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Abstract

Steady two-dimensional flows in a domain bounded below by an infinite horizontal wall and
above by a semi-infinite horizontal wall, a vertical wall and a free surface are considered.
The fluid is assumed to be inviscid and incompressible, and gravity is taken into account.
The problem is solved numerically by series truncation. It is shown that for a given length
of the vertical wall, there are two families of solutions. One family is characterized by
a continuous slope at the separation point and a limiting configuration with a stagnation
point and a 120° angle corner at the separation point. The other family is characterized by
a stagnation point and a 90° angle corner at the separation point. Flows under a sluice gate
with and without a rigid lid approximation upstream are also considered.

1. Introduction

We consider the steady two-dimensional irrotational flow of an inviscid incompressible
fluid in a domain bounded below by the wall JI and above by the walls JB and BA
and the free surface AI (see Figure 1). The problem models the free-surface flow
emerging from a rectangular vessel. We restrict our attention to flows which approach
downstream a uniform stream with velocity U and depth H. Therefore we assume
that the flow is supercritical downstream, that is, that the Froude number

F = U/Jg~H (1)

is greater than one. Here g denotes the acceleration of gravity.
The flow configuration of Figure 1 was considered by Gurevich [7], Budden and

Norbury [4], Benjamin [1], Vanden-Broeck and Keller [12], Vanden-Broeck [11] and
others. Gurevich [7] used free streamline theory to obtain solutions in the absence of
gravity (that is, F = oo). Budden and Norbury [4] obtained some uniqueness results
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64 J. Asavanant and J.-M. Vanden-Broeck [2]

FIGURE 1. Sketch of the flow between two rigid boundaries past a vertical wall hanging from the
upper boundary. The profile is a computed solution for F2 = 4 and b = -0 .3 . The vertical scale is the
same as the horizontal scale.

and derived asymptotic solutions for F large. Benjamin [2] and Vanden-Broeck and
Keller [12] used conservation of mass and momentum to derive exact relations as the
length of the vertical wall vanishes. Vanden-Broeck [11] obtained numerical solutions
for arbitrary values of F when the vertical wall extends upwards to infinity.

In this paper we solve the problem numerically by series truncation for arbitrary
length of the vertical wall and arbitrary values of the Froude number. The numerical
procedure is similar to the one used by Vanden-Broeck and Keller [12] and Vanden-
Broeck [11]. Our results include those of Vanden-Broeck [11] as a particular case.
In addition, they satisfy the exact relations of Benjamin [2] and Vanden-Broeck and
Keller [12] when the length of the vertical wall vanishes. We show also that for a
given length of the vertical wall, there are two familes of solutions. One family is
characterized by a continuous slope at the separation point and a limiting configuration
with a stagnation point and a 120° angle corner at the separation point. The other
family is characterized by a stagnation point and a 90° angle corner at the separation
point.

The flow of Figure 1 represents also the flow under a sluice gate when the upstream
free surface is replaced by a rigid lid. The only difference with the previous problem
is that the distance between the upper horizontal wall and the lower horizontal wall
needs to be adjusted to satisfy the free surface condition at JC = —oo. We show that
there is a solution for each value of F > 1.

We also consider a complete sluice gate problem (that is, without the rigid lid
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[3] Nonlinear free-surface flows emerging from vessels and flows under a sluice gate 65

approximation). The gate is inclined at an angle y and both free surfaces are assumed
to leave the gate tangentially. We present numerical solutions for various values of
y. Numerical solutions for large values of F were obtained before by Fangmeier and
Strelkoff [6] and Masliyah, Nandakumar, Hemphill and Fung [9].

The problem is formulated in Section 2. The two families of solutions are described
in Sections 3 and 4. The results for the sluice gate problem with and without the rigid
lid approximation are presented in Sections 5 and 6 respectively.

2. Formulation

Let us consider the steady two-dimensional, irrotational flow of an inviscid, incom-
pressible fluid in the region shown in Figure 1. We choose Cartesian coordinates with
the A:-axis on the bottom and )>-axis directed vertically upwards. Gravity is acting
in the negative ^-direction. As x —> oo, the flow is required to approach a uniform
stream with constant velocity U and uniform depth H. The wall BA extends from the
horizontal boundary JB. The free surface AI, the boundary JB and the vertical wall
BA are parts of a streamline on which yjr = UH. The lower boundary JI is another
streamline on which ^ = 0.

