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Abstract

Let A be a semisimple modular annihilator Banach algebra and let L, be the left regular representa-
tion of 4. We show how the strong radical of 4 is related to the strong radical of L,.

1980 Mathematics subject classification ( Amer. Math. Soc.): 46 H 10, 46 H 15.

1. Introduction

Let A4 be a semisimple Banach algebra and let B(4) be the Banach algebra of all
bounded linear operators on A. For each a € 4, let L, be the linear map on A4
given by L (x) = ax, x € A. Then the mapping a — L, is a norm-decreasing
algebra isomorphism of A4 into B(A4). Let L, be the closure of {L,: a € A} in
B(A). We call L, the left angular representation of A. By the strong radical & , of
A we mean the intersection of all maximal modular ideals of A (if there are no
such ideals we set &, = A4). The strong radical of modular annihilator algebras
was studied by Yood in [11]. Our main concern in this paper is to show how &,
and &, are related for these algebras, and in particular for semisimple right
complemented Banach algebras.
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2. Preliminaries

Let A be a Banach algebra. For any subset S of A4, /,(S) and r,(S) will
denote, respectively, the left and right annihilators of S in 4, and cl () will
denote the closure of S in A. The socle of A4 will be denoted by S,. By an ideal we
will always mean a two-sided ideal unless otherwise specified. We call 4 modular
annihilator if every maximal modular left (right) ideal of 4 has a nonzero right
(left) annihilator. A semisimple Banach algebra with dense socle is modular
annihilator [9, Lemma 3.11, page 41]. We call 4 an annihilator algebra if every
proper closed left (right) ideal of 4 has a nonzero right (left) annihilator.

All Banach algebras considered in this paper are over the complex field.

A minimal idempotent e in a Banach algebra A is called finite-dimensional if
eA is finite-dimensional. If 4 is semisimple then this is equivalent to Ae being
finite-dimensional [11, Proposition 2.2, page 82]. An idempotent ¢ in 4 is called
simple if eAe is a simple algebra and e is called central if ex = xe for all x € 4
(see [10, pages 320-322)).

Let A be a semisimple Banach algebra. If M is an ideal of 4, then / (M) =
r,(M) [9, page 37] and we denote the common value by M? (We let M =
(M*)*). If S§ = (0) then every non-zero left (right) ideal of 4 contains a minimal
idempotent [9, page 37].

We will also be interested in the right multiplication operators R ,, where, for
eacha € A, R, (x)= xaforall x € 4.

Let A be a semisimple Banach algebra. Then L, is semisimple and the
mapping a — L, embeds A4 as a dense left ideal of L,. (See [7] or [8].) In the rest
of the paper we will identify 4 as a dense left ideal of L ,. (For a more complete
treatment of L, see [8).)

3. Right complemented Banach algebras

Let A be a Banach algebra and L, be the set of all closed right ideals in 4. We
say that A is right complemented (1.c.) if there exists a mapping p: R = R? of L,
into itself (called a right complementor) having the following properties:

(C1) RNR?=(0) (ReL);
(C2) R+RP=4 (Rel);
(C3) (R?)? =R (ReL,);
(cr) if R, CR, then REC Rf (R,,R,€L,).

If A is a semisimple r.c. Banach algebra then 4 has dense socle [6, Lemma 5,
page 655] and therefore 4 is modular annihilator.
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In the rest of this section, let 4 be a semisimple r.c. Banach algebra with a right
complementor p.

LemMA 3.1. Let I and J be closed ideals in A such that I N J = (0). ThenJ C I?
andI C J?.

ProoF. Since IJ cINJ = (0), JCr(I)and I C,(J). But, by [6, Lemma
1, page 652], I” = r,(I)and J? = [ ,(J). Hence J € I? and I C J?,

Let {I,: A € A} be the family of all distinct minimal closed ideals of A. Since
A is the direct topological sum of the I, and since for every closed ideal I of 4,
I®r,(I)= A, it follows from [2, Theorem 3.5, page 232] that {I,: A € A} is an
unconditional decomposition for 4. For each a € 4 and A € A, write a = a, +
b, with g, € I, and b, € I{.

