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SEXTACTIC POINTS ON A SIMPLE CLOSED CURVE

GUDLAUGUR THORBERGSSON and MASAAKI UMEHARA

Abstract. We give optimal lower bounds for the number of sextactic points
on a simple closed curve in the real projective plane. Sextactic points are after
inflection points the simplest projectively invariant singularities on such curves.
Our method is axiomatic and can be applied in other situations.

§1. Introduction

In analogy with tangent lines and inflection points of regular curves in

the real or complex projective plane, one can consider their osculating conics

and sextactic points. Choose five points on a curve γ in a neighborhood

of a point p on γ that is not an inflection point. There is a unique regular

conic passing through the five points. Letting the five points all converge to

p, the conics converge to a uniquely defined regular conic that is called the

osculating conic of γ in p. The osculating conic meets γ with multiplicity

at least five in p. If it meets with multiplicity at least six in p, then p is

called a sextactic point.

Inflection and sextactic points on curves in the complex projective plane

were well understood already in the nineteenth century. We will make some

historic remarks on this towards the end of the introduction. It is the case

of curves in the real projective plane that still poses problems.

In the present paper we will be dealing with closed C∞-parameterized

curves γ : S1 → P 2 that are simple (free of self-intersections) and regular

(nowhere vanishing tangent vector). Here and elsewhere in the paper we let

P 2 denote the real projective plane. The existence of inflection and sextac-

tic points on such curves has of course been much studied. Of importance

for us is the result of Möbius [Mö] that a simple regular curve in P 2 that is

not null-homotopic has at least three inflection points. As far as we know,
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the first paper to deal with sextactic points on curves in the real projec-

tive (or affine) plane that are not necessarily algebraic, is the paper [Mu1]

of Mukhopadhyaya from the year 1909. There it is proved that a strictly

convex curve in the affine plane has at least six sextactic points. An inde-

pendent proof of this theorem due to Herglotz and Radon was published by

Blaschke [Bl1] in 1917. Proofs can also be found in the textbooks [Bl2] and

[Bo]. In [Mu2] Mukhopadhyaya proved that three of these sextactic points

can be chosen so that the corresponding osculating conics are inscribed and

other three such that the corresponding osculating conics are circumscribed.

We are not aware of any results on sextactic points on curves that are not

strictly convex. For recent papers on sextactic points on strictly convex

curves and related matters, see e.g. [Ar3] and [GMO].

Our main results are summarized in the following three theorems. We

have not tried to state here everything in its strongest form. More precise

results can be found in Sections 4 and 5. Notice that we will give examples

in Appendices B and C showing that all these theorems are optimal. Two

of the examples in Appendix B were communicated to us by Izumiya and

Sano [IS] who found them in their study of affine evolutes.

Theorem 1.1. Let γ be a simple closed curve in P 2 that is not null-

homotopic. Then γ has at least three sextactic points.

The result of Möbius mentioned above is one of the essential ingredients

in the proof of this theorem. Notice that the theorem is optimal since the

noncontractible branch of a real cubic has exactly three sextactic points as

we will explain in Appendix C. Notice also that the theorem was stated as

a problem by Bol in [Bo] on p. 43. A sketch of a proof of Theorem 1.1 under

rather strong genericity assumptions on the inflection points of γ was given

by Fabricius-Bjerre in [Fa]; see Remark (iii) after Proposition 5.1.

Theorem 1.2. Let γ be a simple closed curve in P 2 that is nullhomo-

topic.

(i) (Mukhopadhyaya) If γ is strictly convex, then it has at least six sex-

tactic points.

(ii) If γ is not convex, then it has at least three sextactic points.

(iii) If γ is convex, then it has at least two sextactic points.
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Part (i), or Mukhopadhyaya’s theorem, is optimal, since a nullhomo-

topic component of a regular real cubic is strictly convex and has exactly

six sextactic points as we will explain in Appendix C. That the other parts

are optimal will be explained in Appendix B.

Counting sextactic points and inflection points together, we can prove

the following theorem.

Theorem 1.3. Let γ be a simple closed curve in P 2 that is nullhomo-

topic. Then the total number of sextactic and inflection points on γ is at

least four.

This theorem is optimal as an example of Izumiya and Sano [IS] shows

that we explain in Appendix B. It will be clear from the proof that The-

orem 1.3 can only be optimal for convex curves with one or two inflection

points.

The arguments in our proofs are inspired by those of Mukhopadhyaya in

[Mu1] and especially in [Mu2], although there are of course new ideas needed

to deal with curves with inflection points. We have chosen an axiomatic

approach that is similar in spirit to the one introduced by the second author

in [Um] to deal with vertices and was further studied in [TU1]. The main

idea behind this approach was motivated by the paper [Kn] of H. Kneser. It

should be pointed out that our theorems are more generally true for curves

that are only C4 with essentially the same proofs, see the remark after

Proposition 5.1, but we stay in the C∞-category to simplify the exposition.

Notice that one has to modify the definition of a sextactic point in the case

of C4-curves, see Section 2.

We would like to make a few remarks on inflection and sextactic points

on algebraic curves in the complex projective plane. There is a formula due

to Plücker (1835) that one can find in most textbooks on algebraic curves

saying that a regular algebraic curve γ of degree d in P 2(C) has exactly

3d(d−2) inflection points counted with multiplicities. It is much less known

that Cayley [Ca2] proved in 1865 that such a curve (with simple inflection

points) has exactly 3d(4d − 9) sextactic points counted with multiplicities.

The condition which we have put within parentheses is not in Cayley’s paper

although it is needed as we will see in Appendix C. Plücker and Cayley used

the same strategy of proof: there is a curve of degree 3(d−2) that intersects

γ precisely in the inflection points and similarly there is a curve of degree
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3(4d − 9) that intersects γ precisely in the sextactic points. The results

then follow from Bézout’s theorem.

The term sextactic point might have been introduced by Cayley in

[Ca1]. Cayley remarks that sextactic points were studied before him by

Plücker and Steiner without giving concrete references. He is certainly re-

ferring to papers in Crelle’s Journal 32 (1846) by Steiner and 34 (1847) by

Plücker. One can add a paper by Hesse in volume 36 (1848) of the same

journal. In all of these papers it is claimed that there are twenty seven sex-

tactic points on a (smooth) cubic. Steiner claims in his paper that does not

contain any proofs that nine of these are always real. This is only correct

as Plücker points out if the curve has two real branches. A real cubic has

three sextactic points if it has only one real branch. We will discuss this in

Appendix C. Plücker’s paper is a polemic against Steiner and his methods

in favor of analytic geometry.

A formula due to Klein implies that a smooth algebraic curve of degree

d in the real projective plane can have at most d(d−2) inflection points, i.e.,

at most one third of the complex inflection points can be real. An analogous

result for sextactic points seems to be unknown. A rigorous proof of Klein’s

formula was given by Wall in [Wa].

The content of the sections of the paper is as follows. Section 2 con-

tains preliminaries. Section 3 explains our axiomatic approach to sextactic

points. In Section 4 we give a complete proof of the results of Mukhopad-

hyaya since we need all the arguments involved, and a treatment of these

ideas satisfying modern standards does not seem to exist. In Section 5 we

prove the above theorems (Theorem 1.1 is the same as 5.2, Theorem 1.2 (ii)

is in 5.3 and 5.5, (iii) is in 5.4, Theorem 1.3 is in 5.4 and 5.5.). In Appendix

A we prove a theorem on simple closed curves in P 2 with few inflection

points that is needed in Section 5. In Appendix B we give examples that

show that the above theorems and some of the results in Section 5 are opti-

mal. Two of these examples are due to Izumiya and Sano [IS]. In Appendix

C we sketch a proof of the theorem of Cayley mentioned above that is based

on standard results on inflection points of linear systems. What we prove

is slightly more general than Cayley’s result since we do not make any as-

sumptions on the multiplicity of the inflection points of the curve. We also

discuss the sextactic points on cubics in Appendix C.
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§2. Preliminaries

A. Multiplicity of intersection points

Let γ and σ be two smooth and regular parameterized curves in P 2.

The following definitions are all of a local nature. We therefore assume that

both curves are simple, i.e., without self-intersections. Assume that p ∈ P 2

lies in the image of both curves. Then the multiplicity of the intersection of

γ and σ in p is defined as follows. The multiplicity is equal to one if γ and

σ intersect transversally in p. If they do not intersect transversally, we look

at coordinates (x, y) about p that we assume to correspond to (0, 0) with

the x-axis as the common tangent. Express the curves locally as graphs

over the x-axis in these coordinates. Assume that the first k derivatives of

the y-components of the curves coincide in 0, but not the k + 1st. Then we

say that the multiplicity of the common point p is equal to k + 1 and the

order of contact of γ and σ in p is equal to k. If all derivatives coincide,

the multiplicity and the order of contact are infinite.

We say that γ and σ cross in p if either they meet transversally in p or if

p is isolated in γ∩σ and there are coordinates (x, y) in which p corresponds

to (0, 0), the tangent lines of both curves in p corresponds to the x-axis,

the images of γ and σ are locally around p graphs of functions f and g,

and f − g changes sign in 0 and only vanishes in 0. We say that they are

locally one on the side of the other around p, if they are not transversal in

p, f − g does not change sign in p and f − g does not vanish except in 0 for

functions f and g as above.

If two curves γ and σ have an isolated connected set J of common

points, we can extend the above definition and say that the curves either

cross in J or are locally one on the side of the other around J .

If γ and σ meet with finite multiplicity in a point p, then it follows

from Elementary Calculus that p is isolated in the set of common points.

If γ and σ meet with odd multiplicity in p, then it follows that the curves

cross in p. If the multiplicity is even, they are locally one on the side of

each other.

B. Conics

For us a conic will be a quadric without singularities. This excludes the

reducible quadrics which are either a union of two lines or a line counted

twice. Any two different conics are projectively equivalent.

Two conics in P 2 are identical if they have five different points in com-

mon. Given five points in P 2, no three of which are collinear, there is a
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unique conic passing through these points.

If we count common points with multiplicities in the sense defined

above, it follows that two conics with five points in common coincide. The

family of conics that are tangent to a curve γ at two different points p and

q is one dimensional, and two conics in that family only have the two given

points in common. There is a one dimensional family of conics that meet

a curve γ with multiplicity at least four at a given point, and two conics in

that family only have the given point in common.

