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Abstract

Elastic behaviour of a nonhomogeneous transversely isotropic half-space is studied under
the action of a smooth rigid axisymmetric indentor. Hankel transforms of different orders
have been used. It is observed that in contrast to a homogeneous medium, the pressure
distribution in the contact region in a nonhomogeneous medium is not directly available,
rather it is obtainable from the solution of a Fredholm integral equation. The integral
equation is solved for a flat-ended punch and paraboloidal indentations for various values
of the nonhomogeneity parameter, and the effects of nonhomogeneity in elastic behaviour
on stresses have been shown graphically. The results of the associated homogeneous case
are readily available from the results of the present study.

1. Introduction

The determination of the elastic displacement field in the half-space under the action
of a rigid indentor has been the subject of much interest and various methods have
been employed for the solution of such problems: for example, Spence [10, 11]
applied the Wiener-Hopf method, and Sneddon [9] obtained a relation between load
and penetration for a punch of arbitrary profile using the integral transform method.
A systematic description of such works has been given by Gladwell [3]. A solution
of the axisymmetric Boussinesq problem for an initially stressed Neo-Hookean half-
space has been reported by Dhaliwal and Singh [2]. Ting [12] considered contact
stresses between a rigid indentor and a viscoelastic half-space. Most of the works in
this field have been limited to isotropic elastic media. But increased use of anisotropic
materials in engineering applications has resulted in considerable attention being
focused on media of anisotropic character. Some works in this field are available
in Gladwell's book [3]. One basic problem that arises in considering an anisotropic
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medium is that, except for some particular types of anisotropy it is not possible to
write displacement components in terms of potential functions in a general anisotropic
medium (Lekhnitskii [6]). Stress distribution in an anisotropic elastic half-space
under axially symmetric normal load has been discussed by Lekhnitskii [6]. More
recently, the strain fields in a transversely isotropic half-space have been investigated
by Pouyet and Lataillade [8], who used Hankel transforms of different orders to solve
the problem.

Positional variation of elastic coefficients leads to a nonhomogeneous elastic
medium, which is a very important concept from a practical point of view. But this
area has not been studied rigorously possibly due to the severe difficulty in handling
the governing differential equations for such a medium. Sometimes it is observed that
even for a comparatively straightforward case of power law variations, the governing
equations appear too difficult. It is possible that this is why investigations in this area
have thus far been limited to special types of variations in elastic coefficients (see, for
example, [1,5,7]), rather than consideration of general variations.

The present study focuses on the determination of elastic strains, penetration depth
and pressure distribution etc. in a nonhomogeneous transversely isotropic half-space
caused by a rigid punch. Nonhomogeneity in elastic coefficients ctj has been assumed
in the form c,y = c°e"z, a being a real constant. As in [8], Hankel transforms of
different orders have been applied to find the solution. In contrast to the homogeneous
case, the equation for pressure distribution is a Fredholm integral equation of the
second kind. The integral equation has been solved numerically and the stresses have
been computed. The effects of nonhomogeneity on stresses have been represented
graphically for some special cases of indentation. Finally, all the results for the
homogeneous medium may be obtained from the results of the present discussion by
putting a = 0.

2. The basic equations

We consider an elastic half-space of transversely isotropic material and suppose
that the plane of isotropy passing through each point of the body is parallel to the
plane boundary of the half-space. Taking the z-axis along the normal to the half-space
boundary and pointing inwards and using cylindrical coordinates (r, 0, z), the stress-
strain relations are given by [or, cre,az,arz]

T = [C*][sr, se,ez,srz]
T, where [C*] is

the elastic coefficient matrix such that

C,| C,2 C,3 0

[ r n _ cn Cn cn 0

Cl3 C|3 C33 0

0 0 0 cu)
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Because of elastic symmetry and the symmetry of the force distribution the displace-
ment components are independent of 9 and we may take

ur = u(r, z), u9 = 0 , uz = w(r, z) (2.1)

and the strain components related to the displacement components given by (2.1) are

3« u dw du dw
«r=T-. £0 = ~, £* = — , £n = -^- + -^~' Sr9=£gz=0. (2.2)

or r dz dz dr
The equations of equilibrium are

—- + -{pr — ae) -\ — = 0, —— + — H = 0. (2.3)
dr r dz dr r dz

We assume that the nonhomogeneity of the elastic medium is due to the dependence
of the ctj 's on depth, in the form cy = c9. e°z, where c9. and a are constants.

