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Abstract

By using row convex tableaux, we study the section rings of Bott–Samelson varieties of type A. We
obtain flat deformations and standard monomial type bases of the section rings. In a separate section, we
investigate a three-dimensional Bott–Samelson variety in detail and compute its Hilbert polynomial and
toric degenerations.
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1. Introduction

Let G = GLn(C) be the general linear group over the complex number field C and B be
its Borel subgroup consisting of upper triangular matrices. For a word i = (i1, . . . , i`)
with 1 ≤ i j ≤ n − 1, the Bott–Samelson variety Zi can be defined as the quotient space

Pi1 × Pi2 × · · · × Pi`/B`.

Here, Pi j is the minimal parabolic subgroup of G associated to the simple reflection

si j = (i j, i j + 1)

and (b1, . . . , b`) ∈ B` acts on the product of Pi j s by

(p1, . . . , p`) · (b1, . . . , b`) = (p1b1, b−1
1 p2b2, . . . , b−1

`−1 p`b`).

The Bott–Samelson varieties are defined in [1, 2, 4] to desingularize the Schubert
varieties in the flag manifold G/B, and then used to study the Chow ring of G/B.
In representation theory, the Bott–Samelson varieties provide Demazure’s character
formula, which can be understood as a generalized Weyl character formula, through
the section spaces of their line bundles.
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One can also realize the Bott–Samelson variety Zi as a configuration variety in the
product of the Grassmann varieties Gr(i, n) via the map

Zi −→ Gr(i1, n) × · · · × Gr(i`, n)

(p1, . . . , p`) 7−→ (p1Ei1 , p1 p2Ei2 , . . . , p1 · · · p`Ei` )

where Ei is the i-dimensional subspace of Cn spanned by the first i elementary basis
elements {e1, . . . , ei}. From such a realization, Lakshmibai and Magyar investigated
generalized Demazure modules and described their standard monomial bases in terms
of root operators [10, 11]. See also [9].

We note that there is a natural line bundle induced from the Plücker bundles on the
factors Gr(i j, n), and, as is the case for the Grassmann varieties and the flag varieties,
we can investigate the Plücker coordinates in terms of minors over a matrix or Young
tableaux and straightening relations among them.

In this paper, using the language of row convex tableaux introduced by Taylor [15],
we study the section rings of the Bott–Samelson varieties and their explicit standard
monomial type bases which are different from the ones given in [10, 11]. For i in (2.1)
and m = (m1, . . . ,m`) ∈ Z`≥0, our main results are as follows.

Theorem 1.1. Let M(i, dm) be the space spanned by tableaux of shape (i, dm). The
section ring of the Bott–Samelson variety with respect to the line bundle Lm is

Ri,m �
⊕
d≥0

M(i, dm),

and straight tableaux of shape (i, dm) form a C-basis of the space M(i, dm).

Then from SAGBI–Gröbner degeneration techniques (e.g. [12, 14]), we obtain a
flat degeneration of the section ring.

Theorem 1.2. The section ring Ri,m of the Bott–Samelson variety Zi is a flat
deformation of an affine semigroup ring.

In the final section, we provide a detailed study of an example for the case of
GL3(C), including toric degenerations, the corresponding moment polytopes, and
computations of the Hilbert polynomial.

Proposition 1.3. The Hilbert polynomial of the Bott–Samelson variety Z is

HPZ(s) =
5s3 + 11s2 + 8s + 2

2
.

In [6], Grossberg and Karshon studied a family of complex structures on a Bott–
Samelson manifold, such that the underlying real manifold remains the same, but
the limit complex manifold admits a complete, full-dimensional torus action. (They
call such varieties ‘Bott towers’. An algebraic version of their construction appeared
in [13].) Our deformation is algebraic in nature, yet is different, as can be seen in
examples and also from the fact that in the limit, the relationship between Zi and G/B
naturally extends to the whole flat family. The resulting toric variety does not seem to
be smooth or simplicial in general.
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This paper is organized as follows. In Section 2 we fix notation and some basic
definitions which will be useful in the sequel. Then we describe the section ring of the
Bott–Samelson variety in terms of row convex tableaux. In Section 3, by using the fact
that straight tableaux form bases of the space of sections, we show that the section ring
is a flat deformation of an affine semigroup ring. In Section 4 we further investigate
straight tableaux and study their properties. In Section 5, for a three-dimensional Bott–
Samelson variety, we compute its toric degenerations and Hilbert polynomial.

