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Summary

Analysis of the temporal variation in allele frequencies is useful for studying microevolutionary
processes. However, many statistical methods routinely used to test temporal changes in allele
frequencies fail to establish a proper hypothesis or have theoretical or practical limitations. Here,
a Bayesian statistical test is proposed in which the distribution of the distances among sampling
frequencies is approached with computer simulations, and hypergeometric sampling is considered
instead of binomial sampling. To validate the test and compare its performance with other tests,
agent-based model simulations were run for a variety of scenarios, and two real molecular databases
were analysed. The results showed that the simulation test (ST) maintained the significance value
used (a=0.05) for a vast combination of parameter values, whereas other tests were sensitive to the
effect of genetic drift or binomial sampling. The differences between binomial and hypergeometric
sampling were more complex than expected, and a novel effect was described. This study suggests
that the ST is especially useful for studies with small populations and many alleles, as in
microsatellite or sequencing molecular data.

1. Introduction

All microevolutionary processes produce changes in
allele frequencies. Such processes could therefore be
detected by analysing the temporal variation in allele
frequencies. If this variation is too high to be caused
by sampling error and genetic drift alone, it can be
inferred that other evolutionary forces are respon-
sible. The tests that are most commonly used to
compare samples taken over time are the homogen-
eity x2, t, or G tests ; analysis of molecular variance
(AMOVA); and population divergence statistics (e.g.
FST) (examples in Jorde & Ryman, 1995; Viard et al.,
1997; Laikre et al., 1998; White et al., 1998; Rank &
Dahlhoff, 2002; Nayar et al., 2003; Säisä et al., 2003;
Williams et al., 2003; Han & Caprio, 2004a, b ;
Kollars et al., 2004; Le Clerc et al., 2005). These
tests are not completely adequate, because their null
hypothesis fails to account for genetic drift (Gibson
et al., 1979; Waples, 1989a), and this may lead to an
overestimation of the significance values.

Some tests that have been developed for this pur-
pose so far have had a limited impact, most likely
because the majority were developed for specific
purposes (examples in Fisher & Ford, 1947;
Lewontin & Krakauer, 1973; Schaffer et al., 1977;
Gibson et al., 1979; Wilson, 1980; Watterson, 1982;
Mueller et al., 1985). More recently, Goldringer &
Bataillon (2004) proposed that using a simulated
distribution of Fc,l (the standardized variance in
allele frequencies between generations) can be useful
for testing temporal changes in allele frequencies.
More recently, Bollback et al. (2008) developed a
method for estimating Ne and s (selection coefficient)
using transition probabilities whose numerical sol-
ution could be used for testing temporal changes,
too. In addition, Beaumont (2003) compared several
methods attaining Markov chain Monte Carlo
(MCMC) algorithms and importance sampling (IS)
for estimating population growth or decline, which
also could be used for testing temporal changes in
allele frequencies. However, those proposals did not
provide the common researcher with a practical way
to implement them.
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A test for general usage whose implementation was
practical was developed by Waples (1989a), and used
x2 adjusted to take into account the genetic drift.
Nevertheless, this test may overestimate the prob-
ability values with a large number of samples and
small population sizes (Waples, 1989b). Moreover,
implementation of the test is complicated when there
are many alleles and samples (Goldringer & Bataillon,
2004).

In addition, the most frequently used method
to model a sample taken from a population is by
binomial (replacement) sampling, but the samples
should be considered strictly hypergeometric (non-
replacement) (Pollak, 1983; Waples, 1989b) because,
in reality, the sampling rarely implies the return and
randomization of an organism to the population
before the next organism is taken. Waples ’ test over-
came that problem by considering the samples as
drawn from the previous generation gene pool
from which they represent binomial samples (Waples,
1989a, b).

Here, I present a general-use statistical test that
is based on computer simulations under a Bayesian
background, incorporating binomial sampling for
change of generation and hypergeometric sampling
for getting effective population and samples, and a
user-friendly computer programme that performs the
proposed analysis and the Waples test for a number of
different scenarios (e.g. multiallelic systems, several
samples, N and Ne variables).

2. Materials and methods

(i) The algorithm

Consider a locus with k alleles in a panmictic popu-
lation with discrete generations of size N and effective
population size Ne (number of reproductive organ-
isms). Let P0, …, Pt be the vectors of allele frequencies
in the whole population at generations 0, 1, …, t,
respectively, and Pe0, …, Pet the frequency vectors of
the effective population of 0, 1, …, t generations. Let
X and Y be the frequency vectors in the samples taken
at generations 0 and t, with sampling sizes S0 and St.

X= X1,X2, . . . ,Xkf g; g
k

i=1
Xi=1,

Y= Y1,Y2, . . . ,Ykf g; g
k

i=1
Yi=1,

Pj= Pj1,Pj2, . . . ,Pjk

� �
; g

k

i=1
Pji=1,

Pej= Pej1,Pej2, . . . ,Pejk

� �
; g

k

i=1
Peji=1,

where j indicates the generation and the second sub-
index denotes the allele.

