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Abstract Let τ be a partition of the positive integer n. A partition of the set {1, 2, . . . , n} is said to
be of type τ if the sizes of its classes form the partition τ of n. It is known that the semigroup S(τ),
generated by all the transformations with kernels of type τ , is idempotent generated. When τ has a
unique non-singleton class of size d, the difficult Middle Levels Conjecture of combinatorics obstructs
the application of known techniques for determining the rank and idempotent rank of S(τ). We further
develop existing techniques, associating with a subset U of the set of all idempotents of S(τ) with kernels
of type τ a directed graph D(U); the directed graph D(U) is strongly connected if and only if U is a
generating set for S(τ), a result which leads to a proof if the fact that the rank and the idempotent rank
of S(τ) are both equal to

max
{(n

d

)
,
( n

d + 1

)}
.
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1. Introduction

The rank of a finite semigroup S is the size of a minimal set of generators of S. An
element e contained in S is idempotent if e2 = e. If S is generated by its idempotents,
then the size of a minimal generating set of idempotents is referred to as the idempotent
rank of S. In the present paper, combinatorial techniques are developed to investigate
idempotent-generated semigroups of transformations of finite sets with respect to their
rank and idempotent rank.

For a positive integer n, let Xn = {1, . . . , n} and let Tn be the semigroup of all
transformations from Xn to itself. With a transformation f ∈ Tn are associated its
range, ran(f) = f(Xn), its height, |ran(f)|, and its kernel, ker(f) = {(a, b) ∈ Xn × Xn :
f(a) = f(b)}.

For a positive integer r � n−1, let K(n, r) be the subsemigroup of Tn consisting of all
transformations of height at most r. Howie shows in [5] that K(n, r) is idempotent gener-
ated, and in [6] he establishes a one-to-one correspondence between minimal generating
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sets of K(n, n − 1) and the set of strongly connected tournaments, a correspondence we
describe in Remark 3.4 below.

Recall that the Stirling number S(n, r) is the number of partitions of Xn of weight r. A
partition π of Xn and an r-set A contained in Xn are said to be orthogonal if every class of
π contains exactly one element of A. An orthogonally labelled list A1π1 . . . A(n

r)π(n
r) is an

alternating sequence of distinct r-sets A1, . . . , A(n
r) and distinct partitions π1, . . . , π(n

r),
such that for i = 1, . . . ,

(
n
r

)
− 1, πi is orthogonal to Ai and Ai+1, and π(n

r) is orthogonal
to A(n

r) and A1. In [7], Howie and McFadden prove that for every n > r, there exist
orthogonally labelled lists—a result leading to their main theorem, which states that the
idempotent rank and the rank of K(n, r) are equal to S(n, r). We describe their technique
in more detail in Remark 3.9 below.

A partition of the set Xn has type τ = d1
t1d2

t2 . . . dk
tk if it has ti classes of size di,

where d1 > d2 > · · · > dk, i = 1, 2, . . . , k, and n =
∑k

i=1 diti. The number r =
∑k

i=1 ti

of classes of τ is the weight of τ . For a given partition type τ on Xn, let S(τ) be
the semigroup generated by all the transformations whose kernels have type τ . The
semigroup S(τ) is invariant under the conjugation by the permutations of Xn, and so
it is idempotent generated [9]. An orthogonally τ -labelled list is an orthogonally labelled
list A1π1 . . . A(n

r)π(n
r) as above, in which all the partitions π1, . . . , π(n

r) are of type τ .
The existence of orthogonally τ -labelled lists leads to a determination of the rank

and idempotent rank of S(τ) (see [8,10]); however, it is not always easy to prove that
orthogonally τ -labelled lists exist, if indeed they do exist. In fact, for τ = r1r−1, the
existence of an orthogonally r1r−1-labelled list is equivalent to the validity of the difficult
Middle Levels Conjecture for r, as we show in Remark 3.10. In order to determine the
rank and idempotent rank of S(d1r−1) semigroups without proving the Middle Levels
Conjecture, we further develop the techniques of [6] and [7], by associating a certain
directed graph with a subset of idempotents of a semigroup. Our techniques can be
applied to a broad range of semigroups of transformations of finite sets, including certain
semigroups of endomorphisms [15]. Here the techniques are used to determine the rank
and idempotent rank of S(d1r−1) semigroups.

Theorem 1.1. Let τ be a partition type d1r−1, with d � 2 and r � 2. With n =
d + r − 1, the following conditions hold.

(1) If r � d, then both the rank and the idempotent rank of S(τ) are
(

n
r−1

)
.

(2) If d > r, then both the rank and the idempotent rank of S(τ) are
(
n
r

)
.

In particular, the rank and the idempotent rank of S(τ) are equal to

max
{(

n

r − 1

)
,

(
n

r

)}
.