2. Row convex tableaux and the section rings

In this section, after introducing row convex tableaux and related notation, we
describe the section ring of the Bott–Samelson variety associated with a reduced
expression for the longest element of the symmetric group.

2.1. Row convex tableaux. A shape is a finite collection of pairs of positive
integers. A tableau t of shape D is an assignment of positive integers to elements
in D:

t : D −→ Z>0.

One can identify a shape D with a collection of cells arranged in rows and columns
in such a way that there is a cell in the ith row and jth column if and only if (i, j) ∈ D.
In this realization, a tableau of a shape D is a filling of cells in D with positive integers.

Definition 2.1. A row convex shape is a shape without gaps in any row. That is, if (r, i)
and (r, k) are in a shape D, then (r, j) ∈ D for all i < j < k. A row convex tableau is a
filling of a row convex shape with positive integers.

Our construction does not depend on the order of rows. Therefore, we will assume
that all the row convex shapes in this paper satisfy the following conditions: the higher
rows end at least as far to the right as lower rows. Such shapes may be understood
as a generalization of skew Young diagrams in the following sense (cf. [15]). For two
Young diagrams

λ = (λ1, . . . , λ`) ∈ Z` such that λ1 ≥ · · · ≥ λ` ≥ 0,

µ = (µ1, . . . , µ`) ∈ Z` such that µ1 ≥ · · · ≥ µ` ≥ 0,

with λi ≥ µi for all i, a skew Young diagram λ/µ is the set-theoretic difference of the
Young diagrams of λ and µ. If we replace a Young diagram µ with a sequence of
nonnegative integers m = (m1, . . . ,m`) with λi ≥ mi for all i, then we can obtain a row
convex shape λ/m by removing the first mi boxes in the ith row of the Young diagram
λ for all i.

2.2. Column sets. Let us consider the following reduced decomposition of the
longest element w0 in Sn:

w0 = w(n)
0 = (s1)(s2s1)(s3s2s1) · · · (sn−1sn−2 · · · s1)
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where si j is the simple reflection (i j, i j + 1). Note that the length of w0 is ` = n(n − 1)/2.
Once and for all, we fix the word

i = (i1, . . . , i`) = (1, 2, 1, 3, 2, 1, . . . , n − 1, n − 2, . . . , 1) (2.1)

associated to the reduced expression w0 = si1 si2 · · · si` of the longest element given
above.

Definition 2.2. For the reduced word i, the column sets are

C(k) = si1 si2 · · · sik [ik]

where [ik] is the set of positive integers not more than ik for 1 ≤ k ≤ `.

Column sets can be defined for any word, but for the reduced word i, we can
explicitly describe all the column sets. In particular, it is straightforward to prove
that each column set contains consecutive integers.

Lemma 2.3. For each k, if a < c < b and both a and b are in C(k), then c ∈ C(k). To be
more precise, for each j with 2 ≤ j ≤ n − 1, let p j = j( j − 1)/2. Then the column sets
are

C(p j+t) = {t + 1, t + 2, . . . , j + 1}

for 1 ≤ t ≤ j, and C(1) = {2}.

This shows in particular that if we stack C(k+1) on top of C(k), the column sets we
defined form a row convex shape

D =
⋃

1≤k≤`

{(k, c)|c ∈ C(k)}

and its higher rows end at least as far to the right as lower rows.

Example 2.4. For n = 3, the reduced word is i = (121) and the column sets are

C(1) = s1{1} = {2},

C(2) = s1s2{1, 2} = {2, 3},

C(3) = s1s2s1{1} = {3}.

For n = 4, the reduced word is i = (121321) and we have three additional column sets,

C(4) = s1s2s1s3{1, 2, 3} = {2, 3, 4},

C(5) = s1s2s1s3s2{1, 2} = {3, 4},

C(6) = s1s2s1s3s2s1{1} = {4}.

Then the corresponding row convex shapes for n = 3 and n = 4 indicated by X are
respectively

X
X X
X and

X
X X

X X X
X

X X
X
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2.3. Bott–Samelson varieties. We will use the realization of the Bott–Samelson
variety as the variety of configurations of subspaces of Cn. For various constructions
of the Bott–Samelson varieties and their equivalences, we refer the readers to [11,
Section 1].