Following Nei & Tajima’s (1981) and Pollak’s
(1983) models, the simplest algorithm compared
two samples taken from two consecutive generations
as follows (see Fig. 1) : after the initial parameters
(N, Ne, S0, St) were set, the frequencies in the samples
(X and Y) and in the effective population (Pe0) were
generated with hypergeometric multivariate random
vectors, while the next generation frequencies (P1)
were obtained from multinomial deviates. After the
process was repeated many times, the frequency of the
occasions when the distance between the simulated
allele frequencies was larger than the observed one
@( ~XX, ~YY)o@(Xobs,Yobs)

� �
was taken as the P-value of

the test.
The distance between m samples, X, Y1,

Y2, …, Ymx1 (all taken at different times), had the

Fig. 1. Model followed by the simulations. Each ellipse
represents a population. The size of the population is
indicated by the term outside the ellipse, and the allele
frequency of one allele at a particular locus is represented
by the term inside. The subindex indicates the generation
number. The effective population is a splinter group of the
total population, as are the samples (they represent non-
replacement samples). The total population is obtained by
random mating of a very large number of gametes, and
therefore, the total population can be modelled as
sampling with replacement from the previous effective
population. The algorithm substitutes these sampling
processes by generating random numbers, whether
hypergeometric (hrn) or multinomial (mrn). When the
samples are separated by t generations, the intermediate
non-sampled generations can be simulated only by a
binomial deviate (see text).
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form @ X,Y1,Y2, . . .Ymx1ð Þ=gk YjixYjx1, i k1 =
gm

j=1g
kx1
i=1 YjixYjx1, i

� �
, where Y0=X. Notice that

there is no exponent for the difference since it would
make small differences even lower, distorting the
magnitude of the differences.

Samples separated by t generations required an
additional hypergeometric deviate (for effective popu-
lation) and a multinomial deviate (for total popu-
lation) for each additional generation. Alternatively,
as other authors have argued, intermediate non-
sampled generations could be generated only by
multinomial deviates, because an effective population
can be considered a multinomial draw from the pre-
vious generation (Waples, 1989a).

The described procedure dealt with uncertainty
about N and Ne, and the allele frequencies at gener-
ation zero (P0).

Estimation of N and Ne based on the temporally
spaced samples would be redundant and clearly in-
correct. Instead, two approaches can be performed,
and both are suggested here : assaying of several
reasonable combinations of N and Ne values by using
the available knowledge about the population and
employing an estimation of Ne with a method other
than the temporal one, for instance, the Waples &
Do (2008) and Hill (1981) linkage disequilibrium
methods or Pudovkin et al.’s (1996) heterozygote
excess method, the last two implemented in Ovenden
et al.’s (2007) Software NeEstimator.

Uncertainty about P0 required some mathematical
treatment (see above).

(ii) Bayesian analysis

For representation simplicity, let us consider only the
case of two temporally spaced samples X and Y.
A Bayesian approach could use the predictive distri-
bution of the allele frequencies in the samples, X̃ and
Ỹ, conditional to the observed frequencies :

f ~XX, ~YYjXobs,Yobs

� �
: (1)

Over such distribution, the rejection region would be
established as the one with a volume of a, where the
distances between X̃ and Ỹ, h(X̃,Ỹ) are as high as
possible. A better approach could be performed by
calculating the P-value by estimating the volume
under the curve drawn by eqn (1), where @( ~XX, ~YY)o
@(Xobs,Yobs) is true. Such volume could be obtained only
by integrating eqn (1), whose form should be written in
terms of the unknown hyperparameter P0 :

f ~XX, ~YYjXobs,Yobs

� �
=
Z

f ~XX, ~YYjP0

� �
f P0jXobs,Yobsð Þ@P0:

(2)

Obtaining an analytic closed form for eqn (2) would
be quite a problem, since it would require extensive

and even intractable integration; however, this prob-
lem could be overcome by simulating random de-
viates from it. Each simulation could be done in two
sequential stages: (i) simulating P0 deviates from
f (P0|Xobs, Yobs) ; and (ii) simulating X̃ and Ỹ from
f (X̃,Ỹ|P0) for every P0 vector obtained in the first
stage, in order to finally calculate h(X̃,Ỹ). This algor-
ithm would actually generate vectors X̃ and Ỹ from
the desired distribution (eqn 2). The algorithm de-
scribed in section (i) (also modelled in Fig. 1) indeed is
valid for the second stage (ii), but the first one (i) has
some potential difficulties, as the simulation from the
inverse of a hypergeometric multivariate density. Two
approaches were used for dealing with the simulation
of P0 from f(P0|Xobs, Yobs) : an empirical Bayes (EB)
and a fully Bayesian with f(P0|Xobs, Yobs) approached
by a more friendly distribution.

EB approaches use the observed data to estimate
some intermediate parameter (in this case, P0) and
then proceed as though it was a known quantity
(Carlin & Louis, 2009). Thus, instead of using eqn (2),
simulations of X̃ and Ỹ were drawn from

f ~XX, ~YYjP̂0

� �
: (3)

where P̂0 is a moments’ estimator of P0 done by the
method described by Waples (1989a). In summary,
the EB algorithm consists of the following:

’ Calculate @(Xobs,Yobs).
’ Estimate P0 by using the data from all the samples

according to Waples (1989a).
’ Simulate a large number of values of X̃ and Ỹ from

eqn (3) by using the algorithm described in section
(i) with the estimation of P0 as the initial frequen-
cies (the ones of the population at generation zero).
For each simulation, calculate h(X̃,Ỹ) and record the
number of times when @( ~XX, ~YY)o@(Xobs,Yobs)is true ;

’ Finally, the P-value of the test corresponds to
the quotient between the number recorded in the
simulations and the overall number of simulations
generated.

EB procedures could give reliable estimates since the
posterior still used the samples’ information but at
much lower computational cost (Casella, 1985).