C. Inflection and sextactic points

We will call a point p on γ an inflection point if det(γ̂, γ̂′, γ̂′′) vanishes

in p, where γ̂ is a representation of γ in homogeneous coordinates. An

equivalent definition is to say that p on γ is an inflection point if γ and the

tangent line of γ in p meet with multiplicity at least three in p. We are

used to think of an inflection point as a point where, roughly speaking, the

direction changes in which the curve is bending. We therefore call p on γ a

true inflection point, if the tangent line of γ at p and γ cross in p or if they

cross in the connected component containing p of their common points. It

follows that the multiplicity with which the tangent line of p at γ and γ

meet is odd or infinite in p, if p is a true inflection point.

We can now state a more precise version of the Theorem of Möbius

[Mö] than in the introduction, see [TU1].

Theorem 2.1. (Möbius) Let γ be a simple closed curve in P 2 that is

not null-homotopic and not a projective line. Then γ has at least three

intervals of true inflection points.

We will also need the following theorem. The complements of lines in

P 2 are called affine planes.

Theorem 2.2. Let γ : [0, 1] → P 2 be a regular simple arc such that no

γ(t) for t ∈ (0, 1) is an inflection point. Then γ lies in an affine plane.

A contractible simple closed curve γ : S1 → P 2 with less than four

intervals of true inflection points is contained in an affine plane.

The first part of this theorem is in [Ar2], see also [Ar1]. The second

part of the theorem is proved in [Ar2] for the special case of precisely two

true inflection points. We give a complete proof of the second part of this

proposition in Appendix A, that is based on our paper [TU1].
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A closed curve γ in P 2 is called convex if it lies in some affine plane

in P 2 where it is convex in the usual sense of bounding a convex domain.

A closed curve is called strictly convex if it is convex and has no inflection

points. One can prove that a closed curve without self-intersections and

inflection points in P 2 is a strictly convex closed curve. In fact, Theorem 2.2

implies that such a curve is contained in an affine plane, where the claim is

standard.

Let p be a point on a smooth and regular curve γ in P 2 that is not an

inflection point. Then there is a unique conic that meets γ with multiplicity

five at least in p, see e.g. [Bo]. This conic is called the osculating conic of γ at

p. It is clear that there is no regular conic meeting a curve with multiplicity

five or higher in an inflection point. If the multiplicity is precisely five

between a curve γ and the osculating conic in p, then γ and the osculating

conic cross in p.

If the osculating conic of γ at p meets γ with multiplicity six at least

in p, then p is called a sextactic point. If γ lies in an affine plane A2 ⊂ P 2,

then p is sextactic if and only if p is a critical point of the affine curvature

of γ, see [Bl2]. The affine curvature (or the projective length element) will

not play any role in the proofs of the main results of this paper and will

only be referred to in some remarks.

We will need the following lemma that can already be found in [Mu1].

The books [Bl2] and [Bo] bring it as an exercise. We will give a proof of

the lemma in Section 4, which applies to arcs that are only C4.

Lemma 2.3. Let γ be an arc in P 2 that is free of inflection and sex-

tactic points. Then the osculating conics at two different points of γ do not

meet.

Our methods will mostly imply the existence of sextactic points with

the property that the curve and the osculating conic do not cross there. In

fact, Mukhopadhyaya requires this noncrossing property in his definition of

a sextactic point.

We now introduce terminology to describe the different cases of sextac-

tic points we will encounter. Notice that a conic divides P 2 into two closed

domains, one of which is a homeomorphic to a disk, the other is homeomor-

phic to a Möbius strip. We say that a curve is inside the conic if it lies in

the disk and outside if it lies in the Möbius strip. We will call a sextactic
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point p of γ minimal if some arc of γ around p is inside of the osculating

conic at p and maximal if some arc around p is outside the osculating conic

at p. We will call a sextactic point of a closed curve γ globally maximal if

the whole curve γ lies inside the osculating conic and globally minimal if it

lies outside the osculating conic. A sextactic point of a closed curve γ will

be called clean if the intersection of the osculating conic and γ is connected.

Notice that a sextactic point in which γ and the osculating conic meet

with odd multiplicity does not satisfy these additional properties we have

been defining and the same can happen if the multiplicity is infinite.

The above definition of a sextactic point only makes sense for curves

that are C5 at least. A point on a C4-regular arc is called sextactic if the

osculating conic does not cross in that point. Notice that this definition

implies, but is not equivalent to the original definition if the curve is C5.

§3. Intrinsic conic systems

In this section we explain our axiomatic approach to sextactic points.

It will be the main tool to prove the existence of sextactic points in the

several different, although similar, situations in Sections 4 and 5. We will

define an abstract notion of a sextactic point in our axiomatic setting that

will turn out to correspond to those sextactic points of curves that we call

maximal or minimal, see the Preliminaries.

A. Intrinsic circle systems

We will need a lemma on intrinsic circle systems. Let I be either the

circle S1 or an interval of S1 that can be open, closed or halfopen. We

denote the closure of I by Ī and the interior by I◦. A family {Fp}p∈I of

closed subsets in S1 is called an intrinsic circle system on the interval I if

it satisfies the following axioms:

(I0) The point p is contained in Fp for every p ∈ I.

(I1) If the set Fp ∩ Fq is non-empty, then Fp = Fq.

(I2) If p′ ∈ Fp and q′ ∈ Fq satisfy p ≺ q ≺ p′ ≺ q′ (≺ p), then Fp = Fq

holds.

(I3) Let (pn)n∈N and (qn)n∈N be two sequences in I◦ such that limn→∞ pn

= p and limn→∞ qn = q respectively where p, q ∈ I. Suppose that

qn ∈ Fpn
for all n. Then q ∈ Fp holds.
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Remark. In [Um] intrinsic circle systems were defined on the whole
circle S1. This new definition is a slight generalization to any subinterval
in S1.

We give two examples of intrinsic circle systems from the papers [Um]

and [TU1].

Examples. (i) Let γ : S1 → R2 be a C2 regular simple closed curve.
Let p be a point on γ and denote by C•

p the largest circle in the domain
bounded by γ that touches γ in p. Set

F •

p = γ ∩ C•

p .

It is easy to see that {F •

p }p∈S1 is an intrinsic circle system. One can similarly
define an intrinsic circle system {F ◦

p }p∈S1 using the smallest circle C◦

p that
is contained in the exterior domain of γ and touches γ in p instead of C•

p ,
see [Um]. If γ is C3, then it is easy to see that the curvature of γ has a
critical point at p if either F •

p or F ◦

p is connected.

(ii) Let f : P 1 → P 1 be a diffeomorphism of the real projective line. Let
p be a point in P 1 and denote by Pp the one-parameter family of projective
transformations of P 1 with the same 1-jet as f in p. We assume that Pp

is parameterized by the real numbers and consider f ◦ P−1
t for Pt ∈ Pp.

Then there are two numbers t0 ≤ t1 such that f ◦ P−1
t has only a fixed

point in p if t 6∈ [t0, t1] and more fixed points than p if t ∈ (t0, t1). We
assume the parameter to be chosen such that f ◦ P−1

t moves points locally
on the left of p away and brings those locally on the right of p closer if
t < t0. Let F •

p denote the fixed point set of f ◦ P−1
t0 and F ◦

p the fixed

point set of f ◦P−1
t1 . It is proved in [TU1] that {F •

p }p∈P 1 and {F ◦

p }p∈P 1 are
intrinsic circle systems. A point p is called a projective point of f if there
is a projective transformation that has the same 3-jet as f in p. In general
there is only a projective transformation with the same 2-jet as f at a point
p. If either F •

p or F ◦

p is connected, then p is a projective point.

The following basic but easy lemma is proved in [Um] for an intrinsic

circle systems on S1. The proof in the more general case is exactly the same.

Notice that the idea behind the lemma is essentially due to H. Kneser [Kn],

although not in this abstract setting. One does not need Axiom (I3) in the

proof of the lemma.
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Lemma 3.1. Let {Fp}p∈I be an intrinsic circle system on I = [a, b].
Suppose that Fa = Fb and Fa ∩ (a, b) is empty. Then there exists a point

c ∈ (a, b) such that Fc is connected and contained in (a, b).

Lemma 3.1 applied to Example (i) has the classical Four-Vertex The-

orem as a consequence and is nothing but a reformulation of its proof in

[Kn]. Applied to Example (ii), the theorem of Ghys that a diffeomorphism

of P 1 has at least four projective points follows, see [TU1].

B. Intrinsic conic systems

We will define an intrinsic conic system on an interval I of S1 to be a

set of functions from S1 × S1 into the nonnegative even integers extended

by ∞ that are indexed by a subset of Ī × Ī and satisfy certain axioms. On

one hand this is analogous to the intrinsic circle systems defined above. On

the other hand it is related to divisors on complex algebraic curves. As

we will see in Appendix C, given a plane algebraic curve, one can consider

the linear system of divisors that come from intersections of the curve with

conics and use it to prove the formula of Cayley for the number of sextactic

points mentioned in the introduction. The intrinsic conic systems that we

consider here do not correspond to the whole linear system, but only to those

coming from intersections with conics that are tangent to the curve and do

not cross it at any of the common points. This noncrossing property is the

reason why we restrict ourselves to even or infinite values of the functions.

See Example (i) that we give after the axioms and the next section for full

details of this application. Generalizations to higher order intrinsic systems

and applications to Fourier series of periodic functions will be given in

[TU2]. We explain a special case of the construction in [TU2] in Example

(ii) after the axioms.

Let I be either the circle S1 or an interval of S1 that can be open,

closed or halfopen. To avoid trivialities, we assume that the length of I is

positive. We set

I2
∗

:= (Ī × Ī) \ {(p, p) | p ∈ Ī \ I},

i.e., I2
∗

is the closed square Ī × Ī with a corner point (p, p) removed if p 6∈ I.

A family {fp,q}(p,q)∈I2
∗

of functions fp,q : S1 → 2N0 ∪ {∞}, where 2N0

denotes the nonnegative even integers, is called an intrinsic conic system

on the interval I if it satisfies the axioms that will be listed below. (It is

important that the functions fp,q be defined on the whole circle S1 since
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Axiom (A7) below might otherwise be violated in the applications.) Notice

that fp,q is defined for p 6= q if and only if p, q ∈ Ī and fp,p is defined if and

only if p ∈ I. We will denote the support of fp,q by Fp,q, i.e.,

Fp,q = {r ∈ S1 | fp,q(r) > 0}.