For the word i in (2.1), let us write Gr(i) for

Gr(i1, n) × · · · × Gr(i`, n)

where Gr(ik, n) is the Grassmann variety of ik-dimensional subspaces in Cn.

Definition 2.5. The Bott–Samelson variety Zi is the closure of the B-orbit of xi in Gr(i):

Zi = B · xi ⊂ Gr(i)

where xi = (xi1 , . . . , xi` ) is the point in Gr(i) whose kth coordinate xik is the |C(k)|-
dimensional subspace of Cn spanned by the elementary basis elements e j for all j in
the column set C(k) for 1 ≤ k ≤ `.

We observe that there is a natural line bundle induced from the Plücker bundles
O(1) on the factors of Gr(i). That is, for m = (m1, . . . ,m`) ∈ Z`≥0, we take the powers
of the Plücker bundles to obtain an effective line bundle on Gr(i):

O(m) = O⊗m1 ⊗ · · · ⊗ O⊗m` .

We define the line bundle Lm on the Bott–Samelson variety Zi as the restriction of
O(m) to Zi ⊂ Gr(i),

Lm = O(m)|Zi ,

and then study the section ring

Ri,m =
⊕
d≥0

H0(Zi, Ld
m).

We will also discuss the relation between Lm and a line bundle on G/B in Section 4.

2.4. Minors and tableaux. Let Mn = Mn(C) be the space of complex n × n matrices
and Bn = B be the subspace consisting of upper triangular matrices:

Bn = {(xi j) ∈ Mn : xi j = 0 for i > j}.

For k ≤ n, consider subsets R = {r1, . . . , rk} and C = {c1, . . . , ck} of {1, . . . , n} such that
r1 < · · · < rk and c1 < · · · < ck. Then we let [R : C] denote the map from Bn to C by
assigning to a matrix b ∈ Bn the determinant of the k × k minor of b formed by taking
rows R and columns C:

[R : C] = det


xr1c1 · · · xr1ck

...
. . .

...
xrkc1 · · · xrkck


where xrc = 0 if r > c.
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For subsets S and S ′ of {1, . . . ,n} of the same size, we can impose a partial ordering:
S � S ′ if, for each k, the kth smallest element of S is less than or equal to the kth
smallest element of S ′. Then note that [R : C] is nonzero only if R � C. A map with
this property is referred to as flagged. Since we consider only minors defined on B,
from now on we continue to assume this property.

By using a Young diagram with a single row consisting of n boxes, we can record
[R : C] by filling in the cith box counting from left to right with ri for each i. For
example, for n = 6, if R1 = {1, 3, 4} and C1 = {2, 3, 4} then [R1 : C1] can be drawn as

1 3 4

The product of k of these row tableaux [Ri : Ci] can be encoded in a k × n rectangular
array whose ith row counting from bottom to top is [Ri : Ci] for 1 ≤ i ≤ k. For example,
if R2 = {2, 3, 5},C2 = {3, 4, 5},R3 = {4, 5} and C3 = {5, 6}, then

∏
1≤i≤3[Ri : Ci] can be

drawn as
4 5

2 3 5
1 3 4

Next, for ` = n(n − 1)/2 and m = (m1, . . . ,m`) ∈ Z`≥0, consider a collection⋃
1≤k≤`

{[R(k)
j : C(k)]| 1 ≤ j ≤ mk}

where the R(k)
j are subsets of {1, 2, . . . , n} and the C(k) are the column sets with respect

to i (Definition 2.2). Write |m| for
∑

k mk. Then, by repeating C(k) mk times for each
k, the product t of the [R(k)

j : C(k)] can be encoded in a |m| × n rectangular array having

[R(i)
j : C(i)] as its (m1 + · · · + mi−1 + j)th row counting from bottom to top. In this way,

we can identify tableaux and products of minors.

Definition 2.6. A tableau t of shape (i,m) is

t =

( ∏
1≤ j≤m1

[R(1)
j : C(1)]

)
·

( ∏
1≤ j≤m2

[R(2)
j : C(2)]

)
· . . . ·

( ∏
1≤ j≤m`

[R(`)
j : C(`)]

)
. (2.2)

Note that up to sign, we can always assume that the entries in each row of t are
increasing from left to right. If such is the case, then t is called a row standard tableau.