We introduce the complex potential f = <p + i\js, in which <f> and \js represent the
potential function and the streamfunction respectively. Without loss of generality,
we choose <p = 0 at the separation point A. Let <pb denote the value of the potential
function at the point B. The pressure is assumed to be constant on the free surface.
The Bernoulli equation yields

\q2 + gy = constant on the free surface AI. (2)

Here q denotes the magnitude of the velocity.
Let us choose U as the unit velocity and H as the unit length. From the choice of

our dimensionless variables, (2) becomes

q2 + y2{y-\) = \, (3)

where F2 is the square of the Froude number defined in (1).
Next we introduce the complex velocity £ = u — iv, where u and v are the x— and

y— components of the velocity. On AI, BA and JB, the streamfunction \j/ equals 1.
The kinematic conditions on JB, BA, and D yield

v = 0, V = 1. -oo < <t> <4>b, (4)

« = 0 , tfr = l, <Pb<<P<0, (5)

v = 0, V = 0. — ° ° < <t> < oo. (6)
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As 4> -> oo, the flow approaches a uniform stream with unit velocity. In addition, the
flow is supercritical downstream. Since a supercritical flow is characterized by the
presence of exponentially decaying terms, the complex velocity f can be described as

f ~ 1 + Re'"**, as <f> - • oo. (7)

Here R is a constant to be determined as part of the solution, and A. is the smallest
positive root of

F2nX-tannX = O. (8)

The relations (7) and (8) can be derived by linearizing the flow around a uniform
stream and solving the resulting equations by the method of separation of variables.

By analogy with other free-streamline problems, we expect f to behave at the
separation point A like

? ~ S + 7 " ( / - i ) i , a s / - » i . (9)

Here 5 and T are constants to be found as part of the solution.
The problem is to find f as an analytic function of / in the strip 0 < \Jr < 1,

satisfying the conditions (3) - (9).
Next we map the flow domain in the /-plane conformally into the interior of the

upper half of the unit circle in the t -plane by the transformation

The bottom IJ is mapped onto the positive real diameter. The horizontal and the
vertical walls JB, BA are mapped onto the negative real diameter. The free surface AI
is mapped onto the circumference of the upper half unit circle. We use the notation
t = reia so that the free surface is described by r = 1 and 0 < a < n. We denote by
t = b (— 1 < b < 0) the image of the comer B in the t -plane. There is a stagnation
point at B and the appropriate singularity is

$~W(t-b)*, asf->6. (11)

Here W is a constant to be found as part of the solution.
Considering (7) and (9) - (11), we represent the complex velocity £ by the expansion

e x p M1 ~t)2k + B ( 1 + t)k ~

The kinematic conditions (4) - (6) are satisfied by requiring the coefficients an of the
power series to be real. The unknown constants A, B and the coefficients an must be
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[5] Nonlinear free-surface flows emerging from vessels and flows under a sluice gate 67

determined so that the constant pressure condition (3) on the free surface is satisfied.
It is convenient to eliminate v from (3) by differentiating (3) with respect to o. Using
the identity

we obtain

v(o)va(o)] - L , J ( a ) , ,,cot(g/2) = 0. (14)
nF2 u{p)2 + v{o)2

We solve the problem numerically by truncating the infinite series in (12) after N
terms. We find the N + 3 unknowns k, A, B and the coefficients an, n = 1 , . . . , N,
by collocation. Thus we introduce the N + 2 mesh points

i = l,...,N + 2. (15)

We obtain N + 2 equations by satisfying (14) at these mesh points. Relation (8)
provides another equation. These lead to a system of N + 3 nonlinear algebraic
equations for N + 3 unknowns. For given values of b and F2, this system of equations
is solved by Newton's method.