THEOREM 3.2. (1) For each a € A, a = ¥, a,, where convergence is with respect
to the net of finite partial sums.
(2) There exists a constant K > O such that, if Ay, ..., A\, are distinct elements of
Aandc, € I, , then
lex, + - -+ I< Klex, + -« +er I,  1<m<n.
In particular, for eacha € A,

lay, + <=~ +ay < Kllay + -+ +a, [, 1<m<n.

ProOF. (1). Since {I: A € A} is an unconditional decomposition for A, we
have a = ¥, ¢,, where ¢, € I, and convergence is with respect to the net of finite
partial sums. We show that ¢, = a, forall A € A. Let A, € A. Then a — ¢, =
Zysa,Cx By Lemma 3.1, I, ¢ I for X # A, and so

dy,=a—¢,, € cIA( y IA) - Ifo.
A#2g
Thus a = ¢, + d,, withc, €I, and d, € I{.But a =a, + b, with a, €
I,,and b, € If. Therefore, by the uniqueness of decomposition we must have
¢y, = @y, and dy = b, . Hence a = ¥, a,.
(2). This follows from [2, Theorem 3.4, page 231] and (1).

COROLLARY 3.3. Let P, be the projection on A with range I, and nullspace I{.
Then the family { Py: A € A} is bounded.

Every minimal idempotent of 4 is also a minimal idempotent of L,. Since

every minimal closed ideal I of 4 is of the form I = cl (AeA), where e is a
minimal idempotent in 4, it follows that, for each A € A, £, =cl; ([,) is a
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minimal closed ideal of L,. Moreover 4 = cl (X,,) implies that L, =
cl, Xy #)- Thus {(£,: A € A} is the family of all distinct minimal closed ideals
of L,. L, is an annihilator algebra [8].

THEOREM 3.4. The family { #,: A € A} is an unconditional decomposition for
L,

PROOF. Let A, ..., A, be distinct elements of A and let 7 be any element of
Fy, (i=1,...,n).Let a € 4. Then

(T)‘l + .- +T)\m)(a) = Txl(a)‘l) + .- +Txm(a)\m), 1 S m S n,
and T, (a,) € I, (i = 1,..., n). By Theorem 3.2,
“Txl(a)\l) + - +T (g, )

Hence

s l1<m<n.

|< K||T,‘l(a,\l) + - +TA,,(”>\")!

”TAI+"'+TA,,.”<K”T>\1+"'+T>\,,”, 1<smsgn.

Therefore, by [2, Theorem 3.4, page 231], {.#,: A € A} is an unconditional
decomposition for L.

PROPOSITION 3.5. Let B be a semisimple Banach algebra with dense socle. Then
the following statements are equivalent:

(1) The minimal closed ideals of B form an unconditional decomposition for B.

(2) I ® l5(I) = B for all closed ideals I of B.

PrROOF. Let I be a closed ideal in B, and let e be a minimal idempotent in B.
Then either e € I or e € Iz(I) = rg(I) [10, page 320]. Therefore, if M is a
minimal closed ideal in B then either M C I or M C I4(I). We can apply the
argument in the proof of [2, Theorem 3.5, page 232] to show that the statements
(1) and (2) are equivalent.

COROLLARY 3.6. For every closed ideal 1of L,, I ® I} (I)= L.

ProoF. This follows from Theorem 3.4 and Proposition 3.5.

4. Maximal modular ideals

Throughout this section let 4 and B be semisimple Banach algebras such that
A is a dense left ideal in B. Then A is an abstract Segal algebra in B [4]. If A4 is
modular annihilator then so is B. In fact, let .# be a maximal modular left ideal

https://doi.org/10.1017/51446788700028901 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700028901

{5} Strong radical and left regular representation 5

in B. By [4, Lemma 1.3, page 298], .# N A4 is a maximal modular left ideal of 4
and, by [4, Lemma 3.7, page 305], A4 = clz(A# N A). Since r, (A N A) # (0), it
follows that ry(.#) +# (0). Thus B is a right modular annihilator algebra and
therefore, by [9, Theorem 3.4, page 38], is a modular annihilator algebra. The
converse is also true (see [8]).