3. Boundary conditions

Let the tip of the axisymmetric as well as smooth punch penetrate through a depth
D (at present unknown) into the half-space. Taking the tip of the punch as the origin,
let z = f (r) be the equation of the punch, with the condition that / (0) = 0. The
function / (r) together with its first derivative is assumed to be continuous, except
possibly on the axis.

The boundary conditions for the problem are as follows:

ot(r,0)=0, r>a,

arz(r, 0) = 0, Vr (3.1)

and

D-f(r) = w(r,0). (3.2)

Here we assume that a is the radius of the circle of contact.
In addition to the above boundary conditions we must have the obvious regularity

conditions that the stresses and displacements should tend to zero as -Jr1 + z2 —> oo.

4. Use of Hankel transforms

Following [8], we use Hankel transforms of different orders with respect to the
variable r to express the basic equations and boundary conditions in terms of the
single variable z. We shall denote the Hankel transform of order v of a function / (r)
by / (<?) such that/ (q) = /0°° rf (r)Jv(qr) dr.

In our subsequent analysis we shall apply a Hankel transform of
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Free-surface Indentor

FIGURE 1. Rigid indentor on a half-space.

(i) zero order to ar + ae, az, er + e$, ez and w;
(ii) order one to arz, erz and u;

(iii) order two to o> — ae, er — ee.

Then in terms of the transformed functions the equations of equilibrium (2.3) become

(4.1)

The stress-strain relations become

r dw
i —

or—a0 =

where

— a3)u,

Oz = C44

arz = C44

dw

du

— Ci2/C44-

du

(4.2)

(4.3)

dw
= - p , £rz = — -qw.

dz dz£r + ee =qu, er- s e = -qu,

If p(r) is the pressure of the punch on z = 0, then

az(r, 0) = -p( r ) , r < a.

Hankel transforms of boundary condition (3.1) and Equation (4.4) yield

arz(q, 0) = 0 and a,fa, 0) = -p(q),

where

= / rp(r)J0(qr)dr.

(4.4)

(4.5)

(4.6)

https://doi.org/10.1017/S1446181100008142 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008142


[5] A nonhomogeneous transversely isotropic half-space 465

5. Method of solution

It can easily be shown by substitution of (4.2) into (4.1) that u and w satisfy the
following linear differential equation in z:

u,w]=O, (5.1)
\az~ az /

where 8X and 82 are calculated from

[ q2a28\8\ = axa
2 + q2a3.

In contrast, to the nature of the solution in the homogeneous case (a = 0), the solutions
of (5.1) are not easily available due to the presence of the nonhomogeneity parameter
« ( * 0).

It is clear from (5.2) that the values of 8] and 8\ will depend on the transform
parameter q and the nonhomogeneous parameter a. It may be easily checked that <52,
8\ will be real or complex according as

2 q[2^ i( + ,)] 2a3a < or > q —.
4aa a

Hence for a sufficiently large value of a, 82 and 8\ will assume complex values.
Accordingly, separate attention is to be given to solving (5.1).

Since the solution of (5.1) depends on S2 and 8\, henceforth we shall represent the
solution corresponding to real 82 and 8\ in part (a) and that corresponding to complex
8\ and 8\ in part (b) of any relevant equation.

