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1. Recently some inversion integrals for integral equations involving Legendre, Cheby-
shev, Gegenbauer and Laguerre polynomials in the kernel have been obtained [1, 2, 3, 5, 6].
In this note, two inversion integrals for integral equations involving Whittaker’s function in
the kernel are obtained. We shall make use of the following known integral [4, p. 402]
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The results of this note are based on the following two integrals, which are derived from (1)
by writing u—¢t = (v—1)x.
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2. The operator &, and its properties. The operator &, occurring in this note is defined
by the formula

1
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where n is a positive integer. Since » is a positive integer, by explicit computation we have
SF (F@)) = - F0es(FO), )
(&) tron = crro, ©

and

FF)}=0 for v=1. @)
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3. Integral equations and their solutions. Consider the integral equation
1
I (=DM, a1, gmy (U Oy () du = £(1) (tel), ¥
t

where I = {t: ¢ < t £ 1}, cis a positive constant and f(¢) is defined on I. The integral is taken
in the Riemann sense. It is assumed that (a) m+1>2v> —1, where m is a non-
negative integer and n is a positive integer, (6) f¥(1)=0 for 0Lk < n+m+1, and
() (d/de)**™*2{e~¥f(1)} is piecewise continuous on 1. If these conditions are satisfied, then
the solution of (8) is

y(u) = -[B(m-2v+1, 2v+1)I“(m+n+2)]"J‘l (v—u) M, ,(v—we ¥*'F (F(v)} dv, (9)

’ d)rtm+2
where F@)=¢{—— {e"¥f(v)}.
dv
Next consider the integral equation

J R ITM -z du=g() (e, (10)

where g(t) is defined on 7. The integral is taken in the Riemann sense. It is assumed that
(@) m+1>2v> —1, where m is non-negative integer, (b) g*’(1) =0 for 0 < k < m+1, and
() {d/dv}™**{e*’g(v)} is piecewise continuous on I. If these conditions are satisfied, then
the solution of (10) is

z(u) = —=[FQv+1).T(m—2v+ 1] IJ‘l (v—u)"*MA,v(v—u)e‘*"{—%}m”{e‘}”g(v)} dv.
’ )

4. Proof of the dual relation (8) and (9). Substituting the value of y(x) from (9) into the
left-hand side of (8) and proceeding exactly in the same way as in [5], after using (2), we obtain
the expression

J=- e—*t 1£{(v—t)"+'”“e'”}.”i {F(v)} dv.
Tr(n+m+2) ), dv "

Successive integrations by parts and the application of the operational relations (5), (6) and
(7) then yield

_ et 1 et _d ntm+2 4o
J= MI: (v—1) { Ei_z-;} {e ¥f(v)} dv.

Further successive integrations by parts and the application of the conditions f*(1) =0,
0=k £n+m+]1 finally yield

I =f(t).
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5. Proof of the dual relations (10) and (11). Substituting the value of z(u) from (11) into the
left-hand side of (10) and proceeding as above, after using (3), we obtain the expression

J =—-Lﬂ l(v—t)"'+l _4 m”{e‘*"g(v)} dv.
' T(m+2)), dt

Successive integrations by parts and the application of the conditions g®(1) = 0,0 £ k £ m+1,
yield

Ji=g(@.
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