The work here is part of a recently completed program [10–12] aimed at determining
the rank and the idempotent rank of all S(τ) semigroups.
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2. Background on semigroups of transformations and their rank and
idempotent rank

Notation and elementary results concerning semigroups of transformation and their rank
and idempotent rank are provided below. Let An,r be the set of all r-sets of Xn. The
statements in the next observation will be used without comment in the sequel.

Lemma 2.1.

(1) Let f and g be transformations of Xn.

If |ran(f)| = |ran(g)|, then the following are equivalent:

(a) |ran(fg)| = |ran(f)|;
(b) ran(fg) = ran(f);

(c) ran(g) is orthogonal to ker(f); and

(d) ker(fg) = ker(g).

(2) If A is an r-subset of Xn and π is a partition of Xn of weight r, then there exists
a transformation f of Tn such that ran(f) = A and ker(f) = π.

An idempotent transformation e of Xn is the identity transformation on its range
ran(e); that is, for all x ∈ ran(e), we have e(x) = x. There is a one-to-one correspondence
between idempotents of height r and pairs (π, A), where π is a weight r partition of Xn

and A is an r-set orthogonal to π. We often identify an idempotent with its associated
pair (π, A), where π = ker(e) and A = ran(e).

A transformation f of Xn is said to be a group element if it belongs to a subgroup of the
semigroup Tn. In fact, f is a group element if and only if the range ran(f) is orthogonal
to the partition ker(f). If f is a group element, by the finiteness of Xn, there exists a
positive integer m such that fm is an idempotent whose kernel and range coincide with
those of f ; that is, fm = (ker(f), ran(f)).

That S(τ) semigroups are idempotent generated has been observed in [9]. Sufficient
conditions for a set to be a generating set of an S(τ) semigroup are provided in the next
easy lemma.

Lemma 2.2. Let G be a subset of the semigroup S(τ). If for every partition α of type
τ and every set A orthogonal to α there exists an f in 〈G〉 such that ker(f) = α and
ran(f) = A, then G is a generating set for S(τ).

Proof. Because S(τ) is idempotent generated, it suffices to show that an arbitrary
idempotent of height r in S(τ) is contained in 〈G〉. Let e be such an idempotent with
ker(e) = α and ran(e) = A. Since α is orthogonal to A there exists an f ∈ 〈G〉, with
ker(f) = α and ran(f) = A. Since α and A are orthogonal, the transformation f is a group
element; thus, there exists a positive integer m such that fm is an idempotent. Since any
idempotent is uniquely determined by its range and partition, we have fm = e. �
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2.1. S(τ ) semigroups, τ = d1r−1

For the remainder of the paper, unless stated otherwise, we consider only S(τ) semi-
groups, where τ is d1r−1 with d � 2 and r � 2; we set n equal to d + r − 1. Let T (τ) be
the set of all partitions of type τ and recall that An,r is the set of all r-sets of Xn. In the
next lemma, we collect a number of observations concerning S(τ) semigroups.

Lemma 2.3. Let τ be d1r−1.

(1) There are
(
n
d

)
=

(
n

r−1

)
distinct partitions in T (τ). Thus the set {ker(f) : f ∈

S(τ), height(f) = r} has
(

n
r−1

)
elements.

(2) The set {ran(f) : f ∈ S(τ), height(f) = r} has
(
n
r

)
elements.

(3) Let A and B be r-sets contained in An,r and let α be a partition of type d1r−1.
Then the following hold:

(a) the set A is orthogonal to r distinct partitions of type d1r−1; the partition α

is orthogonal to d distinct sets contained in An,r;

(b) there exists a partition of type d1r−1 which is simultaneously orthogonal to A

and B if and only if |A ∩ B| = r − 1; and

(c) if |A ∩ B| = r − 1, there is a unique partition simultaneously orthogonal to A

and B, a partition which we denote by π(A, B).

(4) There is a bijection from T (τ) to An,r−1, under which a partition α of type τ is
mapped to the (r − 1)-set of singleton classes of α.

The rank of S(τ) is at least as large as max{
(

n
r−1

)
,
(
n
r

)
}. Indeed, for a set A ∈ An,r

and a partition α of type τ , there exists f ∈ S(τ) such that ran(f) = A, ker(f) = α. If G

is a generating set for S(τ), there exist transformations g1, g2, . . . , gk ∈ G such that f =
g1g2 . . . gk. Since the height of each of g1, g2, . . . , gk must be r, it follows that ran(g1) =
ran(f) = A and ker(gk) = ker(f) = α. Therefore, for each α ∈ T (τ), the generating set G

contains at least one transformation g with ker(g) = α, which implies that |G| �
(

n
r−1

)
.

Moreover, for any A ∈ An,r, the set G contains at least one transformation g′ with
ran(g′) = A; hence, |G| �

(
n
r

)
. We extend these observations below, providing necessary

conditions for a subset G of S(τ) to serve as a minimal generating set.