The value of fp,q at a point r will be called the multiplicity of r with respect

to fp,q. The sum over all values of fp,q, which can of course be infinite, is

called the total multiplicity of fp,q. A point r in S1 will be called sextactic

if its multiplicity with respect to some fp,q is at least six. We now list the

axioms and follow them by examples that explain their geometric meaning.

(A1) Fp,q is closed and p, q ∈ Fp,q for all (p, q) ∈ I2
∗
.

(A2) fp,q = fq,p for all (p, q) ∈ I2
∗
.

(A3) If Fp,q and Fp,r have a point s 6= p in common, then fp,q = fp,r.

(A4) If p′′ ∈ Fp,p′ and q′′ ∈ Fq,q′ satisfy p � q � p′ � q′ ≺ p′′ ≺ q′′ (≺ p)

or p � q � p′ � q′ � p′′ � q′′ (� p), and fp,p′(p) ≥ 4 if p = p′, and

fq,q′(q) ≥ 4 if q = q′, then fp,p′ = fq,q′ holds.

(A5) If fp,q(r) ≥ 4 and r ∈ I, then fr,r = fp,q.

(A6) Let ((pn, qn)) be a sequence in I2
∗

such that limn→∞(pn, qn) = (p, q) ∈
I2
∗
, and let (r1

n) and (r2
n) be two sequences such that ri

n ∈ Ī ∩ Fpn,qn

and limn→∞ ri
n = r ∈ Ī for i = 1, 2. Assume fpn,qn

(r1
n) ≥ k1 and

fpn,qn
(r2

n) ≥ k2 for all n. Then fp,q(r) ≥ max{k1, k2}, and the in-

equality is strict if r1
n and r2

n are different for all n.

(A7) The total multiplicity of fp,q is at least six for all (p, q) ∈ I2
∗
.

(A8) If fp,q(p) = 2, then p is isolated in Fp,q.

Examples. (i) Let γ be a strictly convex curve in the affine plan.
We identify γ with S1. Let C be a conic. Then we can associate to C
a function on S1 that associates to a point r on γ the multiplicity with
which C and γ meet in r. The multiplicity is of course zero in points in
which C and γ do not meet. Let I denote S1 or some interval on S1 and
let (p, q) ∈ I2

∗
. If p 6= q, we let Cp,q denote the maximal inscribed conic

that is tangent to γ in p and q. If p = q, we let Cp,q denote the maximal
inscribed conic that meets γ with multiplicity at least four in p. We let fp,q

denote the function corresponding to Cp,q as explained above. We will prove
in Section 3 that {fp,q}(p,q)∈I2

∗

is an intrinsic conic system. The sextactic
points of {fp,q}(p,q)∈I2

∗

are precisely the globally maximal sextactic points
of γ.
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(ii) For a real valued C4-function u on S1, one defines the osculating

polynomial ϕs (of order five) at a point s ∈ S1 to be the unique trigono-
metric polynomial of degree two,

ϕs(t) = a0 + a1 cos t + b1 sin t + a2 cos 2t + b2 sin 2t,

whose value and first four derivatives at s coincide with those of u at s.
If u is C5 and the value and the first five derivatives of u and ϕs coincide
in s, i.e., if ϕs hyperosculates u in s, then we call s a flex of u (of order

five). The existence of six flexes of order five can easily be proved as a
consequence of the well-known fact that a function has at least six zeros if
its Fourier coefficients ai and bi vanish for i ≤ 2, see [TU2]. One can use
intrinsic conic systems to prove the much stronger result that there are six
such flexes satisfying the global property that the osculating polynomials ϕs

in the flexes support u, i.e., either ϕs ≤ u or u ≤ ϕs. The intrinsic conic
systems are defined as follows. To simplify the definition we assume u to
be C∞. Let (p, q) ∈ S1 × S1. If p 6= q, we let ϕp,q denote the smallest
trigonometric polynomial of degree two that is greater or equal to u and
has the same values as u in p and q. If p = q we let ϕp,q denote the smallest
trigonometric polynomial of degree two that is greater or equal to u and
has the same 1-jet as u in p = q. We now define fp,q : S1 → 2N0 ∪ {∞}
by setting fp,q(r) = 2k if the 2k − 1-jets of u and ϕp,q agree in r but not
the 2k-jets, fp,q(r) = 0 if the values of u and ϕp,q do not agree in r, and
fp,q(r) = ∞ otherwise. One can now prove that {fp,q}(p,q)∈S1×S1 is an
intrinsic conic system and similarly define an intrinsic conic system using
trigonometric polynomials that are smaller or equal to u. We refer to [TU2]
for much more general results concerning Fourier polynomials of arbitrary
degree. Notice that Fourier polynomials of degree one lead to intrinsic circle
system.

We now start deriving consequences of the axioms of an intrinsic conic

system. The following lemma is trivial.

Lemma 3.2. Let {fp,q}(p,q)∈I2
∗

be an intrinsic conic system on an in-

terval I in S1. Then for any subinterval J of I, the restriction {fp,q}(p,q)∈J2
∗

is an intrinsic conic system on J .

The following lemma is an immediate consequence of Axiom (A7).

Lemma 3.3. If Fp,p only consists of the point p, then p is sextactic.

https://doi.org/10.1017/S0027763000025435 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025435


167-04 : 2002/9/5(14:34)

SEXTACTIC POINTS ON A SIMPLE CLOSED CURVE 67

We also have the following two easy lemmas.

Lemma 3.4. fp,p(p) ≥ 4 for every p ∈ I.

Proof. Let (pn) and (qn) be two sequences in I that converge to p and
pn 6= qn for all n. Applying (A6) to the situation r1

n = pn and r2
n = qn,

we get fp,p(p) > 2 since pn ∈ Fpn,qn
and qn ∈ Fpn,qn

by (A1). Using that
fp,p(p) is an even number, we get fp,p(p) ≥ 4.

Lemma 3.5. If (pn) and (qn) are sequences in I◦ that both converge to

p ∈ I, qn ∈ Fpn,pn
, and qn is different from pn, then p is sextactic.

Proof. By Lemma 3.4, we have fpn,pn
(pn) ≥ 4 for every n. Hence (A6)

implies that fp,p(p) > 4 since we can choose r1
n = pn and r2

n = qn. It follows
that fp,p(p) ≥ 6 and hence that p is sextactic.

Lemma 3.6. If r ∈ Fp,q ∩ I is not isolated in Fp,q ∩ I, then r is a

sextactic point with infinite multiplicity with respect to fp,q.

Proof. We assume that fp,q(r) is a finite number k. Let (rn) be a
sequence in Fp,q of pairwise different points that are all different from r
and converges to r. We now apply (A6) to the situation pn = p, qn = q,
r1
n = r and r2

n = rn. It follows that fp,q(r) > k, a contradiction. Hence
fp,q(r) = ∞.

If the support of fp,p is a connected set, then we say that p is a clean

sextactic point. Lemmas 3.3 and 3.6 imply that a clean sextactic point in I

is sextactic and that moreover every point in the intersection of the support

of fp,p with I is a clean sextactic point if p is.

Lemma 3.7. If Fp,q 6= Fq,q, then fp,q(q) = 2, q is isolated in Fp,q and

Fp,q has at least two components.

Proof. If Fp,q 6= Fq,q, then (A5) implies that fp,q(q) = 2. By (A8), we
know that q is isolated in Fp,q. Since q must of course be different from p,
we see that Fp,q must have at least two connected components.

We set

F ∗

p,q =

{
Fp,q if fp,q(p) ≥ 4,

Fp,q \ {p} if fp,q(p) = 2.
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Lemma 3.8. Let I be S1 or an interval on S1 and {fp,q}(p,q)∈I2
∗

an

intrinsic conic system on I. Then for each p ∈ I, {F ∗

p,q}q∈Ī is an intrinsic

circle system on Ī.

Proof. First notice that fp,q is defined for all q ∈ Ī since p ∈ I. To
prove (I0), notice that q ∈ F ∗

p,q if q 6= p. If q = p, then fp,q(p) = fp,p(p) ≥ 4
and hence q ∈ Fp,q = F ∗

p,q.

To prove (I1) assume that s ∈ F ∗

p,q = F ∗

p,r. If s = p, then fp,q(p) ≥ 4
and fp,r(p) ≥ 4 and hence fp,q = fp,s by (A5). Now assume that s 6= p.
Then (A3) implies that fp,q = fp,s.

Property (I2) follows from (A4).

To prove that (I3) holds, let (qn) and (rn) be sequences in I◦ with
limits q and r ∈ Ī respectively, and assume that rn ∈ F ∗

p,qn
, then it follows

from (A6) that r ∈ Fp,q and (I3) follows if r 6= p. If r = p, then we
have to prove that fp,q(p) ≥ 4. If only finitely many of the rn are equal
to p, then (A6) applied to rn and the constant sequence p implies that
fp,q(p) ≥ 4. If infinitely many of the rn are equal to p, then for these rn we
have fp,qn

(p) ≥ 4 and hence that fp,q(p) ≥ 4.

Lemma 3.9. Let I = [a, b] or [a, b), a ≺ b, be an interval on S1,

{fp,q}(p,q)∈I2
∗

an intrinsic conic system on I such that fa,a = fa,b and

Fa,b∩(a, b) is empty. Then there exists a point c ∈ (a, b) such that fa,c = fc,c

and Fc,c is contained in [a, b). Furthermore, a is isolated in Fa,c and Fa,c

has exactly two components.

Similarly, if I = [a, b] or (a, b], fb,b = fa,b and Fa,b∩(a, b) is empty, then

there exists a point c ∈ (a, b) such that fb,c = fc,c and Fc,c is contained in

(a, b]. Furthermore, b is isolated in Fb,c and Fb,c has exactly two components.

Proof. We only prove the first part; the second part is similar. By
Lemma 3.8 we know that {F ∗

a,q}q∈Ī is an intrinsic circle system on Ī. Clearly
it satisfies F ∗

a,a = F ∗

a,b. Hence there exists a point c ∈ (a, b) by Lemma 3.1
such that F ∗

a,c is connected and contained in (a, b). Hence a 6∈ F ∗

a,c which
implies that Fa,a 6= Fa,c and Fa,c has exactly two connected components.
Therefore we have Fa,c = Fc,c and hence fa,c = fc,c. It is clear that Fc,c is
contained in [a, b).