Solutions of (5.1) compatible with the regularity condition are

- q2

= e-(a/2+l")z[(m2B' -n2A')cos(qlz)-(n2B'

q{(\ + ax)X2 — aax] _k2Z (5.3a)

(5.3b)

where^, = a/2+Ja2/4 + q28f, u, = a2X,(A,-a), i = 1, 2;p,, 9 l = V(£, ± f2)/2,
I,2 = («2/4 + 9

2 / i , ) 2 + 9 V 1 . & = «2/4 + 9V1, Mi = (a2a3 - «i(2 + a,))/2a2,
\i\ = (a2al+q2a3)/(a2q

2)-(a2aJ-al(2 + a[))
2/4a2,m2 = (r,/, - 2

+ r,2), /, = aa2qx - 2a2qt(a/2 + p,), /,
= a2(a/2 + p,)2 - a2<?2 - aa2(a/2 + Pl) - q2, m, = qqt(l + a,).
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Applying the transformed boundary conditions (4.5) the constants A, B and A', B'
are determined as

, B = -A2p/q, (5.4a)
where

(g - A2)(M, - g2) _ (a - kx)(u2 - q2)
A ^1 — O / i •> \ / 12 i ? \ ' l — O / i 1 \ / 12 i 7\

c44vAl — ̂ -2Ka2^-i + a\q ) ^44(^1 — A2)(fl2^-2 "•" al<7 )
and

A' = (p/q)Mx, B' = -(p/q)M2, (5.4b)

where M( = —9S4/c24(5154 + S2S3), M2 = —qsi/c^isxS* + s2s3), st = qax +
a2n2(a/2 + px) + q\tn2a2, s2 = a2m2{a/2 + px) + a2qxn2, s3 = qn2 - (a/2 + Pi),

Hence from (5.3a), (5.3b) and (5.4a), (5.4b) we find that

w(q,O) = R-lp/q, (5.5)

where

R = c°u(a2k] + aiq2)(a2k
2

2 + axq
2)l[kxk2(Xx + k2)qa2(\ + ax)

+ aaxq
z + a2qaxa2(kx + k2) - aqa2kxk2 - aqaxa2(kx + k2)

2] (5.6a)

and

q n2s4

Taking the inverse Hankel transform of (5.5) and noting boundary condition (3.2), we
can write

D-f(r)=f mp(m)\j R-{J0(qr)J0(qm)dq\ dm. (5.7)

In contrast to the homogeneous case in which R given by (5.6a) is a pure constant,
here R is a function of q and so the inversion of the integral in (5.7) for the function
p (r) is not easy. However, it is possible to reduce (5.7) to a Fredholm integral equation
for the determination of p{r).

Let us write

c _
a2(l + ax)(y\

where a2(y
2 + y2) = ^ 3 -ax(2 + a,), a2y

2y2 = a3.
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FIGURE 2. Variation of (a) />, and (b) Q, with 0 (r) = 0).
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(b)

0-8

Let

J(r, m) = Jo
Jo

(qr)Jo(qm)dq =
), 0 < r < m;}

\(2/nr)K(m/r), 0 < m < r

and T(r,m) = fo°°(R ' — C l)J0(qr)J0(qm)dq, where Jf is the complete elliptic
integral of the first kind.

Equation (5.7) can be written as

D-f(r) = C~l I J(r,m)mp(m)dm+ j T(r,m)mp(m)dm. (5.8)
Jo Jo

Let us multiply both sides of (5.8) by a factor %/y/r1 — %2 and integrate as follows:

r$[p-f(g)]d$ . r 5 rrf.fc . , w i J t
I . — = C / • / y(§, m)mp(m)dm d§

f. (5-9)
r2 —

Interchanging the order of integration and using the result [4]

sin(rg)

X ^/r2 - ̂ 2

we get from (5.9) that

rS[D-fG)]d$ __,/"" . J r00 y o ( ^ ) sin(r<7) ]
/ / , fc,— = C / mp(m)\\ rf<7 rfm

Jo v/r2 - 1 2 Jo LJo 9 J
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FIGURE 3. Variation of (a) /?, with ^ (IJ = 0) and (b) P, with ^ (r; = 0.2).