2.5. Section ring. From the realization of Zi as a configuration space in Gr(i), we
can obtain an explicit description of the space of sections H0(Zi, Lm) of the line bundle
Lm. In fact, such spaces can be described in a general setting. See [9, 10] and [11,
Section 3].

Theorem 2.7. For m = (m1, . . . ,m`) ∈ Z`≥0, let M(i,m) be the space spanned by
tableaux of shape (i,m). Then

M(i,m) � H0(Zi, Lm).
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Proof. In the setting

Zi = B · xi ⊂ Gr(i1, n) × · · · × Gr(i`, n),

the sections of the line bundle O(1) over the Grassmannian Gr(ik, n) can be identified
with the maximal minors δ(k)

j defined on the space Xk of n × ik complex matrices.
Therefore, the space of sections of O(m) over Gr(i) is spanned by the products

m1∏
j=1

δ(1)
j ·

m2∏
j=1

δ(2)
j · . . . ·

m∏̀
j=1

δ(`)
j .

We can restrict these sections to Zi to obtain the sections of Lm over Zi. We restrict it
further to the dense orbit B · xi of Zi, and then by using the orbit map

B −→ B · xi ⊂ Zi

we pull back the restriction to obtain functions ξ on Bn = B.
Recall that xik in xi = (xi1 , . . . , xi` ) is the |C(k)|-dimensional subspace of Cn spanned

by e j for all j ∈ C(k). Therefore, the functions ξ derived from δ(k)
j are the minors defined

on Bn with the columns specified by the column set C(k). This shows that H0(Zi, Lm)
is spanned by tableaux of shape (i,m) given in (2.2). �

Then we can consider the section ring Ri,m with respect to Lm as the Z≥0 graded
algebra generated by tableaux of shape (i,m):

Ri,m =
⊕
d≥0

M(i, dm)

where dm = (dm1, . . . , dm`). We remark that the multiplicative structure of this
ring can be described by the straightening laws, which are in our case essentially
Grosshans–Rota–Stein syzygies given in [5]. We refer the readers to [15] for more
details.

3. Flat deformations of the section rings

In this section we describe C-bases of the section spaces and then prove that the
section ring is a flat deformation of a semigroup ring.

3.1. Straight tableaux. For a Young diagram λ, it is well known that semistandard
tableaux form a C-basis of the space spanned by tableaux of shape λ (see [5, 12]).
We now discuss an analogous result for row convex shape, which is given in [15] in a
general setting of polynomial superalgebras.

Definition 3.1. A row standard tableau t of shape (i,m) given in (2.2) is called a
straight tableau if it satisfies the following condition: for two cells (i, k) and ( j, k)
with i > j in the same column, the entry in the upper cell (i, k) may be strictly larger
than the entry in the lower cell ( j, k) only if the cell (i, k − 1) exists and contains an
entry weakly larger than the one in the cell ( j, k).
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For example, each of the first three tableaux below can be a part of a straight tableau
while the last one cannot be, because in the last tableau 3 in the second column is less
than 4 in the same column and 1 to the left of the 4 is less than 3:

1 2
3 4 5 6

5
5 7 ,

1 2
3 4 5 6

3
6 7 ,

2 5
3 4 5 7

6
3 8 ,

2 5
1 4 5 7

7
3 8

A monomial order on the polynomial ring C[Mn] is called a diagonal term order
if the leading monomial of a determinant of any minor defined on Mn is equal to the
product of the diagonal elements. For a subring R of the polynomial ring we let in(R)
denote the algebra generated by the leading monomials in( f ) of all f ∈ R with respect
to a given monomial order. Note that the collection of leading monomials forms a
semigroup, therefore in(R) is a semigroup algebra and Spec(in(R)) is an affine toric
variety in the sense of [14]. Recall that for a subring R of a polynomial ring, a set
{ fi : i ∈ I} of elements of R is called a SAGBI basis if {in( fi) : i ∈ I} generates the
associated semigroup algebra in(R).

Proposition 3.2. Let D be a row convex shape.

(1) [15, Theorem 6.2] Straight tableaux of shape D form a C-basis for the space
spanned by all the tableaux of shape D.

(2) [15, Theorem 7.8] Straight tableaux of shape D form a SAGBI basis of the graded
algebra R ⊂ C[Mn] generated by all the tableaux of shape D with respect to any
diagonal term order.