The fully Bayesian approach still used simulations
from a distribution (eqn 2), but replaces the first stage
of the simulation, that is, the simulation of deviates
from f(P0|Xobs, Yobs), whose exact form would be the
inverse of a hypergeometric multivariate distribution,
with a more friendly one, the inverse of a multinomial
distribution, namely, a Dirichlet distribution whose
simulation is much simpler (Haas & Formery, 2002).
The Dirichlet distribution should have the number
of parameters equal to the number of alleles, so that
the parameters a1, a2, …, ak should correspond, each
one, to the average of the absolute allele frequencies
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over all the samples. However, since the frequencies at
a determined sample reflect only the frequencies at
generation zero, P0, after t generations of drift, they
should be adjusted to take into account such variance
represented by the term (1x1/Ne)

t, which has already
been used for analogous purposes (Waples, 1989b).
Thus, the parameters of the Dirichlet distribution
were set to ai=S0Xi+StYi*, where Yi*=Yi(1x1/Ne)

t.
Therefore, the algorithm for this fully Bayesian test

is as follows:

’ Calculate @(Xobs,Yobs):
’ Calculate the parameters of the Dirichlet distri-

bution as indicated above.
’ Simulate a large number of values of X̃ and Ỹ from

an approach of eqn (2) by, first, drawing a random
vector P0 from the Dirichlet distribution described
above and afterwards using the algorithm described
in section (i) with the vector P0 obtained in the
previous step as the initial frequencies. Then, for
each simulation, calculate h(X̃,Ỹ) and record the
number of times when @( ~XX, ~YY)o@(Xobs,Yobs) is true.

’ Finally, the P-value of the test corresponds to
the quotient between the number recorded in the
simulations and the overall number of simulations
generated.

The P-value is a sensitive approach to the probability
of obtaining a @( ~XX, ~YY)o@(Xobs,Yobs) under pure drift, and
so the P-value tests the null hypothesis of the lack
of differences caused by forces in addition to gene
drift.

(iii) Relaxing some assumptions

One advantage of the simulation test (ST) is that re-
laxing of some assumptions resulted straightforward,
as the implementation of the two sampling schemes
Nei & Tajima (1981) called Plan I and Plan II that
consisted of taking organisms before or after repro-
duction. The difference consisted of including or not
the sampled genes in the population for potentially
generating the next generation.

Another advantage would be the implementation
of multiple samples (all from the same population at
different times) or the use of values of N and Ne

changing over generations.
Such modifications also justify the use of the

Nei-Tajima (1981) model since the use of the Waples
(1989b) model (substituting hypergeometrical plus
binomial sampling by binomial sampling of the pre-
vious generation) would hardly allow relaxing those
assumptions without some computational drawbacks.

(iv) Multiple loci

For a multilocus test, it was necessary to programme
the addition of the differences among simulated

frequencies for all the loci and compare them with the
observed frequencies. However, this approach is too
demanding computationally. In addition, such an
approach can be used only to determine whether the
entire set of loci gives a significant result ; identifying
significant results for individual loci is a much more
complicated task that involves multiple-hypothesis
testing. Traditionally, composed hypotheses have
been tested by sequential Bonferroni-type procedures
as shown by Rice (1989) and others, reaching their
maximum statistical power with the Benjamini &
Hochberg (1995) method, which controlled the false
discovery rate (FDR; the proportion of null hypo-
thesis erroneously rejected), instead of the family-wise
error rate (FWER; the probability of making one or
more type I errors) as their predecessors. However,
Storey (2002) showed a new approach to the problem,
working on an improved FDR and q-values (analo-
gues to P-values that reflect the proportion of false
positives). They yielded many theoretical advantages
and a large improvement on statistical power, being
especially applicable to genetic data, as demonstrated
in the work of Storey & Tibshirani (2001), who pres-
ented a practical way to implement the analysis,
which is highly recommended. In addition, this topic
has received a huge amount of interest in recent years
as the methods to estimate the FDR have multiplied
(e.g. Strimmer, 2008) as well as the applications to
genome-wise studies (e.g. Forner et al., 2008).

(v) FT: a statistic for quantifying differences among
temporal samples

Some researchers have quantified the temporal dif-
ferentiation by estimating FST from samples taken
from the same population at different times as if the
samples were from different geographically separated
locations. The method is clearly erroneous, but the
necessity of quantifying (and not only testing) the
differentiation accumulated in time is real. Wright’s
FST indicates subpopulation differentiation by an un-
coupling of heterozygosis between the overall popu-
lation and subpopulations levels. This departure of
heterozygosis was thought to increase with the time
by gene drift when gene flow is restricted among sub-
populations. With some caution, FST could be useful
for the quantification of temporal differences, taking
into account that FST was designed to account for the
differentiation generated only by gene drift. Never-
theless, researchers in general are actually not inter-
ested in quantifying gene drift but other evolutionary
forces, so what is here proposed is the use of a statistic
analogue to FST easily interpretable as reflecting dif-
ferentiation equivalent to the obtained value of an
FST. Such statistic is applicable to samples taken from
the same population (the same geographic location)
at different times and consists of an FST from which
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an average-gene-drift term has been subtracted. This
average-gene-drift term is the average of FST estima-
tions among temporally simulated samples and is here
named F̄s. Since that average gene drift behaves as a
random variable, it gives the advantage of estimating
at one time the value and statistical significance by
recording the frequency of occurrences when the FST

among simulated samples was smaller than the FST

estimated from real samples. The resulting statistic
here called FT accounts the differences among samples
taken at different times after subtracting the mean
gene drift, i.e. due to other evolutionary forces. In the
programme, FT was calculated as FT=FSTxF̄s, while
FST was calculated as Nei’s (1973) formula: FST=
(HTxHS)/HT, where HS is the average Hardy–
Weinberg heterozygosity and HT=1xgp̄2i for any
number of alleles.