„
So we get

dr Jo y/r2 - ,

/

a r soo -j

mp{m) I J0(qm) cos(rq) dq dm
Uo J

+ / mp(m) / (/?"'— C~i)J0(qm)cos(rq)dq \dm.
(5.10)

Multiplying (5.10) by a factor as in (5.9) and integrating with respect to r between
and a, we get

mp(m) dm

1 . fmp(m)\ I
JK y/r2-^2 Uo [Jo

dr

dr

- C~l)J0(qm) cos(rq) dqj dm\ dr.

(5.11)
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FIGURE 4. Variation of (a) P, with £ (r) = 0.5) and (b) P2 with ^ (17 = 0).

In the derivation of (5.11) we used the following result [4]:

— r2, m > r;

m < r.
J0(qm)cos(qr)dq = I

0,

Interchanging the integrals of the first part of the right-hand side and differentiating
both sides of (5.11) we get

1 r g TA r
9r yr 7 ^ 3 7 1 â  y0

dm

Trl.Jlh\J.*mL
Let us set g(r) = D — f (r) and

mg(m)dm_ d_ r mg(m)
dr Jo yjr2 —

then

Using (5.13), (5.12) may be written as

2C I" G(a) _ fa G(M)df\

. (5.12)

(5.13)
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FIGURE 5. Variation of (a) Q2 and (b) R2 with 0 (IJ = 0).

0.8

(5-14)

where /,(r, $) = f™(CR-> - l)Mqt)ca&(q§)dq.
Equation (5.14) can now be put in the form

p(r)+ (5-15)

where

2, / / ,( , . . )

and
2C f G(o) f G'(^)^"

= — , — / .7T [ V ^ T T I ;r j$rr^_

The Fredholm integral equation (5.15) will determine p (r) for a known punch profile
/ (r), consequently the transformed function p(q) is known from (4.6). Hence all the
transformed functions corresponding to displacements and stresses are known and the
problem reduces to that of finding the inverse Hankel transforms of those functions.

We can determine the penetration depth D of the tip of a smooth profile from the
condition p(a) = 0 as follows. From (5.14), p(a) = 0 implies G(a) = 0, which
gives after some calculations D = /„" (af '(/•)/*Ja2 - r2) dr, which is the same as in
the homogeneous case [8]. We note here that the smoothness condition is not satisfied
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in the case of a flat-ended cylindrical punch as pointed out in [9] and so the condition
p (a) = 0 cannot be used there.

The displacement components are given by
, .OO

u(r, z)= p [Aie-
k>z - A2e~k>z] Mqr) dq, (a)

Jo

u(r, z) = J°°pe-(a/2+p')z[Mi cos(qlZ) - M2 sin(9,z)]y,(9r) dq, (b)

w(r'z) = L qp[ ^ e

a ^ - a ^ ] (a)
/•OO

w(r, z) = - pe-(a/2+<")z[(m2M2 + n2M}) cos(qiZ)
Jo

+ (m2Mi - n2M2) sin(^1z)]j0(9r) dq. (b)

The strain components are
/•OO

sr + sg= qp [Aie-
X'z - A2e~k2Z] J0(qr) dq, (a)

Jo
/.oo

er + eg = / qpe-la/2+Pl)z[Mi cos(qlZ) - M2 sin{qxz)]J0(qr) dq, (b)
Jo

Er-£g = - [ qp [Aie~
k'z - A2e~^z] J2{qr) dq, (a)