Proposition 2.4. For a minimal generating set G of S(τ), we have:

(1) |G| � max{
(
n
r

)
,
(

n
r−1

)
};

(2) if the idempotent rank of S(τ) is equal to max{
(
n
r

)
,
(

n
r−1

)
}, then the rank of S(τ)

is equal to its idempotent rank;

(3) for each α ∈ T (τ) there is at least one g ∈ G with ker(g) = α; if |G| �
(

n
r−1

)
, then

such g is unique;
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(4) for each A ∈ An,r there is at least one g ∈ G with ran(g) = A; if |G| �
(
n
r

)
, then

such a g is unique;

(5) |ran(g)| = r for each g ∈ G.

2.2. Duality of idempotents for S(τ )

The goal here is to reduce the proof of Theorem 1.1 to the case when d � r. We do
so by using an unusual duality property satisfied by the idempotents of S(τ), when τ is
d1r−1.

Recall that every idempotent e may be identified with an ordered pair (ker(e), ran(e)).
If the kernel of e is a partition of type d1r−1, then e can be also identified with another
ordered pair, the pair (a, ran(e)), where a is the unique element contained in the inter-
section of ran(e) and the unique non-singleton class of ker(e); we write e = (a, A), where
A = ran(e). For a subset B of Xn, the complement of B in Xn is denoted BC.

With a height r idempotent e = (a, A) contained in Tn with kernel of type τ = d1r−1,
we associate its dual idempotent ē = (a, AC ∪{a}). Note that ē is a transformation in Tn

whose kernel is of type r1d−1, the range is AC ∪ {a}, and the height is d. Moreover, we
have that ¯̄e = e. For τ = d1r−1, let τ̄ = r1d−1; observe also that ¯̄τ is τ .

Proposition 2.5.

(1) If G = {e1, e2, . . . , ek} is a minimal generating set for S(τ), then Ḡ = {ē1, ē2 . . . , ēk}
is a minimal generating set for S(τ̄).

(2) If the idempotent rank of S(τ) is
(
n
r

)
, then the idempotent rank of S(τ̄) is

(
n
d

)
.

Proof. Let e and f be idempotents whose kernels are of type τ = d1r−1. If ran(e)
is orthogonal to ker(f), then from the definition of dual idempotents, it follows directly
that ran(f̄) and ker(ē) are also orthogonal. In particular, for a product of idempotents
e1 . . . em, each with kernel of type τ , the height of e1 . . . em is r if and only if the height
of ēm . . . ē1 is d.

Let α be a partition of Xn of type τ̄ , and let α be orthogonal to A. In view of Lemma 2.2,
to prove that Ḡ is a generating set for S(τ̄), we only need to show that there exists a
transformation f ∈ 〈Ḡ〉 with ran(f) = A and ker(f) = α.

Let B be the unique non-singleton class of the partition α, and let a be the unique
element contained in the intersection of A and B. Let e = (a, B), the idempotent in S(τ)
with range B whose kernel of type τ has the unique non-singleton class BC ∪ {a} = A.
Since G is a generating set for S(τ), there exist idempotents e1, . . . , em such that e =
e1e2 . . . em, where ei = (ai, Ai), for i = 1, 2, . . . m. Let f = ēmēm−1 . . . ē1 ∈ 〈Ḡ〉. From
the first paragraph, it follows that f has range A and kernel α. �

Corollary 2.6. Let τ = d1r−1. If the rank and the idempotent rank of S(τ) are equal
to

(
n

r−1

)
, then the rank and the idempotent rank of S(τ̄) are equal to

(
n

r−1

)
=

(
n
d

)
.

Notice that as a consequence of Corollary 2.6 and Proposition 2.4 (2), to prove Theo-
rem 1.1 it suffices to prove that when r � d, the idempotent rank of S(τ) is

(
n

r−1

)
.
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3. Distributions and generating sets

The sets T (τ) and An,r are interconnected by partial functions, as defined below, via the
orthogonality property.

Definition 3.1. A partial distribution is a partial surjective function

δ : T (τ) → An,r

satisfying the following condition: if π is in the domain of δ, then δ(π) is orthogonal to
π. A distribution is a partial distribution whose domain is all of T (τ).

For a partial distribution δ, let dom(δ) denote the domain of δ. Observe that each
partial distribution δ determines a set of idempotents I = {(π, δ(π)) : π ∈ dom(δ)}, with
distinct kernels and with the property that {ran(e) : e ∈ I} is equal to An,r; conversely,
a set of idempotents I, with distinct kernels whose images comprise An,r, determines a
partial distribution. With a partial distribution (equivalently, with a set of idempotents
satisfying the two properties above), we associate, in Definition 3.2 below, a certain
directed graph D(δ). Necessary definitions from graph theory are provided.