From the fact that the shape (i,m) is row convex, it follows from the above
proposition that straight tableaux form a C-basis of the section ring Ri,m, and that
the straight tableaux of shape (i,m) form a SAGBI basis for Ri,m. We will study more
properties of straight tableaux in Section 4.

3.2. Flat deformation. We now study a flat deformation of the section ring Ri,m.
The technique is basically the same as that for the Grassmannians and the flag varieties
given in, for example, [8, 12, 14].

Theorem 3.3. The section ring Ri,m of the Bott–Samelson variety Zi can be flatly
deformed into an affine semigroup ring.

Proof. We show that there is a flat C[t] module Rt
i,m whose general fiber is isomorphic

to Ri,m and whose special fiber is isomorphic to the semigroup ring in(Ri,m).
Lemma 2.3 shows that any tableau of shape (i,m) with the column sets {C(1)

1 , . . . ,C(`)
`
}

is a row convex tableau. Therefore, we can apply Proposition 3.2 to Ri,m to conclude
that the set of straight tableaux of shape (i,m) forms a SAGBI basis for the ring Ri,m
with respect to a diagonal term order. Then, from the existence of a finite SAGBI
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basis, by [3], there exists a Z≥0 filtration {Fα} on Ri,m such that the associated graded
ring of the Rees algebra Rt

i,m with respect to {Fα},

Rt
i,m =

⊕
α≥0

Fα(Ri,m)tα,

is isomorphic to in(Ri,m). Then, by the general property of the Rees algebra, Rt
i,m is

flat over C[t] with general fiber isomorphic to Ri,m and with special fiber isomorphic
to the associated graded ring, which is in(Ri,m). �

4. Straight tableaux and the space of sections

In this section we study in more detail the C-basis of the space M(i,m) � H0(Zi, Lm)
given by straight tableaux in Proposition 3.2, and then its connection to the natural map
from the Bott–Samelson variety to the flag variety.

4.1. Contra-tableaux. To simplify our notation, we retain the notation

` = n(n − 1)/2 and p j = j( j − 1)/2

for 2 ≤ j ≤ n − 1. We also fix an arbitrary multiplicity m = (m1, . . . ,m`) ∈ Z`≥0.

Definition 4.1. A contra-tableau is a filling of a skew Young diagram

(k, k, . . . , k)/(λ1, λ2, . . .)

with k ≥ λ1 ≥ λ2 ≥ · · · ≥ 0 such that the entries in each column are weakly increasing
from top to bottom and the entries in each row are strictly increasing from left to right.

For example, a contra-tableau of shape (4, 4, 4, 4, 4)/(3, 3, 3, 2, 1) can be encoded in
a rectangular array as follows:

1
1
2

1 2
1 3 4

Recall that the usual semistandard tableaux can encode weight basis elements for
irreducible polynomial representations of the general linear group. Similarly, one can
use contra-tableaux to encode weight vectors of a contra-gradient representation of an
irreducible polynomial representation of the general linear group. Here, our goal is to
decompose a straight tableau into contra-tableaux.

First, we can decompose the shape (i,m) into skew Young diagrams as follows. For
1 ≤ j ≤ n − 1, let us set m( j) = (m′1, . . . ,m

′
`) where m′i = mi for p j < i ≤ p j+1 and m′i = 0

otherwise. Then m = m(1) + · · · + m(n − 1) in Z`.

https://doi.org/10.1017/S1446788714000421 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000421


324 P. Foth and S. Kim [10]

Example 4.2. If n = 4 and m = (1, 1, . . . , 1) ∈ Z6
≥0, then (i,m(1)), (i,m(2)), (i,m(3))

respectively correspond to the shapes:

X
X

X X

X
X X

X X X

Note that this is equivalent to the decomposition of the shape (i, m) given in
Example 2.4 into maximal possible Young diagrams.

If m = (1, 1, . . . , 1), then, from the second statement of Lemma 2.3, the shape
(i,m( j)) is a skew Young diagram ( j + 1, j + 1, . . . , j + 1)/( j, j − 1, . . . , 1) of length j.
By repeating the kth rows mp j+k times, we have a skew Young diagram of length |m( j)|.
Then from the definition of straight tableaux, it is straightforward to check that every
straight tableau in a skew diagram is a contra-tableau. See also [15, Proposition 4.3].