Jo

er-se = - f°° qpe-(a/2+>")z[M, cos(qlZ) - M2 sm(qlZ)]J2(qr) dq, (b)

ez = - I qp\
Jo L

e5
- 9A2X2{(\ +a1)k2-aai] , 1

e k2Z\Jo(qr)dq, (a)u2-q
2

z]j0(

sz= f pe-(a/2+l")z[{(a/2 + PlXm2M2 + n2Mx)
Jo
-qx(m2Mx - n2M2)}cos(qiz) + [(a/2 + p,)(m2Mi - n2M2)

+ qi(m2M2 + n2Mi)} sin(qiz)]J0(qr) dq, (b)

'"=- f fi(X'.T.'"(':r) ['-- - «-•]
Jo C44(.A2 — Ai j

er2 = rpe-ia/2+l")z [(q(m2M2 + n2Mx) - M, ( |

( | ) ) ] Jx(qr)dq (b)
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and the stress components are

or + oe= f qp [fiie
(°-x')z - B2e

ia-^] J0(qr) dq, (a)
Jo

ar + oe = c°M / pe(a/2-p'}z[(q(a3 + a,)Ml + 2a, (a/2 + Pl) (m2M2 + n2Ml)
Jo

- 2axqx(m2Mx — n2M2)) cos(q{z)

- (q(a3 + a4)M2 - 2ax (a/2 + /?,) (m2Mx - n2M2)

- 2a1q1(m2M2 + n2Mi)) sm{qxz)]JQ(.qr) dq (b)
/•OO

ar - a9 = c°M{a, - a3) I qp[Axe^^ - A2e^-^] J2(qr)dq, (a)
./o

/>OO

or - oe = 4 (04-^3) / qpeia/2-p')z[M1 cos(qlZ)-M2 sin(qlZ)]J2(qr) dq, (b)

Jo

-^— [(k2 - a)e(a~^ - (X, - a)eia-k^] J0(qr) dq, (a)
k2 — k\

oz = c°44 f e^-^pUqa.My +a2(a/2 + Pl)(m2M2 + n2M,)
Jo

-a2ql(m2Ml—n2M2))cos(qiz) — (qalM2-a2(a/2+pi)(m2Ml-n2M2)

-a2qi(m2M2 + n2Mx)) sin(qiz)]J0(qr) dq, (b)

where

D o (, a4) - 2axki — 1 .

6. Special case: flat-ended cylindrical punch

In the special case of a flat-ended cylindrical punch, / (r) = 0 and hence we get

f 2CD
p(r)+ L(r,t)p{t)dt =

Jo 7Ty/az — rl

The contact force F is then determined from F = J° 2nrp(r) dr.
Finally, it may be checked that the results in the associated homogeneous medium

as discussed by Pouyet and Lataillade [8] are easily obtainable by putting a = 0 in
the corresponding results in our present article.

7. Numerical results

To assess the effects of non-homogeneity on stresses we first specify the nature of
indentation z = f (r). In our numerical works we shall consider two types of punches:
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T
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<
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i oc-1-5

0 0-2 04 0-6 0-8 $

FIGURE 6. Variation of P2 with p (n = 0.5).

(a) a flat-ended cylindrical punch for which / (r) = 0 and (b) a paraboloidal punch
for which / (r) = r2/4a. Numerical computations are done taking various values
of the non-homogeneity parameter a as mentioned in the figures. The values of the
coefficients a, in (4.3) are taken for fibreglass epoxy composite material from [8]. The
integral equation (5.15) is solved numerically to determine the pressure p(r), which
is subsequently used to determine the non-dimensional stress components.

For a flat-ended cylindrical punch we have shown variations of Pi = -aaJ^Dc^),
Qi = —aOr/iDc^), Ri = —aog/iDc0^) for different values of/S = r/a and 77 = z/a
in Figures 2-4 (a).

For the paraboloidal punch we have represented variations of P2 — —oz/c
Q

M,
Q2 = —ar/c^, R2 = —og/c°u for different values of f$ and r) in Figures 4 (b)-6. The
effects are quite clear from the figures.
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