A simple graph U = (V, E) consists of a set of vertices V , together with a set E of two
element subsets of V called the edges of U . A directed graph (or a digraph) D = (V, E)
consists of a set V of vertices together with a set E of directed pairs of distinct vertices,
called directed edges. With every digraph D one may associate an underlying simple
graph which has the same vertices as D, and whose undirected edges consist of pairs of
vertices which have a directed edge in D.

For a simple graph U = (V, E), a walk is the alternating sequence v1, e1, v2, e2, . . . ,

ek−1, vk, where v1, v2, . . . , vk are vertices, and e1, e2, . . . , ek−1 are edges with ei =
{vi, vi+1}. A path is a walk through distinct vertices. A path v1, e1, v2, e2, . . . , ek−1, vk

is often written as v1v2 . . . vk; the vertices v1 and vk are said to be joined by the path
v1v2 . . . vk. If k � 4, the vertices v1, v2, . . . , vk−1 are distinct, and vk = v1, then the walk
v1v2 . . . vk is referred to as a cycle. The above definitions are extended to a digraph by
replacing ‘edges’ with ‘directed edges’.

A simple graph is said to be connected if every pair of its vertices is joined by a path.
A digraph is said to be connected if its underlying simple graph with undirected edges
is connected. A digraph is strongly connected if for every pair of vertices u and v, there
exists a directed path beginning with u and ending with v.

Definition 3.2. A partial distribution δ determines a directed graph D(δ) whose
vertex set is An,r, and whose edge set is defined as follows: for A, B ∈ An,r, AB is an
edge of D(δ) if there exists a partition α ∈ T (τ) such that B = δ(α) and α is orthogonal
to A.

Recall that for τ = d1r−1, the idempotent rank of S(τ) is at least as large as
(

n
r−1

)
.

Proposition 3.3. Let τ = d1r−1 with d � r. Then the idempotent rank of S(τ) is
equal to

(
n

r−1

)
if and only if there exists a partial distribution δ whose directed graph

D(δ) is strongly connected.
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Proof. Suppose that the idempotent rank of S(τ) is
(

n
r−1

)
, and G is a generating set of

S(τ) consisting of
(

n
r−1

)
idempotents. The range of each idempotent e in G is orthogonal

to its kernel. Thus, the set G gives rise to a function δ with domain {ker(e) : e ∈ G},
defined by δ(α) = ran(e), where e is the idempotent in G with ker(e) = α. Note that
by Proposition 2.4 (3), we have that e is the only element of G with kernel equal to α.
Thus, δ : T (τ) → An,r is well defined as a partial function. Because G is a generating set
for S(τ), it follows from Proposition 2.4 (4) that the range of δ is An,r. Therefore, δ is a
partial distribution (in fact, a distribution).

We prove that the associated digraph D(δ), as given in Definition 3.2, is strongly
connected. For r-sets A and B contained in An,r, the surjectivity of δ guarantees the
existence of partitions α and β in the domain of δ such that δ(α) = A and δ(β) = B.
By Lemma 2.1 (2), there exists f ∈ S(τ) such that ker(f) = α and ran(f) = B. Since
G is a generating set of S(τ), there exist e1, e2, . . . , ek ∈ G such that f = e1e2 . . . ek.
For i = 1, 2, . . . , k, let ker(ei) = αi and ran(ei) = Ai. By the definition of the partial
distribution δ, we have δ(αi) = Ai. By Lemma 2.1 (1) it follows that αi−1 is orthogonal
to Ai (i = 2, . . . , k), and by the definition of D(δ), there exists a directed edge from Ai

to Ai−1. Because G is a minimal generating set, by Proposition 2.4 we must have that
αk = ker(ek) = ker(f) = α. Since δ(α) = A, we also have Ak = A. Because we have
A1 = ran(e1) = ran(f) = B, we have shown that there exists a directed path from A to
B, and so D(δ) is strongly connected.

Conversely, suppose δ is a partial distribution whose associated digraph D(δ) is strongly
connected. To show that δ determines a generating set of idempotents of the semigroup
S(τ), define a distribution δ1 by extending the domain of δ to T (τ) as follows. For each
partition α of type τ not contained in the domain of δ, choose an r-set A orthogonal to
α. Let δ1 coincide with δ on the domain of δ, and for each α not in the domain of δ, let
δ1(α) = A, where A is chosen as above. Since D(δ) is strongly connected, the digraph
D(δ1) is also strongly connected.