Finally, the shape of the free surface is obtained by integrating numerically the
relation

dx = cot(g/2) «(g)
do n u(o)2 + v(a)2

and

dy = cot(a/2) v{a)
do n u(o)2 + v(o)2

Similarly, we obtain the length of the vertical wall BA by

Cb df 1
z(b) = z(-l)+ / -f-dt, (18)

J-\ dt ?
where z(r) = x + iy and z(— 1) is calculated from (16) and (17).

3. Discussion of the results

We use the numerical scheme described in the previous section to compute solutions
for various values of b and F2. The coefficients an are found to decrease very rapidly;
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FIGURE 2. Computed profile for F2 = 2.5 and b = —0.5. The flow has a continuous tangent at the
separation. This solution corresponds to (*) in Figure 5.

for example, for b = -0 .5 , F2 = 4, | a i | % 0.391, |alo| « 0.28 x 10"4, \afo\ «
0.4 x 10~9. All calculations were performed with N = 60.

Typical profiles are shown in Figures 1-3. We define the contraction coefficient Cc

as the ratio of the thickness H of the jet at x = oo to the distance D of the separation
point A from the bottom IJ. That is,

1

0
1

1 2
i

3 4
i

5

Cc = H/D. (19)

We also introduce the dimensionless depth ratio

a = H/H, (20)

where H is the upstream depth. Numerical values of a and Cc versus F2 are presented
in Figures 4 and 5 for various values of b. As F2 ->• oo, a and Cc approach constant
values and we recover the free streamline results of Gurevich [7]. For b = 0, the
vertical wall extends vertically upwards to infinity and the problem reduces to the
flow under a gate considered by Vanden-Broeck [11].

As a and Cc decrease, F2 first decreases to a minimum value F^m and then increases
up to a value F6

2 (see Figures 4 and 5). When F2 reaches Ffc
2, a stagnation point occurs

at A with a 120° angle corner. There are no solutions when F2 <
F2 < Ffc

2, and a unique solution when F2
when Flk

numerical values of F^in and F2 for some values of b.
> F6

2.
in, two solutions
Table 1 shows
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FIGURE 3. Compute profile for F2 = 2.5 and b = —0.5. This solution corresponds to (o) in Figure 5.
Observe that a portion of the free surface lies to the left of the vertical wall.

l - i

0.75-

H
— 0.5-

H

0.25-

"T"
10

T "
15

b=-1.0

b=-0.5

b=-0.1

20
"I
25

FIGURE 4. Relationship between H/H and F2 for three values of b. A dot (•) at the left end of each
curve corresponds to a flow with a stagnation point and a 120° angle at the separation point.

We note that the free surface leaves the vertical wall tangentially except for the
limiting configuration corresponding to F2 = F% (dots (•) in Figures 4 and 5)' The
velocity qA at the separation point is different from zero except for the limiting
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FIGURE 5. Relationship between the contraction ratio Cc and F2.

TABLE 1. Values of F^m and F£ for various values of ft.

b
-0 .1
-0 .3
-0 .5

-0.75

F2.
min2.987

2.532
2.106
1.598

Ft
3.2
2.8
2.5

2.25

configuration with the 120° angle corner at F2 = F£. AS a and Cc decrease in Figures
4 and 5, the velocity qA at the separation point decreases monotonically from one to
zero. For most values of qA, the free surface is completely on the right of the wall BA
as shown in Figure 2. However when qA is small, a portion of free surface is on the
left of the wall BA (see Figure 3).

The problem reduces to the flow past a semi-infinite horizontal plate when b =
— 1. The complex velocity £ expressed in (12) is no longer valid since the point B
coincides with the separation point A. The appropriate representation of £ is obtained
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FIGURE 6. Computed profile for F2 = 1.25 and ft = — 1. The length of the vertical wall is zero.

by removing the singularity at B (flow inside a corner). That is,

= exp I A(\ - tfx + B(l + 0* - - 1)

The rest of the calculations follow closely the one described earlier. A flow profile for
F2 = 1.25 and b = —1 is shown in Figure 6. Benjamin [2] and Vanden-Broeck and
Keller [12] used conservation of mass and momentum to derive the exact relations

F2 = l/Ce = I/a. (21)

The corresponding solutions form a branch which bifurcates from the uniform stream
at F2 — 1 (see Figures 4 and 5). Our numerical results agree with (21) to within
0.5%. When F1 = 2, the flow ultimately reaches a limiting configuration with a 120°
angle corner at the separation point (see Figure 7).