Lemma 4.3. For each j, every straight tableau of shape (i,m( j)) is a contra-tableau.

Note that this lemma shows that the basis of the space M(i,m( j)) � H0(Zi, Lm( j)) is
simply given by contra-tableaux, and as a consequence we can obtain a description of
elements in the section ring Ri,m as products of contra-tableaux. That is, we have a
natural projection

M(i,m(1)) ⊗ · · · ⊗M(i,m(n − 1))→ M(i,m) (4.1)

sending t1 ⊗ · · · ⊗ tn−1 to the product t1 · . . . · tn−1 ∈ M(i,m) where t j is a contra-tableau
in M(i,m( j)) for each j.

For example, if n = 4 and m = (1, 2, 1, 1, 1, 3), then the product map t1 ⊗ t2 ⊗ t3 → t
gives

1 ⊗

2
1 3
2 3 ⊗

1
1
2

1 2
1 3 4 →

1
1
2

1 2
1 3 4

2
1 3
2 3
1

Note that the product is not a straight tableau, but it can be expressed by a linear
combination of straight tableaux in M(i,m) ⊂ Ri,m by successive application of the
straightening laws mentioned after Proposition 2.7.

4.2. Projection to G/B. We now discuss the natural map from the Bott–Samelson
variety Zi to the flag variety G/B in terms of our basis description.

The projection map (4.1) is compatible with the decomposition of a straight tableau
of shape (i,m) into contra-tableaux. More precisely, a straight tableau t of shape (i,m)
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can be factored into a product t1 · . . . · tn−1 of straight tableaux t j of shape (i,m( j)) for
1 ≤ j ≤ n − 1. Then, by Lemma 4.3, the t j are contra-tableaux for all j.

In particular, for each 1 ≤ j ≤ n − 2, let us consider a straight tableau t0j of shape
(i,m( j)) such that, for each a and b such that 1 ≤ b ≤ m j and p j + 1 ≤ a ≤ p j+1, the
row indices and the column indices are equal, R(a)

b = C(a), that is,

t01 = [C(2) : C(2)]m1 ;
t0j = [C(p j+1) : C(p j+1)]mp j+1 · [C(p j+2) : C(p j+2)]mp j+2 · . . . · [C(p j+1) : C(p j+1)]mp j+1

for 2 ≤ j ≤ n − 2. This is equivalent to saying that t0j is obtained by filling in all the cells
corresponding to the subshapes (i,m( j)) of the shape (i,m) with maximum possible
numbers.

Then, for any contra-tableau t of shape (i,m(n − 1)), we can find a straight tableau
t̂ of shape (i,m) such that

t̂ = (t01 · . . . · t
0
n−2) · t

and this provides the injection

H0(G/B, Lλ)→ M(i,m) (4.2)
t 7→ (t01 · . . . · t

0
n−2) · t

where H0(G/B, Lλ) is the section space of the line bundle Lλ on G/B and λ is the
dominant weight determined by the shape m(n − 1) as a Young diagram. For example,

1
1
2

1 2
1 3 4 →

1
1
2

1 2
1 3 4

3
2 3
2 3
2

Finally, by extending the map (4.2), we have the following proposition.

Proposition 4.4. There is a natural map from the section ring of the flag variety to the
section ring of Zi: ⊕

d≥0

H0(G/B, Ld
λ) −→ Ri,m =

⊕
d≥0

H0(Zi, Ld
m).

5. Three-dimensional example: toric degenerations

In this section we will consider explicit examples of toric degenerations of a
three-dimensional Bott–Samelson variety, and compute the corresponding Hilbert
polynomials.
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5.1. Three-dimensional Bott–Samelson variety. Let P1 and P2 be the following
parabolic subgroups of GL3(C):

P1 =

∗ ∗ ∗

∗ ∗ ∗

0 0 ∗

 , P2 =

∗ ∗ ∗0 ∗ ∗

0 ∗ ∗

 .
Denote by P̄1 and P̄2 their closures in the space M3 of 3 × 3 matrices.

Let Z be the Bott–Samelson variety defined as in Section 1 with n = 3 and i = (121).
That is,

Z = P1 × P2 × P1/B3

with the action of B3:

(p1, p2, p3) · (b1, b2, b3) = (p1b1, b−1
1 p2b2, b−1

2 p3b3).