(vi) Validation of the test

Agent-based model (ABM) simulations were pro-
grammed for playing the role of real populations
where virtual samples were taken from, and used to
evaluate the effectiveness and discover the properties
of four tests : the above-described ST, the proposed
test of significance of FT, the adjusted Waples test
(WT), and a conventional x2 contingency test (ChT),
with different scenarios and combinations of para-
meters. Unlike ST simulations, the ABM simulations
represented detailed populations where organisms
were represented and sampled one by one, the popu-
lations mated randomly in a process where alleles
were passed randomly to the offspring, and the
number of descendants was obtained with a Poisson
distribution. For each combination of parameters,
10 000 ABM simulations were run, and the number of
significant tests (with a=0.05) were recorded. In ad-
dition, several assays were run with a modified ST
whose samples were all binomial (multinomial for
several alleles) instead of hypergeometric, in order
to assess the potential processes affecting allele fre-
quencies whose effect would be neglected by binomial
sampling. In addition, statistical robustness was as-
sessed by performing runs in which incorrect popu-
lation sizes were used (i.e. the population sizes of the
ABM simulations and those used in the tests were
different), while the statistical power was examined
by introducing a constant increase in the frequency
of one allele emulating a positive natural selection
process.

Finally, the four tests were applied to two real
datasets : (i) frequencies of four microsatellite loci
from the snail Bulinus truncatus (Viard et al., 1997)
taken at three different times separated by four and
one generations, which were obtained from 12 loca-
tions, and (ii) frequencies from six sequenced genes
(analysed as biallelic systems) that are involved in the

expression of the skin colour of horses, dated at 5
times over a 12 900-year period (13 100, 3700, 2800,
600, and 200 BC) reported by Ludwig et al. (2009)
(Table 1).

(vii) Programming

Multinomial and hypergeometric multivariate devi-
ates were generated by iterative simulation from their
univariate marginal densities (Haas & Formery, 2002;
Gelman et al., 2004), which were obtained with
Kemp’s (1986) and Voratas & Schmeiser’s (1985)
methods, respectively. Dirichlet deviates were ob-
tained as explained in Gelman et al. (2004) and in
Haas and Formery (2002) by using the random
gamma generator contained in the module ‘random’
(A. Miller, available at : http://www.Mathtools.net).
For uniform deviates, the RANLUX module was
used (Lüscher, 1994; James, 1994).

3. Results

(i) Effect of the parameters

After more than 400 ABM simulations were run
(lasting more than 2000 h of computer time), the re-
sults with the parameters that caused the more pro-
nounced effects are shown below.

For most combinations of the parameters, the ST,
FT test, and WT showed small deviations from the
expected 5% of the significant tests. However, the
ChT gave higher numbers on the significant tests,
which apparently increased as the effects of genetic
drift accumulated, for the lower population sizes
(Fig. 2A), the higher numbers of generations (Fig. 2B),
or higher numbers of samples (Fig. 2C and D).
Moderate overestimation of the proportion of the
significant tests was observed for the WT with small
population sizes (<500) (Fig. 2A), high numbers of
generations (Fig. 2B) or high numbers of samples
(Fig. 2C and D). The proportion of significant tests
obtained with the WT was greater than 6% only with
very low population sizes (Fig. 2A) or with numerous
samples (>10) (Fig. 2D). The low-population-sizes
departure could be related to a high sample size to
effective population size ratios (S/Ne) in addition to
the small population size effect. The effect of S/Ne has
been demonstrated by Waples (1989a) and was also
detected here in a group of simulations with different
S/Ne ratios (from 0.1 to 0.9; results not shown).
Interestingly, the ChT and WT performed well with
high numbers of alleles or loci (not shown), but both
showed a higher proportion of significant tests than
the ST or FT test.

On the other hand, for the ST and FT test, differ-
ences greater than 2% from the expected value of 5%
of the significant tests were not observed for most
combinations of the parameters, and in general, the
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Table 1. Results for the two real data sets analysed. In the snail data set, the numbers under the label ‘No. of generations between samples ’ indicate the number of
generations between the first and last samples, while the numbers inside the parentheses indicate the generations between consecutive samples. Grey cells indicate
significant results (a=0.05), and * indicates analyses that were not possible because of a lack of data or because the locus was monomorphic

Microsatellites of the snail (Bulinus truncatus) Genes for horse coat colour
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Comparison N
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N
o
.
o
f
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b
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Probability values of the tests

ST Ft WT ChT ST Ft WT ChT

Boyze I

3

B
T
1

2 5(4/1) 0.5407 0.5230 0.1337 0.1670 x13100 versus x3700

2

A
S
IP 2

9400 0.0003 0.0002 0.0001 0.0000
Boyze II 1 5(4/1) * * * * x3700 versus x2800 900 0.4080 0.3528 0.3286 0.3112
Doubalma 1 5(4/1) * * * * x2800 versus 600 2200 0.2591 0.2635 0.2437 0.1883
Bala 2 5(4/1) 0.4254 0.4000 0.2369 0.1063 x600 versus x200 400 0.6356 0.6356 0.6337 0.6219
Kobouri 1 5(4/1) * * * * All 5 12900 0.0087 0.0017 0.0007 0.0001