Let G be equal to {(α, δ1(α)) : α ∈ T (τ)}; thus, G consists of
(

n
r−1

)
idempotents, all

having distinct kernels. Let f = (α, A) be an arbitrary idempotent of height r, with kernel
α of type τ . We complete the proof by showing that f ∈ 〈G〉. Let e = (α, B) be the unique
idempotent in G with kernel α. Since D(δ) is strongly connected, there exists a directed
path B = B0B1 . . . Bm = A in D(δ). For each directed edge Bi−1Bi (i = 1, . . . , m),
there exists a partition αi such that δ(αi) = Bi, where αi is simultaneously orthogonal
to Bi and Bi−1. Let ei = (αi, Bi), for i = 1, . . . , m. The product emem−1 . . . e1e has
kernel α and range A. Because α is orthogonal to A, we have that emem−1 . . . e1e is a
group element; thus, there exists a positive integer k such that (emem−1 . . . e1e)k is the
idempotent (α, A) = f .

We have proven that the idempotent rank is no greater than
(

n
r−1

)
. In view of Lemma

2.4 (2), it follows that the idempotent rank of S(τ) is
(

n
r−1

)
. �

From the proof of Proposition 3.3 it is clear that with ‘distribution’ in place of ‘par-
tial distribution’, the statement of Proposition 3.3 remains valid. The notion of partial
distribution provides useful flexibility for the final stage of the proof of Theorem 1.1.

https://doi.org/10.1017/S0013091501000530 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000530


624 I. Levi and S. Seif

Remark 3.4. Distributions and their associated directed graphs generalize the method
of [6], for producing minimal idempotent generating sets for K(n, n − 1).

Indeed, recall that K(n, n − 1) is generated by its idempotents of height n − 1. For
f ∈ K(n, n − 1), if f has height n − 1, then ker(f) is of type 21n−2. It follows that
S(21n−2) is equal to K(n, n − 1).

A tournament on n vertices is a directed graph in which every pair of vertices is
connected by exactly one directed edge. Let T be a tournament on the n vertices Xn.
To establish a connection between minimal generating sets for K(n, n − 1) and strongly
connected tournaments, in [6], the author associates with each vertex k ∈ Xn the (n−1)-
set Xn −{k}, and to each directed edge jk (j, k ∈ Xn, j �= k) the height n−1 idempotent
with range Xn − {j}, and a kernel with unique non-singleton class is {j, k}. Thus, a
tournament T with vertex set Xn determines a set G of

(
n
2

)
idempotents with distinct

kernels.
It is proven in [6] that if the tournament T is strongly connected, then G is a generating

set for K(n, n − 1), and, conversely, any generating set consisting of
(
n
2

)
idempotents

determines a strongly connected tournament on n vertices.
As observed in Lemma 2.3 (3) (a), a partition π of type 21n−2 is orthogonal to exactly

two (n − 1)-sets. In particular, for a distribution δ : T (21n−2) → An,n−1, the associated
digraph D(δ) is a tournament. Because δ is a distribution, it has a domain consisting of
all

(
n
2

)
partitions of T (τ). Hence, δ determines a set G of

(
n
2

)
idempotents. By the proof

of Proposition 3.3, G is a generating set if and only if D(δ) is strongly connected. Thus,
Proposition 3.3 leads to the result of [6].

It is not difficult to construct tournaments which are not strongly connected. Thus,
the directed graph associated with a distribution is not necessarily strongly connected.

3.1. Distributions for τ = r1r−1—the Middle Levels Conjecture

In this section the Middle Levels Conjecture and its connection with the determination
of the rank and idempotent rank of S(r1r−1) semigroups are described, and Theorem 1.1
is proved for τ = r1r−1.

A simple graph (V, E) is Hamiltonian if there exists a cycle of (V, E) passing through
all its vertices. Consider the graph B(r) whose set of vertices is the union of two sets,
A2r−1,r and A2r−1,r−1, such that an r-set and an (r−1)-set are adjacent when the smaller
set is a subset of the larger set. The Middle Levels Conjecture for r, usually attributed
to Paul Erdos [3,14], states that B(r) is a Hamiltonian graph.

A perfect matching of B(r) is a set of
(2r−1

r

)
edges, no two of which have a vertex in

common. It is non-trivial to show that B(r) has perfect matchings [1]. It is thought that
developing a better understanding of perfect matchings of B(r) may lead to a proof of
the validity of the Middle Levels Conjecture [4].

For a partition α of type r1r−1, let B(α) be the (r−1)-set of singleton classes of α. Every
distribution δ, associated with the partition type r1r−1, gives rise to a perfect matching
Mδ of B(r), where Mδ consists of the edges {B(α)δ(α) : α ∈ T (r1r−1)}. Conversely, a
perfect matching M of B(r) determines a distribution δM for the type r1r−1, as is quite
easy to verify.
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Note that the partition type r1r−1 is special in another way; this is the only partition
type of the form τ = d1r−1, for which the number of partitions of Xn of type τ equals
the number of the r-subsets of Xn. Thus, every partial distribution for τ = r1r−1 is a
distribution, and so the partial distributions for the type r1r−1 are in one-to-one corre-
spondence with the perfect matchings of B(r). In view of the fact that perfect matchings
exist for B(r) [1], we have the following lemma.