4. Flow with a stagnation point

The results in the previous section provide numerical evidence that there are flows
with a stagnation point at which separation occurs with a 120° angle corner. It
was shown by Lee and Vanden-Broeck [8] that there are additional solutions with a
stagnation point at which separation occurs with a 90° angle corner for the flow with
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FIGURE 7. Computed profile for F2 =2.0 and b = - 1. The length of the vertical wall is zero. The
flow separates with a 120° angle corner at which a stagnation point occurs.

an infinite vertical wall (that is, b = 0). We shall use the series truncation technique
adopted earlier to find such solutions for b =£ 0.

Locally at the separation point A, we require the flow to be inside a right angle.
Therefore, the local behavior of the complex velocity £ at this point is

1

f ~ A ( / - / ) 5 , as f-+i. (22)

Here K is a constant to be found as part of the solution. Following the formulation in
Section 2, after replacing (9) by (22), the new expression for £ is

?(0 = (t + 1) A(\ - t)2x „(/" - 1) (23)

By truncating the infinite series in (23) after N terms, there are N + 2 unknowns to
be determined. They are X, A and {<3n} =̂1. We solve the problem numerically by
introducing the N + 1 collocation points

We obtain a system of N + 2 equations by satisfying (14) at these mesh points and
imposing the relation (8). The rest of the computations follows closely the calculation
of Section 2. It is found that the coefficients an decrease very rapidly; for example,

\aw\ % 1(T9 when b = -0.5 and F1 = 2.8.\ax | * 0.88, |a,0| « 1(T4
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All calculations were performed with N = 60.
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FIGURE 8. Computed profile of the flow which separates with a 90° angle, for F2 = 2.8 and b = -0 .5.
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FIGURE 9. Relationship between the contraction ratio Cc and F2. The broken line corresponds to the
solutions which separate at a 120° angle comer (that is, F = Fb).
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A typical profile is shown in Figure 8. For a fixed value of b, the solutions with
90° angle corner exist for all values of F2 greater than F%. Here Fb is the value of the
Froude number corresponding to the solution with a 120° angle corner (see Section
3). It was observed that the solutions with a 90° angle comer approach the solution
with a 120° angle comer at A as F2 I F£.

-,5

4

3

Jo

0 1

FIGURE 10. Same as Figure 8, for F2 = 3.2 and b = -0 .5 . Observe that the tail of the free surface is
not far from the separation point. This indicates a significant loss of accuracy in the numerical procedure.

The numerical results show that there is a family of solutions depending continu-
ously on two parameters, F2 and b. For — 1 < b < 0, the contraction coefficient Cc

decreases as F2 increases as shown in Figure 9. Computational difficulties arise in-
evitably as the distribution of collocation points tends to concentrate near the vertical
wall BA when F2 increases. The resulting free surface profile is illustrated in Figure
10. As F2 increases further, the numerical scheme no longer converges. We conjec-
ture that the free surface extends infinitely to the left of the wall BA as F2 -»• oo.
Such a flow can be expected to be unstable because the heavy fluid lies on top of the
light fluid.

5. Flow under a sluice gate with the the rigid lid approximation

The flow of Figure 1 represents also the flow under a sluice gate when the upstream
free surface is approximated by the rigid lid. With this approximation, the kinematic
condition on JB remains as in (4). Far upstream the flow is uniform with velocity U
and constant depth H (see Figure 11). The wall BA is now called the sluice gate. We
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y////////////////////^^^^^

FIGURE 11. Sketch of the flow and of the system of coordinates. The free surface profile is a computed
solution for F2 = 10. The vertical scale is the same as the horizontal scale.

define the upstream Froude number as

F = U/y/gH,

and the downstream Froude number F is already defined in (1).
The principle of conservation of mass implies that

UH = UH.