Tera R 2 5(4/1) 0.9776 0.9670 0.9782 0.9774 x13100 versus x3700

2

M
C
1
R 2

9400 0.4598 0.4113 0.2912 0.2885
Tera D 3 5(4/1) 0.0809 0.0860 0.0048 0.0002 x3700 versus x2800 900 0.0669 0.0522 0.0410 0.0375
Namaga PM 3 5(4/1) 0.1828 0.1921 0.1437 0.1109 x2800 versus x600 2200 0.6923 0.6921 0.6797 0.6435
Namaga B 4 5(4/1) 0.2957 0.3120 0.0897 0.0551 x600 versus x200 400 0.0276 0.0295 0.0247 0.0200
Namaga W 3 5(4/1) 0.0509 0.0521 0.0000 0.0000 All 5 12900 0.1882 0.0240 0.0000 0.0000

Mari Sud 3 5(4/1) 0.4015 0.5120 0.2108 0.1931 x13100 versus x3700

2

K
IT

1
3 2

9400 * * * *
Mari Nord 3 5(4/1) 0.4234 0.4530 0.5404 0.5681 x3700 versus x2800 900 * * * *

Boyze I

3

B
T
6

1 5(4/1) * * * * x2800 versus x600 2200 0.3630 0.2770 0.2850 0.2831
Boyze II 1 5(4/1) * * * * x600 versus x200 400 0.4728 0.5045 0.4451 0.4336
Doubalma 2 5(4/1) 0.0037 0.0100 0.0079 0.0088 All 5 12900 0.5508 0.6478 0.0007 0.1750

Bala 1 5(4/1) * * * * x13100 versus x3700

2

K
IT

1
6 2

9400 * * * *
Kobouri 1 5(4/1) * * * * x3700 versus x2800 900 0.8701 0.7840 0.3117 0.3112
Tera R 5 5(4/1) 0.0014 0.0100 0.0001 0.0001 x2800 versus x600 2200 0.9998 0.9984 0.9371 0.9295
Tera D 5 5(4/1) 0.0034 0.0120 0.0000 0.0000 x600 versus x200 400 0.1899 0.1330 0.1687 0.1408
Namaga PM 3 5(4/1) 0.1006 0.1110 0.0473 0.0170 All 5 12900 0.4114 0.3562 0.0127 0.3545

Namaga B 3 5(4/1) 0.0913 0.0920 0.0776 0.0358 x13100 versus x3700

2

M
A
T
P 2

9400 * * * *
Namaga W 2 5(4/1) 0.0719 0.0750 0.0054 0.0011 x3700 versus x2800 900 * * * *
Mari Sud 4 5(4/1) 0.1553 0.1550 0.0054 0.0038 x2800 versus x600 2200 * * * *
Mari Nord 5 5(4/1) 0.1137 0.1000 0.0509 0.0242 x600 versus x200 400 0.1196 0.0840 0.0857 0.0852

Boyze I

3

B
T
1
2

5 5(4/1) 0.0004 0.0010 0.0000 0.0000 All 5 12900 0.5678 0.5165 0.0000 0.0949

Boyze II 4 5(4/1) 0.0939 0.1001 0.2467 0.2139 x13100 versus x3700

2

S
IL

V
9 2

9400 * * * *
Doubalma 2 5(4/1) 0.0331 0.0340 0.0330 0.0350 x3700 versus x2800 900 * * * *
Bala 5 5(4/1) 0.5207 0.4900 0.0140 0.0248 x2800 versus x600 2200 0.8692 0.8235 0.4529 0.4520
Kobouri 4 5(4/1) 0.0115 0.0100 0.0022 0.0015 x600 versus x200 400 0.5472 0.4908 0.3340 0.3009
Tera R 14 5(4/1) 0.0001 0.0000 0.0606 0.1027 All 5 12900 0.4814 0.4698 0.0172 0.5921

Tera D 12 5(4/1) 0.0301 0.0310 0.0000 0.0001
Namaga PM 12 5(4/1) 0.1270 0.1300 0.0073 0.0009
Namaga B 12 5(4/1) 0.0000 0.0000 0.0053 0.0382
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proportion of significant tests obtained with these
methods was below 5%.

In order to determine whether the small depar-
tures from the expected number of significant tests
that were found for several parameter ranges were
accumulative, a set of ABM simulations was run
with ‘problematic ’ combinations of parameter values.N

a
m
a
g
a
W

1
0

5
(4
/1
)

0
. 1
7
1
1

0
. 1
7
7
5

0
. 0
0
2
6

0
. 0
0
0
1

M
a
ri
S
u
d

1
8

5
(4
/1
)

0
. 1
4
2
4

0
. 1
3
5
0

0
. 0
0
3
7

0
. 0
0
1
6

M
a
ri
N
o
rd

1
6

5
(4
/1
)

0
. 0
3
0
6

0
. 0
3
1
0

0
. 0
0
0
2

0
. 0
0
0
2

B
o
y
ze

I

3

BT13

3
5
(4
/1
)

0
. 0
9
3
2

0
. 1
0
0
0

0
. 0
0
2
6

0
. 0
0
0
5

B
o
y
ze

II
4

5
(4
/1
)

0
. 5
3
8
5

0
. 5
4
5
0

0
. 7
9
0
0

0
. 7
6
0
3

D
o
u
b
a
lm

a
5

5
(4
/1
)

0
. 6
3
2
0

0
. 6
3
3
0

0
. 5
9
5
6

0
. 5
9
9
5

B
a
la

4
5
(4
/1
)

0
. 0
8
4
2

0
. 0
8
5
0

0
. 2
8
8
7

0
. 2
6
5
6

K
o
b
o
u
ri

5
5
(4
/1
)

0
. 0
6
3
9

0
. 0
6
4
0

0
. 0
1
4
0

0
. 0
1
0
6

T
er
a
R

1
5

5
(4
/1
)

