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Abstract. A topological spheretheorem isobtained from the point of view of submanifold geometry.
Animportant scalar isdefined by the mean curvature and the squared norm of the second fundamental
form of an oriented complete submanifold M ™ in a space form of nonnegative sectional curvature.
If the infimum of this scalar is negative, we then prove that the Ricci curvature of M ™ has a positive
lower bound. Making use of the Lawson-Simons formula for the nonexistence of stable k-currents,
we eliminate Hy,(M",7Z) for dl 1 < k < n — 1. We then observe that the fundamental group of
M™ istrivial. It should be emphasized that our result is optimal.
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1. Introduction

The diameter sphere theorem dueto Grove—Shiohama(see [GS]) statesthat acom-
plete and connected Riemannian n-manifold M with sectional curvature K; > 1
is homeomorphic to a sphere if the diameter d(M) of M satisfies d(M) > /2.
Since the compact rank one symmetric spaces have sectional curvature bounded
below by 1 and diameter /2, this result is optimal for complete manifolds having
sectional curvature bounded below by 1. The rigidity theorem by Gromoll and
Grove (see [GG1], [GG2]) provides the determination of almost all compact rank
one symmetric spaces under the hypothesesthat K, > 1and d(M) = /2.

The purpose of the present article is to establish the optimal sphere theorem
for a completely new class of Riemannian manifolds from the point of view of
submanifold theory. Here the squared norm S of the second fundamental form h
of a submanifold M in the (n + p)-dimensional space form F™*7(c) of constant
sectional curvature ¢ plays an essential role. We deal with this S instead of K.
Our result is obtained without assuming compactness by eliminating the Clifford
tori, cylinders and Euclidean spaces. We refer for the basic tools in Riemannian
geometry and topology to [CE] and [HW].

* Research partially supported by Grant-in-Aid for General Scientific Research, Grant No.
07454018.
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To begin, weintroduce therigidity theorem for aminimal submanifold M inthe
standard unit (n + p)-sphere S**7(1), investigated by Simons [Si], Lawson [La],
Chern-do Carmo—Kobayashi [CDK] and Li—Li [LL], summarized as follows.

THEOREM A. Let M beann-dimensional oriented compact minimal submanifold
inS"P(1). If

S<max{L Z—n}
N 2_1/p? 3 h)

then M is congruent to one of the following

(1) s*(3)

2) sk<\/§> x Sk <\/nnﬁ> for k=1,...,n—1

(3) the Veronese surfacein S*(1).

Remark 1. In caseswherep = 1 and n = 2, the condition for S in Theorem A
isoptimal. In the case that p = 1, then S = n and M is a Clifford torus, while if
n = 2,then S =  and it is a Veronese surface.

Leung [L] first applied the Lawson—Simons Theorem on minimal submanifolds
in spheresto obtain atopological sphere theorem, as stated

THEOREM B ([L]). Let M C S"*?(1) be an n-dimensional oriented compact
minimal submanifold withn # 3. Then M is homeomorphic to a sphereif S < n.

Next, the minimality assumption in Theorem A is replaced by that of a parallel
mean curvature normal field. For givenintegersn > 2,p > 1 and for anumber H,
we define the constants C'(n, p, H) and A = A(n, H) by

a(n, H), forp=1 orp=2and H # 0,
C(n,p,H) 1=
min{a(n, H), 3(2n+5nH?)}, otherwise,
and
n3 n(n — 2)
H) = H? - 2[4 + 4(n — 1)H?
a(n, H) n~|—2(n_1) 20— 1) \/n +4(n —1)H?,

o a(n, H) — nH?
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THEOREM C ([Xu]). Let M C S**?(1) be an n-dimensional compact submani-
fold with a parallel mean curvature normal field. If H is the mean curvature of M
andif S < C(n,p, H), then M is congruent to one of the following

WS (i)
@57 (i) S (%)

(3)sk<\/§> xS"_k< nn;k> fork=1,....n—1

(4) the Clifford torus St(r1) x S*(r2) in S3(r) with constant mean curvature Ho,
wherery, o = [2(1+ H?) = 2Ho(1+ H?)Y?7Y2, ¢+ = (1+ H?> — H3)~Y?,
and0O< Ho< H

H 1
(5) the Veronese surfacein S* <\/1+7>

Remark 2. If M iscompleteand if sup,, S < a(n, H), then M is congruent to
(2) or (5). Thisfact was proved in [SX2].