Lemma 3.5. For τ = r1r−1, there exists a distribution δ : T (τ) → A2r−1,r.

We provide additional graph theory definitions and use a classical graph theory result
(Theorem 3.6) to show that for any distribution δ for r1r−1, the digraph D(δ) is strongly
connected. The indegree indeg(v) of a vertex v in a digraph (V, E) is the number of
distinct vertices u such that uv ∈ E; the outdegree outdeg(v) of v is the number of
distinct vertices u such that vu ∈ E. An Eulerian trail in a connected digraph is a walk
which starts and ends at the same vertex, such that every directed edge of the walk
occurs exactly once, and every vertex of the walk occurs at least once. A digraph (V, E)
is Eulerian if it contains an Eulerian trail. Observe that an Eulerian graph is strongly
connected. The next theorem is the directed graph analogue of a classic theorem of graph
theory, due to Euler, which provides necessary and sufficient conditions for the existence
of an Eulerian trail (see [2, Theorem 2.23]).

Theorem 3.6. If D is a connected digraph such that indeg(v) = outdeg(v) for all
vertices v of D, then D is Eulerian. In particular, D is strongly connected.

Lemma 3.7. Let τ = r1r−1 and let δ be a distribution for τ . Then

(1) D(δ) is connected;

(2) for any A ∈ A2r−1,r, we have indeg(A) = outdeg(A) in D(δ); and

(3) D(δ) is strongly connected.

Proof. As the third statement of the lemma is a consequence of Theorem 3.6 and the
first two statements of the lemma, we concentrate on proving the first two statements.

Let A and B be distinct sets contained in A2r−1,r. If |A ∩ B| < r − 1, then it is not
difficult to see that there exists a sequence A = A1, A2, . . . , Ak = B of sets in A2r−1,r,
satisfying |Ai ∩ Ai+1| = r − 1, for i = 1, 2, . . . , k − 1. In particular, to prove the first
statement, it suffices to show that if |A ∩ B| = r − 1, then A and B are in the same
connected component of the simple graph associated with D(δ).

Suppose |A∩B| = r−1. Let π(A, B) be the partition of type τ whose singleton classes
are the elements of A∩B. Observe that π(A, B) is the unique partition of type τ which is
orthogonal to both A and B. Because δ is a distribution, the partition π(A, B) is in the
domain of δ. Let δ(π(A, B)) = C. If C = B, then AB is an edge of the digraph D(δ); if
C = A, then BA is an edge of D(δ); if C is distinct from A and B, then AC and BC are
edges of D(δ). In particular, A and B are contained in the same connected component
of the simple graph associated with D(δ).

To prove the second statement of the lemma, let A be an r-set and α be the unique
partition of type τ such that δ(α) = A. The indegree indeg(A) is the number of r-sets
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other than A which are orthogonal to α. As observed in Lemma 2.3, the number of r-sets
orthogonal to α is r, thus indeg(A) is r − 1. The outdegree outdeg(A) is the number of
partitions of type τ , other than α, which are orthogonal to A. By Lemma 2.3, it follows
that outdeg(A) = r − 1. �

Corollary 3.8. If τ = r1r−1, then the rank and the idempotent rank of S(τ) are both
equal to

(2r−1
r−1

)
.

Remark 3.9. A brief description of Howie and McFadden’s method in [7] for proving
the existence of a generating set of S(n, r) idempotents for the semigroup K(n, r), for
positive integers n and r, with n > r, is provided below.

For given n and r, it is proved in [7] that there exists an orthogonally labelled list
A1π1 . . . A(n

r)π(n
r). A given orthogonally labelled list determines a set e1, e2, . . . , e(n

r) of
idempotents with ran(ei) = Ai+1 and ker(ei) = πi for i = 1, . . . ,

(
n
r

)
. Because the kernels

of the idempotents in the set {ei : i = 1, . . . ,
(
n
r

)
} are distinct, this set can be extended to a

set G of S(n, r) distinct idempotents with distinct kernels. Thus every r-set is represented
as a range of some idempotent in G, and every partition of weight r is represented as a
kernel of a unique idempotent in G.

Using an argument similar to that of Lemma 2.2, it is shown that the set G is a
generating set for K(n, r). As in the paragraph preceding Proposition 2.4, any generating
set for K(n, r) has at least S(n, r) elements; thus, the idempotent rank of K(n, r) is
S(n, r). For an implementable algorithm that, on input n and r, outputs an orthogonally
labelled list, see [13].

For certain partition types τ , in [8,10–12], the authors generalize the technique of [7],
proving the existence of an orthogonally τ -labelled list and thereby determining the rank
and idempotent rank of certain classes of S(τ) semigroups.

Remark 3.10. We show below that proving the existence of an orthogonally r1r−1-
labelled list is equivalent to proving the validity of the Middle Levels Conjecture for
r.