0
. 0
0
0
0

0
. 5
0
0
0

0
. 4
8
9
4

0
. 4
9
2
4

T
er
a
D

1
1

5
(4
/1
)

0
. 0
0
0
0

0
. 4
8
1
0

0
. 4
7
0
6

0
. 4
9
4
6

N
a
m
a
g
a
P
M

2
4

5
(4
/1
)

0
. 0
0
0
0

0
. 0
0
0
1

0
. 0
0
1
0

0
. 0
0
5
3

N
a
m
a
g
a
B

2
6

5
(4
/1
)

0
. 0
0
0
2

0
. 0
0
0
1

0
. 0
0
0
2

0
. 0
0
1
6

N
a
m
a
g
a
W

1
6

5
(4
/1
)

0
. 0
0
8
3

0
. 0
0
9
0

0
. 0
0
6
1

0
. 0
7
3
9

M
a
ri
S
u
d

1
5

5
(4
/1
)

0
. 0
0
1
6

0
. 0
5
0
0

0
. 0
0
5
9

0
. 0
0
8
2

M
a
ri
N
o
rd

2
1

5
(4
/1
)

0
. 0
0
0
0

0
. 3
6
1
0

0
. 0
3
5
1

0
. 0
6
0
5

0

5

10

15

20

50 10
0

25
0

50
0

10
00

25
00

50
00

10
 00

0

25
 00

0

50
 00

0

10
0 0

00

Population size

%
 o

f s
ig

ni
fic

an
t t

es
ts

(A) 

(B) 

(C) 

(D) 

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50

No. of generations

%
 o

f s
ig

ni
fic

an
t t

es
ts

Simulation test

Ft

Chi test

Waples test

Two alleles

0

5

10
%

 o
f s

ig
ni

fic
an

t t
es

ts

Three alleles

0

5

10

2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of samples

%
 o

f s
ig

ni
fic

an
t t

es
ts

Fig. 2. Percentage of significant tests obtained for different
values of: (A) total population sizes (N), (B) numbers of
generations between samples; and an increasing number of
samples/generations, with two alleles (C) or three alleles
(D). The default settings were (unless otherwise is
indicated) as follows: N=10 000, Ne=N/2, t=5, two
samples with sizes S0=S5=100, number of alleles k=2,
initial allele frequencies of 0.5, sampling Plan II and fully
Bayesian algorithm. In (C) and (D), only one generation
separated consecutive samples, and the initial allele
frequencies were 0.95/0.05 and 0.7/0.28/0.02, respectively.
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Figure 3 shows that when many alleles were analysed,
with some at very low frequencies, and the samples
were increased simultaneously while the population
size was reduced, the proportion of significant tests
obtained with the ChT rose rapidly to very high
values. In addition, the otherwise stable WT yielded a
proportion of significant tests that was greater than
10%. The ST and FT test maintained their previously
observed stability, giving a proportion of significant
tests which was close to 5%.

(ii) Binomial simulation test (bST)

After many combinations of parameters were as-
sayed, the bST presented relevant increases of signi-
ficant tests with a decreasing number of alleles,
a decreasing number of samples, low sample and
population sizes, an increasing number of generations
and values of S/Ne closer to one (not shown). The
number of significant tests obtained with the bST
reached 15%. In order to inquire into this unexpected
result, a set of runs with small population sizes, de-
creasing sample sizes, different S/Ne values as well as
different sampling plans were run. Figure 4 displays
the differences of the percentage of statistical tests
between bST and (hypergeometric) ST, which showed
positive values when the binomial version had
a higher % and negative when the hypergeometric
version had a higher %. The curves corresponding to
two different S/Ne values and the two sampling plans
support that two putative causes explain the binomial
test bias : (i) a reduction in the total population and
(ii) a negative correlation between population and
sample allele frequencies. Both produced the effect
of enhancing the differences among the frequencies
of the samples when hypergeometric and sampling
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Fig. 3. The graphics show the percentages of significant values obtained for different numbers of samples and alleles and
for three different population sizes, N, as indicated in the graphics. The higher numbers of alleles/samples could not be
used with the smaller population sizes (N=100 and 150), because the likelihood of an allele being lost is very high with a
large number of alleles and a small number of organisms (the general simulations do not allow samples with missing
alleles). The number of samples was the same as the number of alleles for each run. They were increased simultaneously
just to assess the combined effect of the parameters in a simple form, because our goal was not to analyse the effect of
each parameter (that was already done) but the magnitude the departures can reach with certain ‘problematic ’
combinations of parameters. For that purpose, the following settings were used: Ne=N/2, one generation between
consecutive samples, sample sizes were all the same Si=20, sampling Plan II and fully Bayesian algorithm. The initial
allele frequencies were as follows: 0.5/0.5 (two alleles), 0.25/0.25/0.5 (three alleles), 0.167/0.167/0.167/0.5 (four alleles),
0.125/0.125/0.125/0.125/0.5 (five alleles), 0.1/0.1/0.1/0.1/0.1/0.5 (six alleles), 0.083/…/0.083/0.5 (seven alleles), 0.071/…/
0.071/0.5 (eight alleles), 0.0625/…/0.0625/0.5 (nine alleles) and 0.055/…/0.055/0.5 (ten alleles).
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Fig. 4. Difference between binomial and hypergeometric
significant STs, and for tests over the FT statistic. Graphics
show the % of the significant tests obtained with binomial
ST minus the % obtained with hypergeometric ST, as a
function of sample sizes. Two S–Ne ratios and sampling
plans were used, S/Ne=0.9 and S/Ne=0.5; and Plan I
(before reproduction) and Plan II (after reproduction).
Curves correspond to: (A) S/Ne=0.9, Plan II ; (B) S/
Ne=0.5, Plan II ; (C) S/Ne=0.9, Plan I, (D) S/Ne=0.5,
Plan I. A curve in the positive region meant that the % of
significant bSTs was larger than the % of hypergeometric
tests, and a curve in the negative region the converse. The
default settings were as follows: N=2Ne, t=5 (generations
between samples), k=2, initial allele frequencies of 0.5/0.5
and fully Bayesian algorithm. Notice that, since N, Ne