Evaluating (2) at x = ±oo, yields

(24)

(25)

(26)

Following Binnie [3] and using (1), (25) and (26) we find that there are two types of
solutions, namely

F2 = 2/[a(a + 1)]

and

(27)

(28)
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where a is defined in (20). The first solution shows that F > 1 when a < 1 and
F < 1 when a > 1. Here we assume, without loss of generality, that a < 1 since the
free surface usually falls to a lower level. It follows that the approaching stream must
be subcritical (F < 1) and the receding stream supercritical (F > 1). The second
solution, (28), corresponds to a flow with the same velocity and the same depth both
upstream and downstream. Vanden-Broeck and Keller [12] calculated such solutions
for an inclined gate. These solutions will not be considered further in this paper.

The mathematical formulation of Section 2 applies directly to the flow of Figure
11. That is the complex potential function / and the complex velocity function f are
represented by (10) and (12) respectively.

We now introduce the N + 2 mesh points

We determine the function u(a) and v{a) and their derivatives in terms of N + 4
unknowns X, A, B, F2 and {an}

N
n=i by substituting t = eia into (12). We find the

N + 4 unknowns by satisfying (14) at these N + 2 mesh points. Thus we obtain N + 2
nonlinear algebraic equations. An extra equation is obtained by imposing relation (8).
By rewriting (27) in terms of £, we have

F2 = . (29)
l?(0)|(|£(0)| + 1)

Relation (29) imposes the dynamic boundary condition at x = —oo. This provides
the last equation. This system of N + A nonlinear equations with N + A unknowns
is solved by Newton's method. The coefficients an decrease rapidly; for example,
l<Z6o/tfil ~ 10~7 for b = —0.5. The numerical results show that there is a one-
parameter family of solutions. The parameter is chosen to be the length b of the gate
BA. From (27), the upstream depth can be expressed as a function of the Froude
number F as

a = l- ( 7 l + 8/F* - l ) . (30)

Typical profiles are shown in Figures 11-13. As b -> —1, F2 —> 1 and the
length BA approaches zero whereas the flow reduces to the uniform stream. As
b —> 0, F2 —> oo and the length of the vertical wall approaches infinity. The
corresponding value of Cc can be obtained by using the free-streamline theory. For
F2 = oo, (14) reduces to u2 + v2 = 1. It follows from (12) that the solution is

«oo-'l>oo = ^ . (31)
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FIGURE 12. Computed free surface profile for b = -0.2(F2 = 3.68).
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FIGURE 13. Computed free surface profile for b = -0.6(F2 = 1.931).
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The distance D of the separation point A from the bottom JI can be obtained by
integrating (17), using (31), with respect to a from a = 0 to a = TT . This gives

c = n/(n+2)

For each — 1 < b < 0, there is a unique solution. We note that for all solutions, the
free surface is completely on the right of the gate (that is, there are no solutions similar
to the ones in Figures 3 and 8 for the sluice gate problem).

-0.25-

b -0.5-

-0.75-

- 1 -

FiGURE 14. The length b of the gate is shown here as a function of F2.

Figure 14 shows that the relationship between b and F2 is a one-to-one correspond-
ence. As b —> 0, F2 —> oo. The critical value F2 = 1 corresponds to b = — 1.

In Figure 15 we present the numerical values of Cc versus F2. Here Cc is the
contraction coefficient defined in (19). Figure 16 gives the contraction coefficient Cc

as a function of D/H, where D is the gate opening and H is the upstream depth (see
Figure 11). Many previous results on sluice gates were limited to large values of F,
that is, D/H < 0.5 (see [6]). Our results extend their findings to all values of F > 1.
We note that on the range D/H < 0.5, Cc is a monotonic decreasing function. This
is also the case in the results presented in Figure 13 of [6].
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FIGURE 15. The contraction ratio Cc is shown here as a function of F1.
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FIGURE 16. Relationship between Cc and the ratio of the gate opening to the upstream depth D/H.
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6. Flow under a sluice gate without the rigid lid approximation
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0 8 10

FIGURE 17. Sketch of the flow past a gate inclined at an angle y. The flow is subcritical upstream
and supercritical downstream. The endpoints of the gate are at B and C. The profile shown is a computed
solution for F2 = 1.1 and 0 = %j-.