Suppose
A1π1 . . . A(2r−1

r )π(2r−1
r )

is an orthogonally r1r−1-labelled list. Recall that B(πi) is the (r − 1)-set of singleton
classes of πi. Using Lemma 2.3, it follows that B(πi) = Ai ∩ Ai+1 and

B(π1), . . . , B(π(2r−1
r ))

is a sequence of distinct (r − 1)-sets. Hence existence of an orthogonally r1r−1-labelled
list

A1π1 . . . A(2r−1
r )π(2r−1

r ) implies that A1B(π1) . . . A(2r−1
r )B(π(2r−1

r ))

is a Hamiltonian cycle of B(r). Conversely, Hamiltonian cycles of B(r) give rise to orthog-
onally r1r−1-labelled lists, as is easy to verify.
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The Middle Levels Conjecture has still another connection with the work here. In a
directed graph, a directed Hamiltonian cycle is a directed cycle which passes through
every vertex of the graph.

Lemma 3.11. The Middle Levels Conjecture is valid for r if and only if there exists a
perfect matching M of B(r), with associated distribution δM , such that D(δM ) contains
a directed Hamiltonian cycle.

Proof. Suppose the Middle Levels Conjecture is valid for r and

C = A1B1A2B2 . . . A(2r−1
r )B(2r−1

r )

is a Hamiltonian cycle in B(r). By Lemma 2.3 (4), the sets T (τ) and A2r−1,r−1 are in
one-to-one correspondence. For an (r−1)-set B, let θB be the type r1r−1 partition whose
singleton classes are the elements of B.

Observe that the map δ : Ai → θBi , where i = 1, . . . ,
(2r−1

r

)
, is a perfect matching. It

follows from the definition of the directed graph D(δ) that A1A2 . . . A(2r−1
r ) is a directed

Hamiltonian cycle of D(δ).
Conversely, suppose that M is a perfect matching of B(r), with the distribution δM ,

and suppose that D = A1A2 . . . A(2r−1
r ) is a directed Hamiltonian cycle of D(δM ). To

complete the proof, it suffices to show that for all distinct i and j in {1, . . . ,
(2r−1

r

)
}, the

sets Ai ∩ Ai+1 and Aj ∩ Aj+1 are distinct (r − 1)-sets.
To see that Ai ∩ Ai+1 consists of r − 1 elements, note that by the definition of D(δM ),

there exists a partition αi of type r1r−1 such that δM (αi) = Ai+1. By Lemma 2.3 (3) (b),
we have that |Ai ∩ Ai+1| = r − 1. Observe that αi is the unique partition of type
r1r−1 whose set of singleton classes is Ai ∩ Ai+1. Next, suppose that for some i, j ∈
{1, . . . ,

(2r−1
r

)
}, we have that Ai ∩ Ai+1 = Aj ∩ Aj+1. In this case, αi = αj and Ai+1 =

D(δM )(αi) = D(δM )(αj) = Aj+1. In particular, we have i = j. �

For a strongly connected directed graph D, for two vertices u and v, the distance
d(u, v) from a vertex u to to a vertex v is the length of the shortest directed path from u

to v; the diameter of D is max{d(u, v) : u �= v}. For a positive integer r, let c(r) be the
smallest diameter of all D(δ) graphs, where δ is a distribution for r1r−1.

For a minimal generating set G of S(τ), the terseness of G is the smallest k such that
the set of elements of S(τ) with kernel of type τ is Gk. Let g(r) be the minimum among
the tersenesses of all minimal generating sets of S(r1r−1). It is not difficult to prove that
c(r) � g(r).

Problem 3.12. Determine properties of the functions c(r) and g(r).

3.2. Idempotent rank of S(τ ), τ = d1r−1, d < r

We complete the proof of Theorem 1.1 by proving for d < r and τ = d1r−1 that the
idempotent rank of S(τ) is

(
n

r−1

)
.
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A partial distribution δ is said to be strongly connected if the corresponding digraph
D(δ) is strongly connected. A maximal strongly connected subgraph of a digraph is called
a strongly connected component.

Lemma 3.13. Let τ = d1r−1, d � 3, with r � d. Set n = d + r − 1. Suppose there
exist strongly connected partial distributions

(1) δ1 : T ((d−1)1r−1) → An−1,r such that dom(δ1) is a proper subset of T ((d−1)1r−1),
and

(2) δ2 : T (d1r−2) → An−1,r−1.

If the domain of δ1 consists of u partitions and the domain of δ2 consists of v partitions,
then there exists a strongly connected partial distribution δ1,2 : T (τ) → An,r with no
more than u + v + 1 partitions in its domain.