Lemma 3.10. Let I = [a, b] or [a, b), a ≺ b, be a closed interval of S1

and {fp,q}(p,q)∈I2
∗

be an intrinsic conic system on I. Suppose that fa,a = fa,b

and Fa,b ∩ (a, b) is empty. Then there exist two distinct points a1 ≺ b1 in
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(a, b) such that fa1,b1 = fa1,a1
and Fa1,b1 = Fa1,a1

⊂ (a, b), b1 is isolated in

Fa1,b1 and Fa1,b1 has exactly two components.

Similarly, if I = [a, b] or (a, b], fb,b = fa,b and Fa,b ∩ (a, b) is empty,

then there exist two distinct points a1 ≺ b1 in (a, b) such that fa1,b1 = fb1,b1

and Fa1,b1 = Fb1,b1 ⊂ (a, b), a1 is isolated in Fa1,b1 and Fa1,b1 has exactly

two components.

Proof. We prove the first part of the lemma. By Lemma 3.9, there
exists a point b1 ∈ (a, b) such that fa,b1 = fb1,b1 with support in I and a is
isolated in Fa,b1 . We can assume that b1 is such that (a, b1)∩Fa,b1 = ∅. Then
by Lemma 3.9, there exists a point a1 ∈ (a, b1) such that fa1,b1 = fa1,a1

with
support in (a, b1] ⊂ (a, b).

The next two propositions will be the main tools to find sextactic points

in Sections 4 and 5.

Proposition 3.11. Let I be a closed or halfopen interval of S1 with

endpoints a and b and let {fp,q}(p,q)∈I2
∗

be an intrinsic conic system on I.
Suppose that Fa,b ∩ (a, b) is empty. We assume furthermore that either

fa,b = fa,a or fa,b = fb,b holds (at least one of these conditions makes sense

when I is halfopen). Then there is a sextactic point r in (a, b).

Proof. Let J = [a1, b1] be an interval as in Lemma 3.10. Let CJ denote
the set of (α, β) ∈ (a, b) × (a, b) such that α 6= β, fα,β = fα,α with support
in J , Fα,β ∩ I(α, β) = ∅, and Fα,β consists of precisely two components,
one of which is the isolated point β. Here I(α, β) denotes the open interval
with endpoints α and β. (Notice that we do not assume that α < β.) We
know from Lemma 3.10 that CJ is nonempty.

We let δα,β denote the distance between α and β. Let δ denote the
infimum over δα,β for (α, β) ∈ CJ .

We consider a sequence {(αn, βn)} in CJ such that δαn,βn
converges to

δ. By going to subsequences if necessary, we may assume that

lim
n→∞

αn = α, lim
n→∞

βn = β.

If α = β, then it follows immediately from Lemma 3.5 that α is a sextactic
point. We can therefore assume that δ > 0. To simplify the notation we
will assume that α ≺ β. By (A6), we have fα,α(α) ≥ 4 and fα,β(α) ≥ 4 and
hence fα,α = fα,β by (A5). (We do not claim that Fα,β is contained in J .)
We can assume that α and β are isolated in Fα,β since otherwise we have a
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sextactic point by Lemma 3.6. Let β′ be the point in Fα,β ∩ (α, β] closest
to α. We now apply Lemma 3.9 to the interval [α, β′] and we find a point
γ ∈ (α, β′) such that (γ, α) ∈ CJ . Clearly δγ,α < δ, which is a contradiction.
Hence there is a sextactic point in J ⊂ (a, b).

Proposition 3.12. Let {fp,q}(p,q)∈I2
∗

be an intrinsic conic system on

I, where I is some interval on S1 or the whole circle S1. Assume that p
and q are contained in distinct components of Fp,q and that there is a third

component of Fp,q between p and q on I. Then there is a point r ∈ I such

that r 6= q and Fr,q has two connected components one of which is {q}.

Proof. We can assume without loss of generality that there is a point
p′ in Fp,q ∩ I different from both p and q such that the open interval J
between p and p′ on I does not meet Fp,q. By Lemma 3.8, {F ∗

q,x}x∈I is an
intrinsic circle system on I. Since p, p′ ∈ F ∗

q,p there is by Lemma 3.1 a point
r in J such that F ∗

q,r is connected and contained in J . Then Fq,r has two
connected components one of which is {q}.

The last two propositions were the main technical results of this section.

We use them to prove the following theorem.

Theorem 3.13. Let {fp,q}(p,q)∈S1×S1 be an intrinsic conic system on

S1. Then {fp,q}(p,q)∈S1×S1 has at least three sextactic points.

Remark. This theorem is optimal as the intrinsic conic system
{f•

p,q}(p,q)∈S1×S1 of a contractible branch of a real regular cubic shows, see
Section 4 and Appendix C.

Proof. We first prove the existence of one sextactic point. Let p be
a point on γ that we can assume not to be sextactic. Then fp,p(p) = 4.
Hence p is isolated in Fp,p. We therefore have a point q in Fp,p that is
different from p and such that the open interval (q, p) does not meet Fp,p.
Proposition 3.11 now implies that there is a sextactic point s in the interval
(q, p).

To prove that there are two further sextactic points we proceed as
follows. Let r be some point different from s. If Fr,s consists of two com-
ponents we have two sextactic points different from s by Proposition 3.11.
If Fr,s consists of three components at least, we can use Proposition 3.12 to
find a point r′ such that Fr′,s consists of two components, and the existence
of the two new sextactic points follows again from Proposition 3.11.
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§4. An application to strictly convex curves

In this section we use the theory of intrinsic conic systems to give a

complete proof of the results of Mukhopadhyaya in [Mu2] on the existence

of inscribed and circumscribed osculating conics of strictly convex curves in

an affine plane. As was pointed out in Section 2, such a curve is the same

thing as a simple closed curve in P 2 without inflection points.

Theorem 4.1. (Mukhopadhyaya) Let γ be a strictly convex curve in

the affine plane A2. Then γ has at least three circumscribed osculating

conics and at least three inscribed osculating ellipses. In particular, γ has

at least six sextactic points that are globally maximal or minimal.

The osculating conic at a point p of a curve γ is an ellipse if and only

if the affine curvature of γ at p is positive. It therefore follows from the

theorem that a strictly convex curve must have points with positive affine

curvature.

We first point out that the theorem has an interesting corollary which

does not seem to follow from the other proofs of the existence of sextactic

points. We will denote the open disk which a Jordan curve γ in A2 bounds

by Dγ and refer to it as the interior domain of γ. We let κM denote the

maximum of the affine curvature of γ, κm its minimum and A(Dγ) the area

of Dγ .

Corollary 4.2. Let γ be a strictly convex curve in the affine plane

A2. Then κM > 0 and

πκ
−3/2
M ≤ A(Dγ)

with an equality if and only if γ is an ellipse. If the affine curvature of γ is

positive then we also have

A(Dγ) ≤ πκ−3/2
m

with an equality if an and only if γ is an ellipse.

Remark. Both inequalities follow from Exercises 4 and 15 in Section
§27 of [Bl2] if the affine curvature is positive.

Proof of the Corollary. We already observed that κM > 0. Now let C
be one of the inscribed osculating ellipses and denote its affine curvature
by κ. Then κ ≤ κM . The area of the interior domain of C is πκ−3/2.
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The first inequality follows immediately. The second inequality follows by
arguing similarly with one of the circumscribed conics which must be an
ellipse since the affine curvature is positive.

Before proving Theorem 4.1 we need to introduce the relevant intrinsic

conic systems.

We say that the ellipse C1 is contained in the ellipse C2 if DC1
⊂ DC2

where DCi
is the interior domain of Ci. An inscribed ellipse is said to be

maximal if it is not strictly contained in any other inscribed ellipse.

Let p, q be two different points on γ. Let Γp,q be the one dimensional

family of ellipses that is tangential to γ in p and q. In one direction, this

family converges to the closed line segment pq. Since pq meets γ transver-

sally in p and q, we have inscribed ellipses in the family. Thus there is a

unique maximal inscribed ellipse in the family Γp,q that we will denote by

C•

p,q.

We can also define the maximal inscribed ellipse C•

p,q when p = q. Fix

a point p on γ. Let Γp,p be the one dimensional family of ellipses that is

tangential to γ in p with multiplicity at least four. The osculating ellipse

of γ in p is defined since p is not an inflection point and it is of course

contained in the family Γp,p. No ellipse in Γp,p can cross γ in p except

possibly the osculating ellipse. In one direction, this family Γp,p converges

to the point p. In that same direction after passing the osculating ellipse,

the ellipses lie locally around p inside of γ. Hence we have inscribed ellipses

in the family. There is therefore a unique maximal inscribed ellipse in the

family Γp,p that we denote by C•

p,p.

For any pair of points (p, q) ∈ S1×S1 = γ×γ, let f•

p,q : S1 → 2N0∪{∞}

denote the function that associates to a point r ∈ S1 = γ the multiplicity

with which C•

p,q and γ meet in r. If r 6∈ C•

p,q, then of course f•

p,q(r) = 0.

The following is obvious:

The functions f•

p,q satisfy Axioms (A1), (A2), (A3), (A5) and (A8) for

intrinsic conic systems for all (p, q) ∈ S1 × S1.

Notice that Axiom (A4) is an easy consequence of the fact that two

ellipses cannot meet in more than four points without being identical. Hence

we have:
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The functions f•

p,q satisfy Axiom (A4) for intrinsic conic systems for every

pair (p, q) ∈ S1 × S1.

Assume that C is an ellipse that meets γ in a point p with multiplicity

two. Then C and γ do not cross in p and there is another ellipse C ′ tangent

to γ in p and containing C which locally around p lies between γ and C.

This implies the following lemma.

Lemma 4.3. Let p and q be two distinct points on γ. Then the maximal

ellipse C•

p,q can be characterized as the only inscribed ellipse that meets γ
in p and q and satisfies one of the following two properties.

(i) C•

p,q meets γ in at least three different points.

(ii) C•

p,q meets γ with multiplicity at least four either in p or in q and it

does not have any other points in common with γ.