For agiveninteger n > 2 and constantsc and H, we defineanumber «(n, H, ¢)
by

n® n(n —
2(n—1) H* - ﬁ\/ﬂjﬂ + 4(n — 1)cH?.

a(n,H,c) :==nc+

A recent result by the second author [Xu2] is stated as follows.

THEOREM D. Let M C F"*?(c) beann-dimensional complete submanifoldwith
parallel mean curvaturenormal field suchthat ¢ < Oandc+ H? > 0.1fn > 3and
if sup,,; S < a(n, H,c), then M isatotally umbilical sphere S*(1/v/c + H?).

The following examples show that the condition for S in Theorem D is optimal.

EXAMPLE 1. Inthecasewherec = 0, consider M = S* Y((n—1)/nH) xR C
R Alsoset M := F" (¢ + \?) x F(c + p?), wherec < 0. In both caseswe
have S = a(n, H, ¢). Thefirst case of the proof of S = «a(n, H,¢) istrivial. If A
and p are principal curvatures in the second case, then (n — 1)\ + 4 = nH and
S =(n—21N+pu?=a(n, Hc).

In this article we relax the assumption for the parallel mean curvature normal.
Thus the a(n, H, ¢) may be considered as a scalar on M, for so too is the mean
curvature H. We shall prove
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MAIN THEOREM. Let M bean oriented complete submanifold in £ *?(c) with
c>0.1fn # 3andif

A(M) :=sup(S — a(n,H,c)) <0,
M

then M ishomeomorphicto a sphere. Moreover, M isdiffeomorphic to a spherical
gpaceformifn = 3.

Remark 3. The orientability assumptionin Main Theorem is needed for the use
of the Poincaré duality. The solution to the Poincaré conjectureis also employed. If
the orientability of M is not assumed, we need only employ the orientable double
cover. Then M C F™*P(c) is an immersed sphere. The class { M; A(M) < 0} of
all Riemannian n-manifolds in the above theorem is nonempty. In fact, S*(1) is
atotally geodesic great spherein S**1(1), and A(S*(1)) = —n for ¢ = 1. Also,
S*(1) c R*"tistotally umbilic, and A(S*(1)) = — fore=0.

The following examples show that the assumptionin Main Theoremis optimal.

EXAMPLE 2. Clearly R® c R"*! satisfies A(R") = 0. Let M = S*1
(1/V1+22) x St /V1I+X2) c S forc = 1, andadso M = S* ((n —
1)/nH) xR ¢ R""for ¢ = 0. Here A isasin Theorem C, and H isanonnegative
constant for the case ¢ = 1, and H a positive constant for the case ¢ = 0. In both
cases H isthe mean curvatureof M and A(M) = 0.

Remark 4. Inthecasen = 2, clearly A(M) < Oisequivaenttoinf,; K,; > 0,
and hence the conclusion of our theorem is trivial.

Remark 5. The method of proof for our theorem demonstrates the following
fact. In the case where n = 3, we can replace the ambient space by a general
Riemannian (3 + p)-manifold N with K > ¢ for aconstant c. If A(M) < 0and
if the mean curvature H of M C N satisfiesc + H? > 0, then M isdiffeomorphic
to aspherical space form.

2. Thelower bound for Ricci curvature

The following convention on the range of indices will be used throughoui.
1<AB,C,... <n+p, 1<,5,k,... <n,
n+1l<a,pB,7,...<n+p.

For an arbitrary fixed point x € M C N, we choose an orthonormal local frame
field {e4} in N suchthat {e;} istangent to M. Let K and R be the Riemannian
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curvature tensors of N and M respectively and h the second fundamental form of
M. Let W4 bethedual framefield of e4. Then,

h= Zh%wi@)wj@ea,

a’i’j
a (07
Rijre = Kijre + Z (hikhje — highjy)-

The sguared norm S of the second fundamental form and the mean curvature H of
M aregivenas

S:= S (h%)?

a77’7]

Z hieq| -

THEOREM 1. Let M C N bea complete submanifoldin an (n + p)-dimensional
Riemannian manifold V with K > ¢. Herecisa constant satisfying c + H? > 0.
If A(M) < 0, then M is compact. Moreover the fundamental group I141(M) of M
isfinite.