NOTATION. We recall that if M (.#) isan ideal of A (B) then M? (#*)is the
common value / (M) = r (M) (Ig( M) = rg(MA)).

LemMa 4.1, If A is modular annihilator, then A and B have the same finite-
dimensional minimal idempotents.

PROOF. Let E ( Ep) be the set of all finite-dimensional minimal idempotents in
A(B).1If e € E,, then ed = eB so that e € E,. Conversely, suppose e € Ej. Let
K = clz(BeB). Then K is a finite-dimensional minimal closed ideal of B. Also
K N A # (0), for otherwise KB = (0) which is impossible because B is semisim-
ple. Therefore K N A contains a minimal idempotent, say f in A4 [9, page 37].
Since K is finite-dimensional and cl (AfA4) is dense in K, we obtain K =
cl (AfA). Hence K C Aand e € E,,.

THEOREM 4.2. If A is modular annihilator then M — cl g(M) = A is a one-to-one
correspondence between the maximal modular ideals M of A and the maximal
modular ideals # of Band M = # N A.

PROOF. Let M be a maximal modular ideal of 4. Then M*¢ # (0) so that
M ® M*= A, By [3, Theorem 6.4, page 574], A/M is a finite-dimensional
algebra with identity. Therefore M® = ud = Au, for some idempotent u in A.
Since M%? = (1 — u)A = A(1 — u) and M C M*“% by the maximality of M, we
get M=(1 —u)d=AQ — u). Let /=1 — u)B = B(1 — u). Then A° = uB
= Bu and M? is dense in .#° Since M*? is finite-dimensional, .#° = M?%
Therefore A ¢ is a simple algebra and the equality # ® .#° = B implies that .#
is a maximal modular ideal of B. Clearly A = cl ;(M).

Conversely, let .# be a maximal modular ideal of B. Since B is modular
annihilator, by the argument above, there exists an idempotent v in B such that
M =(1—-0v)B=B(1-v)and #°=0vB= Bv. As A*° is a finite-dimensional
modular annihilator algebra, .#¢ is a finite sum of minimal left ideals. Therefore,
by Lemma 4.1, #°C A and so vE 4. Let M= (1 — v)A = A(1 — v). Since
M? = pA = Av is dense in A ° and #° is finite-dimensional, we obtain M? =
A °. Therefore M* is a simple algebra and the equality M* & M = A implies that
M is a maximal modular ideal in A. We have M = # N A.
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From the proof of Theorem 4.2 we see that if M is a maximal modular ideal of
A then M = (1 — e)A = A(1 — e), for some central simple idempotent e in A.
Conversely, if e is a central simple idempotent in 4, then M = (1 —e)4d =
A1l — e) is a maximal modular ideal of A since I = Ae = eA is a simple algebra
and 7 & M = A. Hence the following results.

COROLLARY 4.3. If A is modular annihilator, then A and B have the same central
simple idempotents.

NOTATION. Let Tt , (It 5) be the set of all maximal modular ideals in 4 (B).

COROLLARY 4.4. If A is modular annihilator then the mapping (1 — e)A —
(1 — e)B, as e runs over the central simple idempotents of A (or equivalently of B),
is a one-to-one map of M , onto M 5. Moreover, eA = eB and is finite-dimensional
for every central simple idempotent e of A.

From Theorem 4.2 it follows that if 4 is modular annihilator then &, = S, N
A. In the next section we will see that we also have &, = clg(& ) for certain
modular annihilator Banach algebras 4 and B.

5. The strong radicals of 4 and L,

Let A be a semisimple Banach algebra. In this section we will see how the
strong radical & , of 4 is related to the strong radical &, of L, for certain 4.

PROPOSITION 5.1. Let A and B be semisimple Banach algebras such that A is a
dense left ideal in B. Assume that A is modular annihilator. If B has the property
that clg(I N A) = I for every closed ideal I of B, then © p = clz(S ).