In particular, C•

p,q meets γ with total multiplicity six at least.

The following lemma follows from the fact that if C is an ellipse in

Γp,p that lies locally around p inside of γ and meets γ in p precisely with

multiplicity four, then there is a different ellipse C ′ in Γp,p that contains C,

is contained in the osculating ellipse at p, lies locally around p inside of γ

and also meets γ in p with precisely multiplicity four.

Lemma 4.4. Let p be an arbitrary point on γ. Then the maximal el-

lipse C•

p,p can be characterized as the only inscribed ellipse that meets γ
in p with multiplicity at least four and satisfies one of the following two

properties.

(i) C•

p,p meets γ in at least two different points.

(ii) C•

p,p meets γ in p with multiplicity at least six and has no other points

in common with γ. It follows that C•

p,p is the osculating ellipse at p
and p is a sextactic point.

In particular, C•

p,p meets γ with total multiplicity six at least.

We have the following immediate corollary of Lemmas 4.3 and 4.4.

The functions f•

p,q satisfy Axiom (A7) for intrinsic conic systems for every

pair (p, q) ∈ S1 × S1.

It is therefore only left to prove that Axiom (A6) is satisfied.
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Lemma 4.5. The functions f•

p,q satisfy Axiom (A6) for intrinsic conic

systems for every pair (p, q) ∈ S1 × S1.

Proof. We consider a small interval around r = γ(t0) on the curve γ
and parallel coordinates (x, y) in which γ on this interval corresponds to
points on the x-axis. Let r1

n = γ(t1n) and r2
n = γ(t2n) be two sequences

converging to r and assume that r1
n and r1

n ∈ C•

pn,qn
where pn and qn

converge to p and q respectively. We assume that f•

pn,qn
(ri

n) ≥ ki for i =
1, 2. Assume that k1 ≤ k2. We can write C•

pn,qn
locally around r as a

graph of a function gn(t) in the parallel coordinates for sufficiently big n.
We can assume after going to a subsequence if necessary that the C•

pn,qn

converge to an ellipse C that is the graph of a function g in the parallel

coordinates. We have that gn(t1n) = g′n(t1n) = · · · = g
(k1−1)
n (t1n) = 0 and

gn(t2n) = g′n(t2n) = · · · = g
(k2−1)
n (t2n) = 0. By taking limits it clearly follows

that g(t0) = g′(t0) = · · · = g(k2−1)(t0) = 0. Hence C and γ meet in r with
multiplicity k2 at least.

We now prove that C and γ meet in r with multiplicity greater than
k2 when r1

n and r2
n are different for all n. Set i = k2 − k1. There is

by Rolle’s Theorem of Elementary Calculus for every n an s1
n between t1n

and t2n such that g
(k1)
n (s1

n) = 0. Similarly we find an s2
2 between s1

n and

t2n with g
(k1+1)
n (s2

n) = 0, and inductively an sj
n between sj−1

n and t2n with

g
(k1+j−1)
n (sj

n) = 0 for j = 1, . . . , i + 1. Taking limits we obtain g(t0) =
g′(t0) = · · · = g(k2)(t0) = 0. This proves that C and γ meet in r with
multiplicity greater than k2.

The claim in the lemma now follows after we prove that C•

p,q meets γ
in r at least with the same multiplicity as C. Notice that C contains the
points p and q and is inscribed in γ. If p 6= q, then it follows that C•

p,q

lies between γ and C since it is maximal with this property. Hence C•

p,q

meets γ at least with the same multiplicity in r as C if p 6= q. If p = q, the
same follows if we can show that C meets γ with multiplicity at least four
in p = q. If there are infinitely many n such that pn = qn, then this follows
as in the first paragraph of the proof. If there are infinitely many n such
that pn 6= qn, this follows as in the second paragraph of the proof.

With help of circumscribed conics, we next associate in an analogous

manner a second intrinsic conic system to a strictly convex curve γ. For

this purpose it will be more convenient to assume that we are in P 2, since

otherwise we would for example need to take both branches of a hyperbola

into account when defining an interior domain. A conic C in P 2 bounds a
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closed disk DC and we say that it circumscribes a simple closed curve γ if

γ ⊂ Dγ . It is clear what we mean by a minimal circumscribed conic.

Let p, q be two different points on γ. Let Γp,q be the one dimensional

family of conics that is tangential to γ in p and q. In one direction, this

family converges to the union of the tangent lines of γ at p and q. Since

γ is strictly convex, we have circumscribed conics in the family. (Working

in an affine plane, we might not have a circumscribed ellipse in this family.

This happens e.g. in points where the affine curvature is nonpositive.) Thus

there is a unique minimal circumscribed conic in the family Γp,q that we

will denote by C◦

p,q.

We now define C◦

p,q in the case that p and q coincide. For p on γ we let

Γp,p be the one dimensional family of conics that is tangential to γ in p with

multiplicity at least four. We have circumscribed conics in the family since

γ is strictly convex. There is therefore a unique minimal circumscribed

conic in the family Γp,p that we denote by C◦

p,p.

Now for any pair of points (p, q) ∈ S1 × S1 = γ × γ, we define f◦

p,q :

S1 → 2N0 ∪ {∞} to be the function that associates to a point r ∈ S1 = γ

the multiplicity with which C◦

p,q and γ meet in r.

We have already seen that {f•

p,q} is an intrinsic conic system. The same

arguments imply that {f◦

p,q} is an intrinsic conic system. Thus we have the

following proposition.

Proposition 4.6. Both {f•

p,q} and {f◦

p,q} are intrinsic conic systems

on S1.

We can now give a proof of Theorem 4.1.

Proof of Theorem 4.1. The claim is an immediate consequence of the
last proposition and Theorem 3.13, as well as the definition of the relevant
intrinsic conic systems with help of inscribed and circumscribed conics.

We remind the reader that a sextactic point p on a simple closed curve

γ is called a clean maximal (resp. minimal) sextactic point if C•

p,p ∩ γ(S1)

(resp. C◦

p,p ∩ γ(S1)) is connected. The following theorem will be proved in

[TU2].

Theorem 4.7. Let γ : S1 → A2 be a strictly convex curve. Then γ
has at least three clean maximal and at least three clean minimal sextactic

points.
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In the following we will prove Lemma 2.3 only assuming C4-differenti-

ability of the arc γ. This together with Remark (ii) after Proposition 5.1

should make it clear how to prove the theorems in the introduction for

C4-curves.

Proof of Lemma 2.3. We assume here that γ : [0, 1] → P 2 is a simple

C4-arc.

We assume that γ is free of inflection points. Instead of assuming that
γ is free of sextactic points, we make the following weaker assumptions:
We assume that the osculating conic Ct at γ(t) crosses γ in γ(t) for every
t ∈ (0, 1). We also assume that γ enters the interior domain of C0 in γ(0)
and that it lies locally outside of C1 in γ(1). The claim of the lemma follows
if we can show that C0 does not meet C1. We therefore assume that C0

and C1 meet. If γ|(0,1] meets C0, then we let c ∈ (0, 1] be the smallest
number such that γ(c) ∈ C0, and we set γ̂ = γ|[0,c]. If γ|(0,1] does not meet
C0, then we extend the arc γ by continuing on C1 up to the first point
where C1 meets C0. We denote the extended arc by γ̂ and assume it to be
parameterized on the interval [0, c]. We can assume that γ̂ is a C4-regular
curve. Now we set

σ = γ̂ ∪ C0|[γ̂(0),γ̂(c)].

and assume that σ is parameterized on [0, 1] with σ(0) = σ(1) = γ̂(c).
Notice that σ is simple and can be assumed to be a C4-regular arc that
makes a loop which possibly does not close smoothly in σ(0) = σ(1). Notice
that the interior angle in σ(0) = σ(1) is less than or equal to π. Such a
curve σ cannot exist because of the following lemma.

Lemma 4.8. Let σ : [0, 1] → A2 be a strictly convex simple closed curve

in the affine plane A2 that is C4-regular everywhere in [0, 1], but possibly

so that σ̇(0) 6= σ̇(1). Denote by D the closed domain bounded by σ. Set

p = σ(0) = σ(1) and suppose that the interior angle θ at p is less than

or equal to π. Suppose moreover that the affine curvature function κ of

σ is non-decreasing and non-constant. Then there exists a sextactic point

s ∈ (0, 1) such that the osculating conic at s does not coincide with the

osculating conics at σ(0) and σ(1).

Proof. First notice that the osculating conic C0 at γ(0) is not inscribed
in D since we are assuming that the curve σ has non-decresing and non-
constant affine curvature function and hence there exists a point ε ≥ 0 such
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that the closed arc σ([0, ε]) (or point if ε = 0) is a connected component of
C0 ∩ σ and σ enters the interior domain D of C0 in σ(ε).

For each s, t ∈ (0, 1), let C•

s,t be the maximal conic inscribed in D
with σ(s), σ(t) ∈ C•

s,t and C•

s,t meeting σ in σ(s) with multiplicity four
if s = t. Now for any pair of points (s, t) ∈ (0, 1) × (0, 1), we define
f•

s,t : S1 → 2N0 ∪ {∞} as follows: We set f•

s,t(p) = 2 if p is on C•

s,t,
otherwise we set f•

s,t(p) = 0. (Notice that C•

s,t and σ might meet in p if
θ = 0.) For r ∈ S1 \ {p} = ∂D \ {p}, f•

s,t is the multiplicity with which C•

s,t

and σ meet in r if it is less than five, otherwise we set f•

s,t(r) = ∞. Then
f•

s,t satisfies the axioms of an intrinsic conic system on every closed interval
[a, b] such that 0 < a < b < 1.

Assume that θ < π. We fix two distinct points t0, s0 ∈ (0, 1). We
set C = C•

t0,s0
. Then C meets σ|(0,1) with total multiplicity six. Applying

Proposition 3.12, we find a point u ∈ (0, 1) such that Ft0,u consists of two
components one of which is t0. By Proposition 3.11, we find a sextactic
point s between t0 and u whose osculating conic Cs is inscribed. Since the
interior angle is less than π by assumption, Cs cannot pass through p. This
implies Cs 6= C1, C0.

Next we consider the case θ = π. We set

δ = inf{t ∈ (0, 1] | σ(t) ∈ C1}.