It can also be viewed as an invariant theory quotient of the product of the closures
P̄1 × P̄2 × P̄1 by the action of B3 in the obvious way.

We will denote the elements of the first copy of P1 by

p1 =

a11 a12 a13
a21 a22 a23
0 0 a33

 ,
the elements of P2 by

p2 =

b11 b12 b13
0 b22 b23
0 b32 b33

 ,
and the elements of the second copy of P1 by

p3 =

c11 c12 c13
c21 c22 c23
0 0 c33

 .
The same notation will be used for the elements of their closures in M3.

5.2. Hilbert polynomial. Next, we will describe a Plücker-type embedding of Z into
the product of three projective spaces:

H := Proj(s1, s2) × Proj(r23, r13, r12) × Proj(q1, q2, q3) ' CP1 × CP2 × CP2.

Let a point in Z be represented by three matrices (p1, p2, p3) in the above form. Then
we denote by si the 1 × 1 minor of the matrix p1 with column 1 and row i. Therefore,

s1 = a11 and s2 = a21.

(s3 would be identically equal to zero, so we do not use it.) Next, we denote by ri j the
2 × 2 minor of the matrix p1 p2 with columns 1, 2 and rows i, j. Explicitly,

r12 = a11b11(a22b22 + a23b32) − a21b11(a12b22 + a13b32),
r13 = a11a33b11b32,

r23 = a21a33b11b32.
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Finally, we denote by qi the 1 × 1 minor of the matrix p1 p2 p3 with column 1 and row i:

q1 = a11b11c11 + (a11b12 + a12b22 + a13b32)c21,

q2 = a21b11c11 + (a21b12 + a22b22 + a23b32)c21,

q3 = a33b32c21.

Then Z can be viewed as a subvariety ofH , the product of three projective spaces,
defined by the following two homogeneous equations (or Plücker relations):

s1r23 − s2r13 = 0 and q1r23 − q2r13 + q3r12 = 0. (5.1)

Proposition 5.1. The Hilbert polynomial of Z is given by

HPZ(s) =
5s3 + 11s2 + 8s + 2

2
.

Proof. Let, as before, H = CP1 × CP2 × CP2 and let π1, π2 and π3 stand for the
projections onto the corresponding factors. Write

L = π∗1(O(1)), M1 = π∗2(O(1)), M2 = π∗3(O(1)).

We will also denote by the same letters L, M1, M2 the corresponding classes of divisors
in the Chow ring ofH . Let X be the element of the Chow ring ofH corresponding to
Z, and let

D = n(L + M1 + M2).

For large enough integral values of s, the Hilbert polynomial HPZ(s) coincides with
dim(H0(sD|Z)), which, due to vanishing, is the same as the Euler characteristic of sD|Z .

The Riemann–Roch theorem for smooth Fano threefolds (see [7]) asserts that

χ(nD|Z) =
D3
|Z

6
n3 −

D2
|Z KZ

4
n2 +

D|Z(K2
Z + c2(Z))
12

n + 1.

Now X = (L + M1)(M1 + M2), therefore by the adjunction formula we get −KZ =

(L + M1 + 2M2)|Z and hence (L + M1 + 2M2)|Zc2(Z) = 24. To find (M2)|Zc2(Z), we
will use the same Riemann–Roch formula, but for M2 note that dim(H0(M2)) = 3.
Finally, the intersection products satisfy

L2 = 0, M3
1 = M3

2 = 0, LM2
1 M2

2 = 1,

which leads to a straightforward computation of the required polynomial. �

5.3. Deformation. Ignoring the first component, one can consider the projection

H → CP2 × CP2.

The image of Z under this projection is naturally the three-dimensional flag variety
Fl3, sitting inside CP1 × CP2 as the zero set of the second Plücker relation in (5.1).
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Figure 1. Moment polytope for D3.

There are two naive ways to construct toric degenerations of Z. The first is to
consider the family of varieties, parameterized by τ ∈ C, where the second equation is
modified to

q1r23 − q2r13 + τq3r12 = 0.

One can easily observe that the special toric fiber of this family, corresponding to
τ = 0, is a reducible variety and has two irreducible components: one, denoted by G, is
isomorphic to CP1 × CP2, and corresponds to r23 = r13 = 0; and the other, denoted by
D3, a three-dimensional toric variety, which is actually nonsingular. Combinatorially,
the moment polytope for D3 is a cube, and is drawn schematically in Figure 1. (To
simplify computations, we assumed that the members of the family are polarized by
the invertible sheaf induced from O(1) × O(1) × O(1) onH .)