Proof of Theorem 1. Note that if {e;} is an orthonormal basis for the tangent
space M, to M at apoint z, then

ZKmm z n_l) C.

For aunit vector X tangentto M at z, if we choose an orthonormal frame such that
X = ey, then the Ricci curvature Ricy,(X') of M with respect to X is expressed
as

Rch Z Rinin = Z Kinin + Z hfﬁhgn - han)z]

> (n - 1)C + Z tr Hy, - hgn - Z(hzan)z ) (1)

[

where H,, isthe (n x n)-matrix whoses, j-entry is ;. Setting

Voi= S (h3)2—tr Ho -, Sai=tr H2 =3 (h5)?,
i b

we observe

S=Y S
(07
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Furthermore, setting
T, = tr Hy, Sa =D (h$)?,
i

we have
‘H? =Y "T:.
[0
By definition,

Yo = Z(hzan)z - Toéhgn

i
= Z Z — Taht,, @
z;ﬁn z;én
and

n—1 2 n—1
(To — h)? = (Z h%) <(n—1) Y (h)% = (n = 1)[Sa — (h,)?].
=1 =1
Setting v, := (h%,)? — Tuh®

nn?

0 > n(h%,)? — 2T,he, + T2 — (n—1)8,

the above relation reduces to

= Ny + (n— 2)TWhe, +T% — (n — 1)S,

= o+ (=2 (- 2) + 272 -ps,. @
n n
From the relations
o To o Ta\? - T2
we get
2 _ ~ 2
(h%—ﬂ> < 1<S —T—>. @)
n n n

It follows from (3) and (4) that

0>nys,—(n—2

5' - T—2> L 20 =Yg, g8,

n [0}
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and hence
n— ~ T2 2(n—1
Ya < S — —) ( 5 )Té.
n
Therelations (2) and (5) yield
n— T2 2(n—1)
Y, < |T |\/ S ——>— — T2
It then follows from (1) and (6) that
Ricy (X) > (n—1)c— ZYa
«
> (n—l)c—z [n_lS
=z ~ n «
2 —
L 2|Ta| n—1 <S _T_) _2(n : 1)T§]
n n
> (n—l)c—n_ls
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The bracketed factor in the final line above can be expressed as a product of two
terms, and we obtain

Ricy(X) > l\/ —nH2+ ( 2)1)H
n(n —
1)H? + 4n(n — 1)20}
_ nH + JH
| = D)
— Z(nl— 7 \/n3(n —1)H? + 4n(n — 1)20} .
Thus we observe that
S < a(n,H,c),
is equivalent to

n(n —2)
\/ermH

= /n¥(n— 1) H2 + dn(n — 1)2
+2(n— \/nn YH? 4+ 4n(n — 1)%¢c < 0.

Therefore A(M) < Oimpliesthat thereexistsane > O suchthat Ricy; > . Appli-
cation of the classical Myers Theorem then concludesthe proof of Theorem 1. O

The following Proposition 2 is immediate from the proof of Theorem 1.

PROPOSITION 2. Let M™ C N™*P beasubmanifold and let the curvaturetensor
of N satisfy

> Kinin > (n — 1), for any orthonormal basis {e;}
for M, atany point z € M.

Here ¢ is a constant. Then,

. -1 -2
Ricy (X) > ”n ne+2ni? — 5 — =2 pog g2y
holds for any unit vector X € M,.
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3. Proof of Main Theorem

Theproof of Main Theoreminthe casewheren = 3followsdirectly from Theorem
1 and the Hamilton Theorem [H] which states that a compact and connected Rie-
mannian 3-manifold with positive Ricci curvature is diffeomorphic to a spherical
space form.

We discuss only the case where n. > 4. The non-existence theorem (see [L]],
[Xi]) for stable currents in a compact Riemannian manifold M isometrically
immersed into F*?(c¢) isemployed to eliminate the homology groups Hy,(M; Z)
for 1 < k < n — 1. Wethen employ the universal coefficient theorem to obtain the
homol ogy sphere.

