψ̂ 0.20 0.29 0.51 0.31 0.60 0.26 0.25 0.32 0.19 0.43 0.17 0.23 0.33 0.18 0.51
se(ψ̂) 0.02 0.02 0.04 0.03 0.05 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.04
Day 4 5 6
Item 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
ψ̂ 0.16 0.20 0.27 0.22 0.58 0.18 0.21 0.29 0.17 0.56 0.21 0.20 0.32 0.19 0.49
se(ψ̂) 0.01 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.04 0.02 0.02 0.03 0.02 0.04
Day 7 8
Item 1 2 3 4 5 1 2 3 4 5
ψ̂ 0.18 0.18 0.43 0.18 0.47 0.23 0.21 0.33 0.25 0.54
se(ψ̂) 0.02 0.02 0.03 0.02 0.04 0.02 0.02 0.03 0.02 0.04
Model B4
Day 1 2 3
Item 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
ψ̂ 0.20 0.29 0.51 0.31 0.60 0.26 0.25 0.32 0.19 0.43 0.17 0.23 0.33 0.18 0.51
se(ψ̂) 0.02 0.02 0.04 0.03 0.05 0.02 0.02 0.03 0.02 0.03 0.01 0.02 0.03 0.02 0.04
Day 4 5 6
Item 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
ψ̂ 0.16 0.20 0.27 0.22 0.58 0.18 0.21 0.29 0.17 0.56 0.21 0.20 0.32 0.19 0.49
se(ψ̂) 0.01 0.02 0.02 0.02 0.04 0.01 0.02 0.02 0.02 0.04 0.02 0.02 0.03 0.02 0.04
Day 7 8
Item 1 2 3 4 5 1 2 3 4 5
ψ̂ 0.18 0.18 0.43 0.18 0.47 0.23 0.21 0.33 0.25 0.54
se(ψ̂) 0.01 0.02 0.03 0.02 0.04 0.02 0.02 0.03 0.02 0.04
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