If δ = 0, there is a sequence (un)n∈N converging to zero such that σ(un) ∈
C1, and hence C0 = C1, a contradiction. So δ > 0.

We fix two distinct points t0, s0 ∈ (0, 1) such that t0 < s0 and t0 ∈ (0, δ).
We set C = C•

t0,s0
.

First we consider the case that C meets σ|(0,1) with total multiplicity
six. We set

t∗0 = inf{t ∈ (0, 1] | σ(t) ∈ C = C•

t0,s0
}.

Applying Proposition 3.8 and Lemma 3.1 to the intrinsic circle system
((F •)∗t∗

0
,p)p∈S1 , we find a point u ∈ (0, 1) such that Ct∗

0
,u = C•

u,u. By Propo-
sition 3.11, we find a sextactic point s between t∗0 and u whose osculating
conic Cs is inscribed. Since C0 is not inscribed in D, Cs 6= C0 is obvious. If
C1 is not inscribed, Cs 6= C1 also holds. So we may assume C1 is inscribed.
Suppose κ(u) = κ(1). Then C•

u,u = Cu = C1 holds, where Cu is the oscu-
lating conic at u. Since Ct∗

0
,u = C•

u,u, we have Ct∗
0
,u = C1, which contradics

the fact that C1 does not pass through σ(t∗0). So we have κ(u) < κ(1) and
hence κ(s) < κ(1), which implies that Cs 6= C1.
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Finally, we consider the case that C meets σ|(0,1) only at t0 and s0 and
that the multiplicity is equal to two in both points. Then C must also be
tangent to σ at the point p. We fix two points t1 ∈ (0, t0), s1 ∈ (t0, s0),
and set C ′ = C•

t1,s1
. If C ′ passes through p, then C ′ meets C with total

multiplicity five at least and we have C ′ = C, which is a contradiction. So
C ′ does not pass through p. Thus C ′ meets σ|(0,1) with total multiplicity
six. We can now apply the arguments in the last paragraph to C ′ instead
of C to find a sextactic point s whose osculating conic is inscribed and
different from C0 and C1.

§5. An application to simple closed curves

In this section we prove the theorems in the introduction except Part

(i) of Theorem 1.2 which is Mukhopadhyaya’s Theorem that we already

proved in the last section. Theorem 1.1 is the same as 5.2, Theorem 1.2 (ii)

is in 5.3 and 5.5, (iii) is in 5.4, Theorem 1.3 is in 5.4 and 5.5.

We start with a proposition that will be our main technical tool.

Proposition 5.1. Let σ : [0, 1] → P 2 be an arc of a curve σ̂ : [−ε, 1+
ε] → P 2 for ε > 0 that does not have any self-intersections. We assume

that σ(t) is not an inflection point for any t ∈ (0, 1) and that σ(0) and σ(1)
are either inflection or minimal sextactic points of σ̂. Then there exists a

sextactic point on σ|(0, 1).

Remark. (i) One sees from the proof below that there is a maximal
sextactic point on σ|(0, 1) if both σ(0) and σ(1) are inflection points.

(ii) In the proof of Case (b) in the proof below we will be dealing with
a curve that is only C5 at one point and otherwise smooth. One can see
directly that Axiom (A6) is satisfied at this point. Notice that one can
define an intrinsic conic system for a strictly convex curves γ that is only
C4 as follows. In the notation of Section 4 one sets

f•

p,q(r) =





2 if C•

p,q meets γ at r with multiplicity 2,

4 if C•

p,q meets γ at r with multiplicity 4,

∞ if C•

p,q meets γ at r with multiplicity higher than four.

Then {f•

p,q(r)} satisfies the axioms of an intrinsic conic system.
(iii) We explain here how one can easily prove a weak version of Propo-

sition 5.1 under generic assumptions on the arc σ using affine curvature.
Assume that σ : [0, 1] → A2 is a regular arc with no inflection points in
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σ(0, 1) and that the endpoints σ(0) and σ(1) are inflection points with the
property that the tangent lines there only meet σ with finite multiplicity.
Then we will show below that the open arc σ(0, 1) contains a sextactic
point. Fabricius-Bjerre [Fa] makes this observation under the stronger as-
sumption that σ meets the tangent lines in the endpoints with multiplicity
three precisely and uses it to prove a weak version of Theorem 1.1.

To prove the claim in the previous paragraph, we choose coordinates
(x, y) in A2 such that σ(0) corresponds to (0, 0) and the x-axis is the oriented
tangent line of σ at t = 0. After reparameterizing σ we can write it as a
graph y = y(x) for x ≥ 0. Since σ is of finite type, we have that

y(x) = αxn + o(xn).

We can assume that α > 0 by either changing the orientation of σ or the
sign of the y-coordinate. The affine curvature µ(x) can be expressed as

µ(x) = −
1

9(y′′)8/3
(5(y′′′)2 − 3y′′′′y′′),

see [Bl2, p. 14, formula (83)]. A short calculation shows that

lim
t→0+

µ(t) = −∞.

Similarly it follows that

lim
t→1−

µ(t) = −∞.

As a consequence there is a point on σ(0, 1) where the affine curvature
takes on its maximum value and this point is then the sextactic point whose
existence we wanted to show.

Proof of Proposition 5.1. Assume that both σ(0) and σ(1) are minimal
sextactic points. If there is no sextactic point on σ|(0, 1), then by Lemma 2.3
all osculating conics along σ|(0, 1) are disjoint and it follows that the oscu-
lating conic at σ(0) must contain σ|[0, 1] in its interior domain since σ(0)
is a minimal sextactic point. In particular, the osculating conic at σ(1) is
contained in the interior domain of the osculating conic at σ(0). We can
reverse the roles of σ(0) and σ(1) in this argument and prove that the os-
culating conic at σ(0) is contained in the interior domain of the osculating
conic at σ(1) which is a contradiction. Hence the proposition is proved if
both σ(0) and σ(1) are minimal sextactic points. We will therefore assume
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in the rest of the proof that at least one of the points σ(0) or σ(1) is an
inflection point.

In the rest of the proof we will denote the tangent line of σ̂ in σ(0) by
L0 and the one in σ1(1) by L1. We will assume L0 and L1 parameterized
such that the tangents of L0 and σ coincide in σ(0) as well as those of L1

and σ in σ(1).
The following three cases can occur, see Figure 5.1.

(a) The curve σ((0, 1)) neither meets L0 nor L1.
(b) The curve σ((0, 1)) intersects L0.
(c) The curve σ((0, 1)) intersects L1.

Figure 5.1

Notice that Case (b) and Case (c) are up to orientation of the curve
identical.

(Case (a)) The tangent line L0 at σ(0) and the tangent line L1 at σ(1) meet
in a point that we denote by O. (See Figure 5.1.)

Consider the simple closed curve

γ := L0|[O,σ(0)] ∪ σ([0, 1]) ∪ L1|[σ(1),O].

We will first prove that the curve γ is nullhomotopic. It follows from The-
orem 2.2 that there is an affine plane A2 that contains σ([0, 1]) (but not
necessarily γ). Let L be the line segment in this affine plane between σ(0)
and σ(1). The triangle L0|[O,σ(0)] ∪ L ∪ L1|[σ(1),O] is contractible. Hence γ
is homotopic to σ([0, 1]) ∪L which is nullhomotopic since it is contained in
an affine plane.

Let Dγ denote the closed disk bounded by γ. Notice that L0 and L1

do not meet any interior point of Dγ . One can move L0 (or L1) slightly so
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that it does not meet Dγ . It follows that γ and Dγ lie in an affine plane A2

and that Dγ is convex.
We first assume that both σ(0) and σ(1) are inflection points. As in

Section 4, we consider inscribed conics. Let (p, q) be a pair of different
points on σ([0, 1]). We let C•

p,q denote the maximal inscribed conic that
lies in Dγ and is tangential to γ in p and q. If p ∈ σ((0, 1)), then p is not
an inflection point of σ and we can define C•

p,p as the maximal inscribed
conic that meets σ with multiplicity at least four in p. We define f•

p,q(r) for
r ∈ σ to be the multiplicity with which σ̂ and C•

p,q meet. If r lies on the
open segments between O and either σ(0) or σ(1), then we set f•

p,q(r) = 2 if
r ∈ C•

p,q, otherwise we set fp,q(r) = 0. One can prove exactly as in the last
section that {fp,q} is an intrinsic conic system on the open interval σ((0, 1)).
In fact (A8) follows from the fact that C•

σ(0),p (resp. C•

p,σ(1)) never touches

L0 \ {σ(0)} (resp. L1 \ {σ(1)}).
We will now show that C•

σ(0),σ(1) meets σ((0, 1)) in a point r. After
having shown this the claim of the proposition follows from 3.12 and 3.11
in the case we are now considering.

Assume that there is no such point r, i.e., C•

σ(0),σ(1) only meets γ in σ(0)

and σ(1). Since σ(0) and σ(1) are inflection points we have that C•

σ(0),σ(1)

and σ̂ can only meet with multiplicity two both in σ(0) and σ(1). Of course
C•

σ(0),σ(1) also meets L0 and L1 with multiplicity two in σ(0) and σ(1).
Hence we can increase the conic C•

σ(0),σ(1) in such a way that locally around

σ(0) and σ(1) it stays inside of Dγ . Since C•

σ(0),σ(1) only meets γ in σ(0)

and σ(1) this is not only true locally around σ(0) and σ(1), but globally,
contradicting the maximality of C•

σ(0),σ(1). Hence γ and C•

σ(0),σ(1) meet in

a third point r which must lie on σ((0, 1)) since C•

σ(0),σ(1) can not meet the

tangent lines L0 and L1 except in σ(0) and σ(1). This finishes the proof
when both σ(0) and σ(1) are inflection points.

Now assume that σ(1) is minimal sextactic. We can assume that σ(0) is
an inflection point as pointed out at the beginning of the proof. We assume
that there is no sextactic point on σ((0, 1)). This implies that σ((0, 1)) lies
in the interior domain of the osculating conic at σ(1) that we will denote by
C. Notice that L1 is tangent to C in σ(1), but does not meet it otherwise.
The conic C enters Dγ in σ(1) and leaves it in a point O′ on L0 that lies
between σ(0) and O. The curve σ([0, 1]) ∪ C|[σ(1),O′] is C∞-regular except
in σ(1) where it is C5. Furthermore it satisfies the condition in Case (b).
We will prove below that the closed curve

γ̂ := L0|[O′,σ(0)] ∪ σ([0, 1]) ∪ C|[σ(1),O′]
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has an inscribed osculating conic. Such a conic can only be osculating at
points in σ((0, 1)). It now follows that we have a maximal sextactic point
on σ((0, 1)) contradicting our assumption. Notice that it does not follow
in this case that we have a maximal sextactic point since we only prove its
existence assuming that there is no sextactic points in σ((0, 1)).