Proof. We show that the partial distributions δ1 and δ2 give rise to partial functions
δ̃1 and δ̃2 from T (τ) to An,r. For each partition α in the domain of δ1 let α̃ be a partition
of type τ obtained from α by adding the element n into its (d−1)-class. For each partition
β in the domain of δ2 let β̃ be a partition of type τ obtained from β by adding an extra
singleton class {n}. Let δ̃1 be a partial function with domain {α̃ : α ∈ dom(δ1)}, defined
by δ̃1(α̃) = δ1(α). Since the partial distribution δ1 is surjective, the range of δ̃1 is the set
of all the r-subsets of An,r that do not contain n.

Let δ̃2 be a partial function with domain {β̃ : β ∈ dom(δ2)}, defined by δ̃2(β̃) =
δ2(β) ∪ {n}. Since the partial distribution δ2 is surjective, the range of δ̃2 is the set of all
the r-subsets of An,r that contain n.

The domains of δ̃1 and δ̃2 are disjoint subsets of T (τ), while the ranges of δ̃1 and δ̃2 are
disjoint subsets of An,r whose union equals An,r. Moreover, for i = 1 or 2, and any parti-
tion γ in the domain of δ̃i, the image δ̃i(γ) is orthogonal to γ. Thus, the partial function
δ′
1,2—whose domain is the union of domains of δ̃1 and δ̃2, and whose action coincides

with that of δ̃1 and δ̃2 on their respective domains—is in fact a partial distribution from
T (τ) onto An,r.

The fact that δ1 and δ2 are both strongly connected implies that the ranges of δ̃1 and
δ̃2 are strongly connected components of the range of δ′

1,2. We construct an extension
δ1,2 of δ′

1,2 that is strongly connected.
By hypothesis, there exists a partition ρ of type (d − 1)1r−1 that is not contained in

the domain of δ1. Hence the partition ρ̃, obtained from ρ by adjoining the element n to
its (d − 1)-class, is not in the domain of δ′

1,2. Let A be the set of the singleton classes of
ρ. Then any r-set containing A is orthogonal to ρ̃. We extend the domain of δ′

1,2 to that
of δ1,2 by letting δ1,2(ρ̃) = A ∪ {n}. For any r-set B that contains A but not n, there is
a directed edge from B to A ∪ {n} in D(δ1,2).

To complete the proof, it suffices to show that there exists a directed edge V U in
D(δ1,2), such that U does not contain n and V contains n. Let α be the partition of
type d1r−1 satisfying δ1,2(α) = U . By definition of δ1,2, there exists y in U such that
y �= n, and n and y are contained in the d-class of α. Let W be the (r − 1)-set such that
U = W ∪{y}, and let V = W ∪{n}. Observe that α is simultaneously orthogonal to both
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U and V . Therefore, we have that the equality δ1,2(α) = U implies there is a directed
edge V U in D(δ1,2). �

The proof of the next proposition completes the proof of Theorem 1.1. For two sets U

and V contained in Xn, let � (U, V ) denote their symmetric difference in Xn.

Proposition 3.14. Let τ = d1r−1 with r � d � 2. There exists a strongly connected
partial distribution δ such that the domain of δ has no more than

(
n

r−1

)
− (r − d) ele-

ments.

Proof. We prove the Proposition by induction on d and r. Assume first that d = 2, so
n = r + 1 and let Ai = Xn − {n − i + 1}, for i = 1, 2, . . . , n. We treat all subscripts ‘mod
n’. For i = 1, 2, . . . , n, let αi be the partition of Xn whose unique non-singleton class is
� (Ai, Ai+1). Observe that αi is simultaneously orthogonal to Ai and Ai+1. Hence the
partial function δ from T (τ) onto An,r, with δ(αi) = Ai+1, is a distribution for τ . The
domain of δ consists of n = r + 1 partitions. Note that(

n

n − 1 − 1

)
− (r − d) =

(
r + 1

2

)
− (r − 2) = (r2 − r + 4)/2.

As is easily proved, for all r � 2, we have that (r2 − r +4)/2 is an upper bound for r +1.
Thus, the proposition holds when d = 2.

Lemmas 3.5 and 3.7 assert the validity of the proposition for the case of r = d. We use
the cases d = 2 and r = d as our base steps.

With d � 3 and r > d, assume that the proposition is valid for (d − 1)1r−1 and for
d1r−2. There exist strongly connected partial distributions δ1 and δ2 for partition types
(d − 1)1r−1 and for d1r−2, respectively, such that the domain of δ1 has no more than(
d+r−2

d−1

)
− r + d − 1 elements, and the domain of δ2 has no more than

(
d+r−2

d

)
− r + d + 1

elements.
Lemma 3.13 guarantees the existence of a strongly connected partial distribution for

τ = d1r−1 whose domain has no more than[(
d + r − 2

d − 1

)
− r + d − 1

]
+

[(
d + r − 2

d

)
− r + d + 1

]
+ 1 =

(
n

d

)
− 2(r − d) + 1

�
(

n

r − 1

)
− (r − d)

elements, using the fact that r − d � 1. This completes the proof by induction. �
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