In this section we consider the complete sluice gate problem (that is, without the
rigid lid approximation) for an an inclined sluice gate (see Figure 17). The gate
inclination is denoted by y. The *-axis is along the bottom AD and the y-axis is
directed vertically upwards through the midpoint of the gate. As |x| - • oo, the
flows approach uniform streams with velocity U and depth H upstream, and velocity
U and depth H downstream. The flow is subcritical upstream and supercritical
downstream. The downstream and upstream Froude numbers are defined by (1) and
(24) respectively. The flow is assumed to leave tangentially at both ends of the gate.

We introduce dimensionless variables by taking (Q2/g)3 as the unit length and
(Qg)1 as the unit velocity. Here Q denotes the discharge of the flow. As in Section
2, we define the potential function </>, the streamfunction xfr, the complex potential
function/ = (p+ii/f, and the complex velocity function £ = df/dz. Herez =x + iy.
Without loss of generality, we choose (j> = 0 so that <f>b = -<pc. Here <j)b and 4>c are
the values of <j> at the separation points B and C respectively. The bottom AD is a
streamline on which rf/ = 0. The flow region in the /-plane is the strip 0 < \fr < 1.

In terms of the dimensionless variables, the constant pressure condition on the free
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surface can be written

|£|2 + 2;y = 3 on AB and CD. (32)

We map the flow region in the /-plane onto the upper half of the unit circle in the
complex /-plane by the transformation

The free surface AB, CD and the gate BC are mapped onto the circumference of the
half unit circle, whereas the bottom AD of the channel goes onto the real diameter.
We use the notation t = re'", so that the free surfaces and the gate are described by
r — 1 and 0 < a < n. The images of points B and C are t2 = —e~'p and tx = e'p

respectively. Here 0 < f) < n/2.
As 4> —• oo, the flow approaches a uniform supercritical stream. The local behavior

of £ as <j> —> oo is

f ~ E + Ke-"kf as </> -* oo. (34)

Here E and K are constants to be found as part of the solution and k is the smallest
positive root of (8).

It follows from our choice of dimensionless variables that the Froude number F is
related to the velocity downstream by

F = |£(l)|*. (35)

Furthermore, the Froude number and the ratio H/H of the depths at infinity are related
by (30).

At the separation points B and C, the behavior of the flow is similar to those of
free-streamline problems. Therefore, we expect the flow to behave at these separation
points like

? ~ G + / / t / - ( T f e + 0]5 as/->(=F& + i). (36)

Here b + i and —b + i denote the values of / at C and B respectively, and G and H
are constants to be found as part of the solution.

We solve the problem by following the series truncation procedure of Section 2.
Using (33), (34) and (36), we represent £ by the expansion

= F5 exp[i4(l - t)2k + Bi(f2 + 1 -2rcos0)* + B2(t
2 + 1 + It cos p) *

<*n(t" - 1)]. (37)
n+l
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The coefficients an and the constants A, B\, B2 are to be determined so that £(;)
satisfies (32) and the kinematic conditions on AD and BC. It can easily be seen that
the kinematic condition v = 0 on AD is satisfied if we require an, A, Bx, B2 to be
real. Differentiating (32) with respect to a, we obtain

u{o)ua(o) + v(a)va(a) : ^ ^ , = 0 on AB and CD. (38)
7rsina u2(a) + v2{a)

The kinematic condition on BC can be expressed as

v(cr) = -u(a) tan y on BC. (39)

Note that y is measured clockwise from the negative *-axis. The problem is now
to find the coefficients an and the constants A, Bu B2in (37) so that (38) and (39)
are satisfied. Once £ is known, we can calculate the profile of the free surface by
integrating §§+'§£ = 7 numerically along the circumference of the unit circle.

We approximate the problem numerically by truncating the infinite series in (37)
after N terms. There are N + 5 unknowns, y, X, A, B\, B2 and {a,-}^, for given
values of y3 and F2. We define the N + 3 collocation points

* • • - • - - (40)

For simplicity, we restrict the angle /J to the form

where B is an integer smaller than (N + 3)/2. We obtain N + 3 equations by
satisfying (38) at a,-, i = 1 , . . . , B - 1 and i = (N + 3)/2 + B,..., N + 3, and
(39) at a,, i = B,...,(N + 3)/2 + B - 1. Relation (30) provides another equation.
The last equation is obtained by relating the Froude number to the upstream and the
downstream velocities by using (30) and the conservation of mass UH = UH. This
yields

F2 = 2-^}l . (42)

l£(-i)l(lf(l)l + l£(-i)l)
The system of N + 5 nonlinear equations is solved by Newton's method.