If σ(0) is minimal sextactic, we can of course use the same argument
thus finishing the proof of Case (a).

(Case (b)) We can assume that only one of σ(0) and σ(1) is minimal sextac-
tic as observed at the beginning of the proof. Assume that σ(0) is minimal
sextactic and that there is no sextactic point on σ((0, 1)). Then σ([0, 1])
would lie in the closed interior of the osculating conic at σ(0) and L0 could
not meet σ((0, 1)) which contradicts that we are in Case (b). We therefore
have a sextactic point on σ((0, 1)) if σ(0) is minimal sextactic. Hence we
can assume that σ(0) is an inflection point. Let O be the point where L0

meets σ for the first time. (See Figure 5.1.) Consider the simple closed
curve

γ := L0|[O,σ(0)] ∪ σ|[σ(0),O].

In the following we need to include the possibility that σ|[σ(0),O] is the C5-
curve we met in Case (a). Notice that γ bounds a closed convex domain that
we denote by Dγ . Exactly as in Case (a), we define for a pair of points (p, q)
on σ|[σ(0),O] such that (p, q) 6= (σ(0), σ(0)), p 6= O, and q 6= O, the maximal
inscribed conic C•

p,q. We also define f•

p,q as in Case (a) and prove that {f•

p,q}
is an intrinsic conic system on any halfopen arc (σ(0), p] ⊂ (σ(0),O) of γ.
(Here we have to check Axiom (A6) separately for the point where the curve
from Case (a) is only C5.) Fix an arbitrary point p on (σ(0),O). Consider
the conic C•

σ(0),p. Since σ(0) is an inflection point and the angle at O is

acute, C•

σ(0),p must by arguments as in the proof of Case (a) either meet a

point r (6= p) on σ between σ(0) and O or it meets σ in p with multiplicity
at least four. Now it follows from Propositions 3.12 and 3.11 that there is
a maximal sextactic point on the open arc of σ between σ(0) and O. This
proves Case (b).

(Case (c)) Same proof as in Case (b).

Theorem 5.2. Let γ : S1 → P 2 be a simple closed curve without self-

intersections that is not nullhomotopic. Then γ has at least three sextactic

points.

Proof. By Theorem 2.1, due to Möbius, there are at least three inter-
vals of true inflection points on γ. We therefore find three different arcs
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on γ whose endpoints are inflection points. Now the claim of the theorem
follows immediately from Proposition 5.1.

Proposition 5.3. Let γ : S1 → P 2 be a simple closed curve that is

nullhomotopic and meets every line in P 2. Then γ has at least four sextactic

points.

Proof. By Theorem 2.2, the curve γ must have at least four intervals
of true inflection points, and hence at least four different subarcs whose
endpoints are inflection points. The claim now follows from Proposition 5.1.

Theorem 5.4. Let γ : S1 → A2 be a regular closed convex curve.

Then it has at least two sextactic points. The total number of inflection

and sextactic points is at least four. In particular, a convex curve with one

inflection point has at least three sextactic points.

Proof. We proved in Section 3 that γ has at least six sextactic points
if it has no inflection points, i.e., if γ is strictly convex.

If there is more than one interval of inflection points, then we find at
least two sextactic points by Proposition 5.1. We have therefore proved the
theorem except when the set of inflection points on γ is an interval.

Fix two distinct non-inflection points a and b on γ. Consider the min-
imal circumscribed conic C◦

a,b that touches γ in a and b. If C◦

p,q touches γ
with multiplicity four in either a or b, we consider the intrinsic conic system
{f◦

p,q} on the closed interval between a and b which does not contain an in-
flection point. Then by Proposition 3.11, we find a minimal sextactic point
between a and b. If C◦

a,b meets γ both in a and b with multiplicity two,
then there must be a third point c on γ lying in C◦

a,b. This point cannot
be an inflection point since γ lies inside of C◦

a,b around c. After renaming
the points a, b and c we can assume that c lies on the open arc between
a and b that is free of inflection points. We now consider the intrinsic
conic system {f◦

p,q} on the closed interval [a, b] and use Propositions 3.12
and 3.11 to prove the existence of a minimal sextactic point between a and
b. In both cases we have a minimal sextactic point and a connected set of
inflection points on the curve γ. There are therefore two open intervals on
the curve that are bounded by a minimal sextactic point and an inflection
point. Now it follows from Proposition 5.1 that we have a sextactic point
on each interval. We have hence proved in this case that there are at least

https://doi.org/10.1017/S0027763000025435 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025435


167-04 : 2002/9/5(14:34)

84 G. THORBERGSSON AND M. UMEHARA

three sextactic points on γ and one inflection point. This finishes the proof
of the theorem.

Theorem 5.5. Let γ : S1 → A2 be a regular closed curve that is not

convex. Then it has at least three sextactic points. The total number of

inflection and sextactic points is at least six. In particular, if γ is not convex

and has two inflection points, then it has at least four sextactic points.

Proof. The curve γ not being convex has true inflection points. If γ
has at least three intervals of inflection points, then it has at least three
sextactic points by Proposition 5.1. So we may assume that γ has exactly
two intervals of inflection points that divide γ into two arcs. Let σ denote
the boundary of the convex hull of γ. Since we are assuming that γ has
exactly two intervals inflection points, σ consists of an arc of γ and a line
segment between two points a and b on γ. We choose two arbitrary different
points p and q on the open arc of γ between a and b and consider the
minimal circumscribed conic C◦

p,q touching σ in p and q. Then the conic
C◦

p,q will either meet γ in p or q with multiplicity four or it will meet γ
in a third point r. When the second case occurs, by replacing p by r
if necessary, we may assume that r lies between p and q. In both cases
minimal circumscribed conics touching σ along γ gives rise to an intrinsic
conic system on a closed interval of γ between p and q. Then we can deduce
the existence of a minimal sextactic point on the arc between a and b using
Propositions 3.11 and 3.12. Proposition 5.1 now implies that there are two
further sextactic points on the arcs of γ between the inflection points and
the minimal sextactic point. There is a fourth sextactic point on the arc
between the inflection points that lies inside the convex hull of σ. This
finishes the proof of the theorem.

Appendix A: Simple closed curves with few inflection points

We will use our paper [TU1] to prove the following theorem which is

the second part of Theorem 2.2.

Theorem A.1. A contractible simple closed curve γ : S1 → P 2 with

less than four intervals of true inflection points is contained in an affine

plane.

The first part of Theorem 2.2 is a consequence since a regular simple

arc σ : [0, 1] → P 2 such that no σ(t) for t ∈ (0, 1) is an inflection point can
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be shown to be a part of a simple closed curve γ with at most two inflection

points.

Theorem A.1 will immediately follow from a result on curves on S2. In

fact, the preimage of γ under the canonical projection p : S2 → P 2 consists

of two simple closed curves since γ is contractible. Let γ̂ be one of these

curves. Then the other one is −γ̂.

A point on γ̂ is called an inflection point if the osculating circle at that

point is a great circle. The inflection points on γ and γ̂ correspond since

p maps great circles to lines. We can define a true inflection point of γ

as a point where the geodesic curvature of γ̂ changes sign. An interval

on γ̂ is said to consists of true inflection points if the geodesic curvature

vanishes and changes sign there. Also the true inflection points on γ and γ̂

correspond.

Theorem A.1 now follows immediately from the following theorem after

observing that a lift γ̂ of the curve γ cannot contain a great semicircle as a

subarc.

Theorem A.2. Let γ̂ be a simple closed curve on S2 with at most

three intervals of true inflection points. Then γ̂ lies in a closed hemisphere.

Moreover, γ̂ lies in an open hemisphere if and only if it does not contain

any great semicircle as a subarc.

Proof. The claim that γ̂ lies in a closed hemisphere was already proved
in Section 2 of [TU1], see also the arguments later in this proof. It is
therefore sufficient to show that γ̂ lies in an open hemisphere if and only if
it does not contain any great semicircle as a subarc.

Assume that γ̂ contains a great semicircle J as a subarc. Then any
great circle on S2 meets J and hence γ̂ too. So γ̂ can not lie in any open
hemisphere.

We now prove the converse. Suppose that γ̂ is a simple closed curve
with at most three intervals of true inflection points and does not contain
any great semicircle as a subarc. By [TU1], there exist four points t1 <
t2 < t3 < t4 on γ̂ such that t1, t3 are clean maximal vertices and t2, t4 are
clean minimal vertices. The osculating planes of γ̂, considered as a space
curve, at these four points bound a simplex S in R3 containing γ̂, see [TU1].
If the origin of R3 lies in the interior of this simplex, the curve γ̂ has at
least four intervals of true inflection points, see [TU1], which contradicts
our assumption. Thus, the origin lies in the boundary of the simplex S.
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Hence the origin lies in an osculating plane Pj at one of the clean vertices
tj . We set Cj = Pj ∩ S2. Then Cj is a great circle which is an osculating
circle of γ̂ at tj . The curve γ̂ lies completely on one side of Pj in R3 and
hence also on one side of Cj on S2, which was the proof in [TU1] that γ̂
lies in a closed hemisphere. Since tj is a clean vertex we have that Cj ∩ γ̂
is connected. Now we use that γ̂ does not contain a great semicircle as a
subarc. It follows that Cj ∩ γ̂ is a point or a great circle arc whose length
is less than π. Now let C+

j = Cj|(S,N) be an open great semicircle bounded

by two points S, N on Cj such that Cj ∩ γ̂ is contained in C+
j . Rotate

the great circle Cj slightly around the axis in R3 passing through S and N

away from γ̂ into a great circle Ĉ. If the rotation is sufficiently small, the
curve γ̂ does not meet Ĉ. Hence γ̂ lies in an open hemisphere, and we have
finished the proof.