LEMMA 1 ([LS], [Xi]). Let M C F™*P(c) for ¢ > 0 be a compact submanifold
of dimensionn > 2. Assume that

n q
> > 120 (e, ex)*— < (e, ei), h(ex, ex) >] < g(n — g)c (7)

k=q+1i=1

holds for any orthonormal basis {e;} of M, at any point z € M. Here, g is an
integer satisfying 0 < ¢ < n. Wethen have

Hy(M;Z) = H,_,(M;Z) =0,
where H;(M; Z) is the i-th homology group of M with integer coefficients.
The above Lemma 1 is combined with our assumption for S and we prove.

LEMMA 2. Let M C F™*P(c) for ¢ > 0 be a compact submanifold of dimension
n.Assumethatn > 4and S < a(n, H, ¢). We then have

Hy(M;Z)=0, foralll<g<n-—1
Proof. We observe that

> D [2h(es, e)l? = (h(ei, ei), (ex ex))]
k=q+1i=1
=230 > 2 ()= 30 3 hihi
o k=¢+1li=1 a k=q+1li=1

k=q+1i=1
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By setting

(S (v - o) .
=1 =1

andr :=n — g, we have

q n

qrSe = qry_ (W& +qr > (hfy)?

i=1 k=q+1

q 2 n 2
i=1 k=q+1

Inserting 7o, — Y7 h% = Y7 g+1 D, into the right-hand side of the above

zlu

inequality, we get

2
(r+q) (Zh) 2qTaZh —I—qu—qu <0
=1
and using (8), this expression is rewritten as

nZq + (r — q)T, Zh —I—qu—qu <0 ©)]

Making use of the relations

2 T.\?> - 12 T,
-2

we have, by letting h"‘ =h% —Ty/n,

Sa — T{ %(Zh>+ (Zh)z

k=q+1
q Ta 2
(i - 7)] |

https://doi.org/10.1023/A:1000189116072 Published online by Cambridge University Press



https://doi.org/10.1023/A:1000189116072

THE TOPOLOGICAL SPHERE THEOREM FOR COMPLETE SUBMANIFOLDS 231

Therefore we find

q 2
3 (ha - E> <L (Sa - T—). (10)
i—1 n n n
From (9) and (10) it follows that
~ — T2
Q_S |:Q(7” - Q) + g:| To% | Q| |T | (S o _> ] (11)
n n n n

From (8), (11), and the fact ¢gr > n we obtain

no g
> > [2Ih(es, ex)l* = (h(es, e), h(e, ex))] — gre
k=q+1i=1
gz I ( _ T_2> _
< Za: [n Sa T; T4 | Sa - qre

2
qr 2 |7”
= =5 —2qgrH ETZE — L= -
n a Tt n J (ﬂ > qare

_Q{S—anz— L ¥/nla = H\/i}

n var
r 2 Vn(n —2) v/
;{S—ZTLH —nc+ ﬁﬂ S—nHz}. (12)

Note that 3, 75 Y 5(Ss — T5/n) = n®H?(S — nH?) is employed here. Since
S < a(n, H,c) isequivalent to
late

S — 2nH? — nc+ %HVS—nH2 <0,
the left hand side of (12) is negative. It follows from Lemma 1 that H,(M; Z) =
H.(M;Z)=0foradl 1< q,r <n— 1lsuchthat g+ r = n. This completes the
proof of Lemma 2. O

Proof of Main Theorem. It follows from Lemma 2 and the universal coefficient
theoremthat H™~(M; Z) hasnotorsion, and hence neither does H1 (M ; Z) by the
Poincaré duality. The Myers Theorem then impliesthat I1; (/) isfinite, and hence
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H1(M; Z) = 0. Therefore we have H,,_1(M;Z) = 0. Let M be the universal
Riemannian covering of M. We may consider M to be asubmanifold of F™*7(c),
and hence M is a homology sphere. Since M is simply connected, it is also a
topological sphere. Because M is covered by a topological sphere, a result by
Serve[S] statesthat M issimply connected. This proves our Theorem. O
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