The fact that the special fiber of this flat family of varieties over C is reducible and is
given by the union of two nonsingular components is quite amusing. The intersection
of these two components is a smooth two-dimensional toric variety, denoted by K2,
known as the Hirzebruch surface of degree one.

One can compute the Hilbert polynomials for the chosen polarization, denoted by
HP, of the irreducible components, which are known (see [12]) to be the same as
the Ehrhart polynomials, denoted by EP of their moment polytopes, as well as their
Ehrhart series, ES. Using the LatteE macchiato computer program (http://www.math.
ucdavis.edu/∼mkoeppe/latte/), we have obtained:

ES(D3) =
3t2 + 8t + 1

(1 − t)4 , EP(D3) = HP(D3) = 2s3 + 5s2 + 4s + 1 = (s + 1)2(2s + 1),

ES(G) =
1 + 2t

(1 − t)4 , EP(G) = HP(G) =
s3 + 4s2 + 5s + 2

2
=

(s + 1)2(s + 2)
2

,

ES(K2) =
1 + 2t

(1 − t)3 , EP(K2) = HP(K2) =
3s2 + 5s + 2

2
=

(s + 1)(3s + 2)
2

.

This allows us to check that

HP(Z) = HP(D3) + HP(G) − HP(K2)

=
5s3 + 11s2 + 8s + 2

2
=

(s + 1)(5s2 + 6s + 2)
2

.
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Figure 2. Moment polytope for Y3.

This fact was also verified, independently, using the Singular software package
(http://www.singular.uni-kl.de/), by representing Z as a subvariety in CP17 via Segre
embedding, defined by the following 95 equations, where [a1 : · · · : a9 : b1 : · · · : b9]
are the homogeneous coordinates on CP17:

aib j = a jbi for 1 ≤ i < j ≤ 9,

and similarly,

akal = aman, akbl = ambn, akbl = bman,

bkal = ambn, bkal = bman, bkbl = bmbn,

for the following nine choices of quadruples of indexes (k, l,m, n):

(1, 5, 2, 4), (1, 6, 3, 4), (2, 6, 3, 5), (1, 8, 2, 7), (1, 9, 3, 7),
(2, 9, 3, 8), (4, 8, 5, 7), (4, 9, 6, 7), and (5, 9, 6, 8),

and the last five:

a1 + b4 = 0, a2 + b5 = 0, a3 + b6 = 0,
a1 + a5 + a9 = 0, and b1 + b5 + b9 = 0.

5.4. Another deformation. The second way to obtain a flat toric degeneration of Z
is to consider a different family of varieties insideH , also parameterized by τ ∈ C and
given by the following two equations:

s1r23 − s2r13 = 0 and q1r23 − τq2r13 + q3r12 = 0.

One can see that the special fiber of this flat family, corresponding to τ = 0, is a singular
toric variety, denoted by Y3, whose moment polytope is combinatorially is represented
in Figure 2.

The Ehrhart series and the Ehrhart polynomial of the moment polytope of the
special fiber corresponding to the same, previously chosen, polarization, is given by

ES(Y3) =
5t2 + 9t + 1

(1 − t)4 and EP(Y3) =
5s3 + 11s2 + 8s + 2

2
.

Not surprisingly, we again see that EP(Y3) = HP(Z).

https://doi.org/10.1017/S1446788714000421 Published online by Cambridge University Press

http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
http://www.singular.uni-kl.de/
https://doi.org/10.1017/S1446788714000421


330 P. Foth and S. Kim [16]

Acknowledgements

We thank Mikhail Kogan for his contribution at an early stage of the project. We
also thank Ivan Cheltsov for help with Proposition 5.1.

References
[1] R. Bott and H. Samelson, ‘The cohomology ring of G/T ’, Proc. Natl Acad. Sci. USA 41 (1955),

490–493.
[2] R. Bott and H. Samelson, ‘Applications of the theory of Morse to symmetric spaces’, Amer. J.

Math. 80 (1958), 964–1029.
[3] A. Conca, J. Herzog and G. Valla, ‘Sagbi bases with applications to blow-up algebras’, J. reine

angew. Math. 474 (1996), 113–138.
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