were fixed for each curve, the x-axis not only indicates
increasing sample sizes but also increasing N and Ne.
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Plan II was present, making the binomial test to
overestimate significant tests by simulating samples
with lower differences than the real ones. This effect
was present only with a combination of low popu-
lation sizes, high S/Ne values and sampling Plan II
(see the complete explanation in section 4).

(iii) Statistical robustness and power

In the analysis of statistical robustness, as the popu-
lation size used by the tests was increased with respect
to the real population size (ABM simulations), the
number of significant tests increased, while a reduction
in the sizes used by the tests produced a reduction in

the number of significant tests. As expected, the ChT
appeared more robust, because it did not require the
parameters N and Ne (Fig. 5B and C). The statistical
power of the ChT was greater than that of the other
tests for a selection coefficient of 1.01, but similar to
that of the other tests for higher selection coefficients
(Fig. 5A). The ST, FT test and WT all showed a very
similar statistical power to each other with each of the
three different selection coefficients used.

(iv) Real data sets

Table 1 shows the results for the two real data sets. In
the data set of the snail B. truncatus, from 41 tests on
microsatellite loci that contained between 2 and 26
alleles, around 12 presented quite different probability
values among the tests. The loci with large differences
(among the tests) were mostly the ones with many
alleles at very low frequencies. ST and FT tended to
present higher values of probability than WT and
ChT.

In the genes data set for equine colour coat, ST and
FT were found to tend to yield higher probabilities
than WT and ChT. From the 17 tests applied, two
showed significant results for all tests, and one was
significant for WT and ChT (Py0.04) but not with
the ST and FT (Py0.06). The overall tests with all the
samples involved simultaneously showed low proba-
bilities with WT or ChT in five (from six) loci, while
the same loci showed high probabilities (>0.2) with
ST and FT. The most relevant differences were found
among tests that attained very low-frequency alleles.

4. Discussion

The observed deviations of the ChT from the expected
value of 5% of the significant tests (with almost all
the parameters assayed) can be explained mainly by
the effect of genetic drift, as pointed out by Waples
(1989a). Here, low population sizes, high numbers of
samples and generations between samples produced
an extremely high number of false significant tests
with the ChT.

Contrastingly, the ST, FT test and WT performed
homogeneously, showing low to moderate deviations
from the expected value. The differences were larger
for the smaller population sizes, higher number of
samples and higher number of loci. These deviations
had different origins.

The deviations that were obtained with the WT for
small population sizes may have originated in the
departure of the statistic used from a x2 distribution,
already identified by Goldringer & Bataillon (2004)
who suggested the simulation-generated distribution
of the Fc,l statistic as the basis of a test for assaying
temporal changes. The effect of small population
sizes, together with large sample sizes, has already
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Fig. 5. (A) Percentage of significant tests obtained
when the frequency of one allele in the ‘real population’
(the ABM simulation) was increased by a given amount
(s=1.01r, 1.05r and 1.1r) each generation, emulating a
positive selection process. (B, C) Percentage of significant
tests when incorrect values of N were used by the tests
(x-axis) for two different values of real population size
(the used in general simulations) : N=1000 (B) and
N=10 000 (C). The default parameters used were as
follows: N=10 000, Ne=N/2, t=5, S0=S5=100, number
of alleles k=2, initial allele frequencies of 0.5, sampling
Plan II and full Bayesian algorithm.
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been recognized as an analytical problem that pro-
duces errors in the estimation of effective population
size by the temporal method (Nei & Tajima, 1981;
Pollak, 1983; Waples, 1989b). However, a component
of this bias could be the effect of the S/Ne ratio dem-
onstrated by Waples (1989a) and others that increase
as population sizes decrease for constant sample
sizes, and that could be related to the increased stati-
stical power of samples proportionally larger with
respect to the effective population size. In spite of
non-replacement (hypergeometric) samples having a
smaller variance than replacement (binomial) sam-
ples, it is expected that an underestimation of signifi-
cant tests with the bST but not with the WT since
the sampling used by Waples (1989a, b) refers to the
previous generation and those differences are not
expected to affect the results of the test, as actually
happened. However, in runs with small population
sizes and sample sizes similar to Ne (S/Ney1.0), the
bST not only underestimated the % of the significant
tests, but also presented important overestimations
of those percentages. This was caused by the use of
sampling Plan II over most of the simulations of the
study since this plan’s results were more realistic.
With this scenario (small N and S/Ney1.0), two
effects would enhance differences among allele fre-
quencies at temporally spaced samples in a real
population (with hypergeometric-like sampling) : (i)
since the sampling would be proportionally large and
the population size small, the sampled alleles would
leave the population with a size even smaller and
consequently more susceptible to changes by drift and
(ii) with such a small population size and pro-
portionally large sample size, the allele frequencies in
the sample and in the population (after sampling)
would establish a trade-off. For instance, in a popu-
lation with an allele at a frequency of 0.5 before
sampling, if N were so small that S=N/2 is true, then
the frequency of the allele of 0.7 in the sample would
mean a frequency in the population of 0.3; that is, the
higher the number of alleles in the first sample, the
lower the remaining in the population and thus at
posterior samples. Both effects are absent from bi-
nomial simulations since (i) a constraint in binomial
distribution prevents programming the discounting
of sampled alleles from the total population (e.g. the
binomial sample could actually have more alleles of
one type than the original number of alleles in the
population, and so the frequency in the population
after discounting the sample would be negative !) and
(ii) since the alleles sampled binomially are sampled
with replacement, the frequencies cannot establish a
trade-off with the frequencies in the population.