Appendix B: Examples of curves with few sextactic points

In this section we give examples of simple closed curves in the affine

plane with few sextactic points that show together with the next appendix

that the theorems in the introduction are optimal. Two of these examples

are due to Izumiya and Sano [IS] who came up with them in their study of

affine evolutes of convex curves.

Part (ii) of Theorem 1.2 is optimal by Example B.1. Part (iii) of Theo-

rem 1.2 is optimal by Example B.2. Theorem 1.3 is optimal by Examples B.2

and B.4.

We know from the proofs in Section 5 that a simple closed curve with

more than three (intervals) of inflection points has more than three sextactic

points. If it has three inflection points, then it has at least three sextactic

point. This is optimal by Example B.1. If it is convex and has two inflection

points, it has at least two sextactic points. This is optimal by Example B.2.

If it is not convex and has two inflection points, we know from Theorem 5.5

that it has at least four sextactic points. This is optimal by Example B.3. If

it is convex and has one inflection point, then it has at least three sextactic

points by Theorem 5.4. This is optimal by Example B.4.

Example B.1. Here we give an example of a simple closed curve in
the affine plane that is not convex, has three inflection points (two of which
are true inflection points) and only three sextactic points. This shows that
part (ii) of Theorem 1.2 is optimal.
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We identify the affine plane with the complex plane and consider the
map

z(t) = t +
3i

1 + t2
for t ∈ R.

We then get our example by setting

γ(t) = 1/z(t) for t ∈ R ∪ {∞}.

Notice that the curve is regular at t = ∞. In Cartesian coordinates the
curve can be expressed as

x(t) =
t

r(t)
, y(t) =

−3

r(t)(1 + t2)

where

r(t) = t2 +
9

(1 + t2)2
.

There is a sketch of the curve in Figure B.1, where the inflection points and
the sextactic points are marked by I and S respectively.

Figure B.1

Example B.2. The following example is due to Izumiya and Sano [IS].
Let the curve γ in the affine plane A2 be defined in Cartesian coordinates
by

x(t) = (cos(2t) + 5) cos t, y(t) = (cos(2t) + 5) sin t.

This curve is convex and has exactly two sextactic points and two inflec-
tion points (which are evidently not true inflection points), showing at the
same time that Theorem 1.2 (ii) and Theorem 1.3 are optimal. The affine
curvature goes to negative infinity as one approaches the inflection points
and has a local maximum between the inflection points. There is a sketch
of the curve in Figure B.2.
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Figure B.2

Example B.3. We consider the curve γ in the affine plane A2 given
in Cartesian coordinates by

x(t) = (3 + 2 cos t) cos t, y(t) = (3 + 2 cos t) sin t.

This curve is not convex. It has two inflection points (both of them true) and
four sextactic points. It shows that the last claim in Theorem 5.5 is optimal.
There is a sketch of the curve in Figure B.3. Notice that we twice mark I
and S at the same place, since the inflection points at t ≈ π ± 0.352 are so
close to the sextactic points at t ≈ π ± 0.335 that one cannot distinguish
between then in the figure.

Figure B.3

Example B.4. This example due to Izumiya and Sano [IS] also shows
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that Theorem 1.3 is optimal. Here γ is given in Cartesian coordinates by

x(t) = (2 + cos t) cos t, y(t) = (2 + cos t) sin t.

The curve is convex. It has one inflection point and three sextactic points.
The affine curvature of γ has two local maxima, one local minimum and
it goes to negative infinity as one approaches the inflection point. This
example shows that Theorem 1.3 and the last claim in Theorem 5.4 are
optimal. There is a sketch of the curve in Figure B.4.

Figure B.4

Appendix C: Sextactic points on a complex plane algebraic curve

We will give a proof of the theorem of Cayley [Ca2] mentioned in the

introduction in this appendix using the theory of inflection points of linear

systems as explained in the textbook [Mi], in which one can find explana-

tions of all concepts used here. The proof is essentially only an adaptation

of the methods used to prove the formula of Plücker on the number of in-

flection points in [Mi, p. 241]. We also get a formula for the number of

sextactic points when the inflection points are not all simple. This prob-

ably also follows from Cayley’s method, but we believe that the methods

below are simpler. Other proofs of this theorem of Cayley can for example

be found in [Bt], [Bs], and [Vi] together with references to further papers

on the subject.

We will be considering the linear system of intersection divisors of con-

ics. This linear system corresponds to the Veronese embedding of the curve

into P 5(C). We will therefore really be studying the number of points of
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higher order contact between a curve in P 5(C) and its osculating hyper-

planes. Such an approach was used by Barner in [Ba] to prove Mukhopad-

hyaya’s Theorem, see also [Ar3]. As can be seen in these papers, the method

can also be used to find the existence of what is called an extatic point of

a curve in P 2, i.e., the analogues of sextactic points when the conics are

replaced by algebraic curves of some fixed degree, see [Ar3], but very strong

conditions on the curve are needed. The number of extatic points of some

given order on an algebraic curve in P 2(C) can in principle also be deter-

mined as in the following proof.

Theorem C.1. Let γ be a regular algebraic curve of degree d in P 2(C).
Then γ has exactly 3d(4d − 9) sextactic points counted with multiplicities

if all inflection points of γ are simple. If γ has k inflection points with

multiplicities ν1, . . . , νk respectively, then γ has

3d(5d − 11) −
k∑

i=1

4νi − 3

sextactic points counted with multiplicities.

Proof. Here a conic will not be assumed to be regular. Let C be a
conic. Then C induces a divisor div(C) on γ by associating to p ∈ γ the
intersection multiplicity of C and γ in p. By Bézout’s theorem, the degree
of div(C) is equal to 2d. The collection of these divisors is a complete linear
system Q of dimension 5, i.e., Q is a g5

2d.
We have to determine the gap numbers for Q at a point p. These are

the integers ` at which the dimensions of the spaces in the sequence

Q ⊃ Q(−p) ⊃ · · · ⊃ Q(−`p) ⊃ · · ·

change. We review that Q(−`p) is the space of divisors in Q that meet γ
in p with multiplicity ` at least.

Let us first assume that p is not an inflection point and that the mul-
tiplicity with which the osculating conic at p meets γ in p is µ. Then
dim Q(−`p) = 5 − ` for ` = 1, 2, 3, 4, 5, dim Q(−`p) = 0 for ` = 5, . . . , µ
and Q(−(µ + 1)p) = ∅. Hence the gap sequence is n1 = 1, n2 = 2, n3 = 3,
n4 = 4, n5 = 5 and n6 = µ + 1 if µ > 5.

The inflectionary weight of p is by definition equal to

wp(Q) =
6∑

i=1

(ni − i).
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Hence wp(Q) = µ − 5 if p is not an inflection point. Notice that µ − 5 is
equal to 0 if p is not a sextactic point. Otherwise µ − 5 is the multiplicity
of the sextactic point.

Now let us assume that p is an inflection point of γ in which the tangent
line at γ and γ meet with multiplicity µ. The dimensions of Q(−p) and
Q(−2) do not depend on whether we are at an inflection point or not, i.e.,
dimQ(−p) = 4 and dimQ(−2p) = 3. The spaces Q(−3p) = · · · = Q(−µp)
consist of the divisors of conics that are two lines, one of which is the tangent
line, the other one arbitrary. Hence dim Q(−`p) = 2 for ` = 3, . . . , µ.
The space Q(−(µ + 1)p) consists of the divisors of conics that are two
lines, one of which is the tangent line, the other passing through p. Hence
dimQ(−(µ + 1)p) = 1. The spaces Q(−(µ + 2)p) = · · · = Q(−2µp) consist
only of the divisor of the double tangent line. Hence dim Q(−(µ + 2)p) =
· · · = dimQ(−2µp) = 0. The space Q(−`p) = ∅ for ` ≥ 2µ + 1. It follows
that n1 = 1, n2 = 2, n3 = 3, n4 = µ + 1, n5 = µ + 2, n6 = 2µ + 1.
We therefore have wp(Q) = (µ − 3) + (µ − 3) + (2µ − 5) = 4µ − 11. The
multiplicity of p as an inflection point is ν = µ− 2. Hence wp(Q) = 4ν − 3.
If p is a simple inflection point, i.e., ν = 1, then wp(Q) = 1.

We are now going to use the formula

∑

p∈γ

wp(Q) = 6(2d + 5g − 5),

see [Mi, p. 241], where g is the genus of γ, i.e., g = (d − 1)(d − 2)/2 by
the Plücker formula. Hence the number of sextactic points counted with
multiplicities is equal to

3d(5d − 11) −
k∑

i=1

4νi − 3.

If all inflection points are simple, i.e., νi = 1 for all i, then the sum is equal
to the number of inflection points, which we know to be 3d(d − 2). Hence
the number of sextactic points is equal to 3d(4d − 9) in that case, and we
have finished the proof of the theorem.

Example C.2. In this example we will explain the distribution of in-
flection and sextactic points on regular real and complex cubics. We have
referred to the real cubic in this paper as an example for certain of our
theorems being optimal.
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We first consider the complex case. Let γ be a regular complex plane
cubic. First notice that a line and a cubic meet in three points and a conic
and cubic in six points. It follows that all inflection and sextactic points on
γ are simple. We therefore have precisely nine inflection points and precisely
twenty seven sextactic points on γ. The distribution of the inflection points
is well known. If we choose one of the inflection points as the origin in the
group law of the cubic γ and denote it by 0, then a p ∈ γ is an inflection
point if and only if 3p = 0. Now one can show that all points p ∈ γ with
2p = 0 are sextactic. These are not all sextactic points. In fact one can
show that a point p ∈ γ is either an inflection or a sextactic point if and
only if 6p = 0. Bearing in mind that γ as a group is isomorphic to a torus
C/Λ, we see that the equation 6p = 0 has thirty six solutions as should be
the case.

Now we come to the real parts of regular complex cubics. A real cubic
can contain one or two branches. If it consists of one branch, it must
correspond to the real part of C/Λ and we see from the above description
that it has precisely three inflection points and three sextactic points. If
the real cubic consists of two branches, one part must be the real part of
C/Λ, the other will be the image in C/Λ of the line parallel to the real
axis passing through the center of the fundamental domain. Notice that
this second branch does not contain any inflection points and is therefore
strictly convex. Notice also that it contains precisely six sextactic points.
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[Mö] A. F. Möbius, Über die Grundformen der Linien der dritten Ordnung, Abhand-
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