The numerical scheme was used to compute solutions for various values of F2 and
8. For F2 close to one, the coefficients an decrease rapidly (see Table 2). Most of the
results presented here were obtained with N = 400.

Typical profiles are shown in Figures 17 and 18. As B -+ n/2, the length L of the
gate tends to zero and the flow reduces to a uniform stream. As fi —*• 0, L -> oo.
Numerical values of L versus F2 for B = | , y and - ^ are shown in Figure 19.
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TABLE 2. Some values of the coefficients an for /3 = ^ and various values of F2.

F2

1.05
1.10
1.15
1.20

« i

0.71x10-'
0.19
0.38
0.65

0.15 xlO"3

0.37 x 10"3

0.68 x 10"3

0.11 xl0~2

«200

-0.11 xlO-4

-0.42 xlO"4

-0.76 xlO-4

-0.12xl0-3

a300

0.11 xlO"7

-0.17xl0-4

-0.31 xlO-4

-0.49 x 10-4

^400

-0.50 xlO-9

0.89 x 10"8

0.45 x 10"7

0.12xl0"6

1.05

1.0

0.95

0.9

0.85
0 6 8

FIGURE 18. Computed profile for F2 = 1.05 and p — f.

In Figure 20 we present numerical values of the gate inclination y versus F2 for
various values of /?. In Figure 21 we present numerical values of Cc versus F2. For
F2 = 1, the flow reduces to a uniform stream and Cc = 1. For each value of F2, the
ratio H/H can be evaluated by using (30).

As F2 increases, the coefficients an decrease less rapidly and more collocation
points are needed to obtain accurate solutions. More than 600 collocation points are
required to compute accurate solutions for F2 > 1.35. Therefore we have presented
solutions only for 1 < F2 < 1.35.
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0.8-1

0.6-

L 0.4-

0.2-

1.1

P-rc/3

P-19xt/40

1.2 1.3 1.4

FIGURE 19. The length L of the gate is shown as a function of F1 for three values of fi.

0.05-1

0.04-

Y
(radian)

0.03-

0.02-

0.01-

P-re/3

1.1
I

1.2
r,2

1.3
I

1.4

FIGURE 20. The gate inclination y is shown as a function of F2 for three values of /).

https://doi.org/10.1017/S0334270000000473 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000473


[23] Nonlinear free-surface flows emerging from vessels and flows under a sluice gate 85

1.01-1

1 -

0.99-

0.98-

0.97-

0.96-
1.1

I
1.2 1.3 1.4

FIGURE 21. Relationship between the contraction coefficient Cc and F2.

7. Conclusion

We have presented accurate numerical solutions for nonlinear free surface flows
emerging from a vessel. The results show that there are two families of solutions.
Each family depends continuously on two parameters, b and F. Some of the solutions
have a free surface profile with a continuous slope at the separation point. Others
have a stagnation point at the separation point with an angle of 90° or 120° between
the free surface and the wall. It can be shown that these are the only three possible
local behaviors at the intersection of a free surface and a rigid wall in the abscence of
surface tension (see Dagan and Tulin [5], Tayler [10] and Lee and Vanden-Broeck [7]).
Recently Vanden-Broeck and Tuck [14] constructed similarity solutions to describe
these local behaviors.

We have used the same flow configuration to model the flow under a sluice gate
when the upstream free surface is replaced by a rigid lid. We have shown that there is
a solution for each value of F > 1. These results extend previous calculations, for F
large.

Finally we have considered the complete sluice gate problem with two free sur-
faces and constructed solutions for which the free surfaces leave tangentially at both
separation points. For a fixed inclination y of the gate, there is a one-parameter
family of such solutions. Accurate solutions could be obtained only for small values
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of y. Numerical calculations based on a boundary integral equation method are now
in progress to extend the results to larger values of y.
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