Those mechanisms explain that under small popu-
lation sizes, S/Ney1.0, and sampling Plan II, the
hypergeometric simulations as well as the real popu-
lations should present higher differences in allele

frequencies among the samples than binomial simu-
lations. Thus, for fixed (observed) frequencies, the
binomial test generates fewer simulations with differ-
ences equal or higher than the observed ones, under-
estimating the P-values and thus overestimating the
% of the significant tests. The results shown in Fig. 4
support the explained mechanisms with three facts :
(i) the curves had lower values for higher sample sizes,
which meant not higher S/Ne but higher population
sizes, i.e. for higher population sizes, the binomial
bias was lost ; (ii) the curves with S/Ne=0.5 had lower
values than with S/Ne=1.0, i.e. the binomial bias be-
came weaker as the sample sizes became lower than
the population sizes and (iii) the curves obtained with
sampling Plan I returned to negative values when the
sample sizes (i.e. the population sizes) increased,
which means that in the absence of sampling Plan II
the binomial bias could be inverted, and the differ-
ences would be caused by the mentioned difference
between hypergeometric and binomial variances.

Thus, the Waples test, the Goldringer and Bataillon
test and other binomial sampling-based tests poten-
tially would have two sources of bias with opposite
effects : the difference between the hypergeometric and
binomial variances and the one explained above.

Furthermore, the WT and binomial bias observed
for the increased number of generations and samples
could be related to the assumption that the model of
F (the standardized temporal variance in allele fre-
quencies) has to be proportional to t/2Ne which be-
comes particularly relevant at large t and very small
Ne values (Waples, 1989a, b).

The results of the analysis of the real data sets
agreed with the ABM simulation results. In the case
of the snail, B. truncatus, the largest differences
among ST/FT and WT/ChT were found in loci with
many alleles from which several had low frequencies.
In addition, the study attained low population
sizes (N=1000) and three samples. All these factors
brought the studied system closer to that represented
by the ‘problematic ’ combinations of parameters that
were assayed with the ABM simulations, where the
WT and ChT gave smaller P-values, in agreement
with the tendency of WT and ChT to yield lower
P-values than ST and FT in the snail data set.

In addition, the second real data set analysed
the frequencies of genes for horse coat colour had
features similar to the problematic combinations,
such as having a very large number of generations
among samples, many samples and low-frequency
alleles. They also showed a similar tendency: lower
P-values with WT and ChT than with ST and FT.

The possible explanation for the behaviour ob-
served with problematic combinations is probably
composed. Some components could be the mentioned
departures of the x2 distribution or the binomial-
hypergeometric bias(es). Another relevant component

E. Sandoval-Castellanos 318

https://doi.org/10.1017/S0016672310000339 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672310000339


is a boundary effect of low initial allele frequencies.
Additional simulations were performed to probe
the effect of low allele frequencies and showed a
tendency to yield increased probability values, which
were larger with the ST. The boundary conditions
already detected by Waples (1989a) involved a large
probability that the allele detected was lost. Such
a loss would prevent further change in the allele
frequency, reducing the possibility of a type II error
(Liukart et al., 1999; Goldringer & Bataillon, 2004).

Another interesting and unexpected result was
found with the snail data set. Five loci presented
substantially larger probability values with the ChT
and WT than with the ST and FT test. These loci all
corresponded to a high number of alleles, many of
which had very low frequencies, and some alleles had
been lost in one or more samples. One hypothesis to
explain this phenomenon is that the absence of an
allele in some samples, in conjunction with its occur-
rence at a high frequency in another sample, will
occur very infrequently by chance alone, due to the
mentioned boundary effect. Thus, the STs (ST and
FT), as real populations, were reluctant to allow
alleles at very low frequencies arising suddenly by
chance, whereas ChT and WT summarize the overall
differences among alleles and samples without
discriminating among common patterns or very
improbable patterns (e.g. absence/presence-at-high-
frequency/absence of an allele). Additional (ABM)
simulations with the selection-like process acting on
low-frequency alleles supported this statement.

In addition, the ST, FT test and WT showed similar
statistical robustness and statistical power, which
precluded the possibility that the differences observed
with the snail data were due to the effect of differential
statistical powers for the tests, and not to population
sizes.

Finally, it can be said that the WT, ST and FT test
performed better than the ChT, as expected, because
they took into account the effect of genetic drift.
However, for certain combinations of parameters,
the ST and FT test yielded more reliable results, which
makes them more suitable for studies that involve
many samples, low population sizes and high num-
bers of alleles (as in the case of microsatellite or
sequence data). Further studies are required to ex-
plore the combined effect of small population sizes,
multiple alleles and samples, S/Ne, together with the
effect of having low-frequency alleles.

Software implementing the described tests is avail-
able at : http://sites.google.com/site/egenevol/home
or from esandoval@miranda.ecologia.unam.mx by
request.

I thank Manuel Uribe-Alcocer, Lourdes Barbosa-Saldaña,
Luis Medrano-González, Robin Waples, and two anony-
mous reviewers for their comments on earlier versions of
this paper.
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