Proor.Let Q = cl (M M € M }and 2 = cl ;A" # € My}). Then,
by Corollary 4.4, Q° = &, and 2° = &g, moreover, 2 = clgz(Q) so that 2¢ =
15(Q) = rg(Q). Now rz(Q) N 4 = r,(Q) and, by the condition in the theorem,
clp(r(Q)) = rp(Q). Hence

Sp=2°=r(Q) = CIB(rA(Q)) = clp(Q?) = clp(&,).

COROLLARY 5.2. Let A be a semisimple right complemented Banach algebra. If
L, has the property that x € cl; (xL,) forallx € L,, then &, =cl; (& ).
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PROOF. By [1, Lemma 3, page 39], 4 has the property that x € cl (xA) for all
x € A. Therefore, if L, also has the property then, by [4, Theorem 2.3, page 299],
cl; (I) N A = I for every closed ideal I of A. The conclusion now follows from
Proposition 5.1, since 4 is modular annihilator.

PROPOSITION 5.3. Let A be a.semisimple annihilator right complemented Banach
algebra. Then

(D) cl, (I) N A = I, for every closed right ideal I of A.

(i) el (J N A) =J, for every closed left ideal J of L.

PrOOF. (i) Let I be a closed right ideal of 4 and let p be the given right
complementor on 4. Let {e,: @ € @} be a maximal family of mutually orthogo-
nal minimal p-projections in I. (We recall that a minimal idempotent e is called a
minimal p-projection if (ed)? = (1 — e)A. See [6, page 654].) We claim that
I=cl,X, e A). Infactlet J =cl (X,e,A); JCLIfJ#1Ithen JP NI+ (0)
and therefore contains a minimal p-projection e. Since every e, € J and e € J?,
we have e e = ee, = 0 for all @ € Q [6, page 654]. As e € I, this shows that {e,:
a € {1} is not a maximal family of mutually orthogonal minimal p-projections in
I; a contradiction. Therefore I =cl,(X,e,4). Let K=cl; (I). Then K =
oy Zaed)=cly E,e,L,). We have I =r,(l,(I)) and K=r; (I, (K))=
re, (I (). Now rp (L(1)) 2 r (I (1)) = K so that I = r,(1,(1)) = r, (L(I))
NA2KNA. SincelcKNnA,wegetI=KnN A.

(1) By [7, Theorem 3.6], 4 contains a left approximate identity {u,: y € '}
such that {L, : y € I'} isbounded in L. Clearly {L,: y € l'}isa bounded left
approximate 1dent1ty for L ,. Therefore a € cl ,(Aa) and b € L, (L4b) for all
a€ Aand b€ B. Let J be a closed left ideal of L, and x € J. Since S, is a
denseidealin L, [8), S,x CJ N Aand x € clz(L,x) = clz(S,x) C clz(J N A).
Hence J € clz(J N A)and as clz(J N A) C J, we obtain J = clz(J N A).

It is easy to see that properties (i) and (ii) above also hold for closed ideals.

COROLLARY 5.4. Let A be a semisimple annihilator right complemented Banach
algebra with a right complementor p. Then, for every closed ideal # of L ,,

M=l ([# 0 A]?).

PrOOE. By Proposition 5.3 (it), A = cl, (# N A) and #“ = cl, (.ll” N A).
But #°N A =1,(#) Hence #£°=cl (IA(.//l)) and so

LA(IA("”)) = CIL‘(IA('//{O A)).
By [6, Lemma 1, page 652}, 1, (.# N A) = [.# N A]?. Therefore
M=l (M°NA)=cl, ([# N A]7).
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THEOREM 5.5. Let A be a semisimple annihilator right complemented Banach
algebra. Then ©; =cl; (&, ) and &, =6, N A.

PRrOOF. This follows at once from Proposition 5.1 and 5.3.

Let A be a semisimple Banach algebra. Let
N, = {x € 4: L, is compact}, N = {x € 4: R, is compact}.
Let
AN, ={z€ L, L,iscompact}, Np={z€ L,: R, iscompact}.

Clearly N; and N (A, and A7) are closed ideals in A(L,).

Let A be a semisimple right complemented Banach algebra. Since A4 is modular
annihilator, by [11, Theorem 3.3, page 83}, &, = N7 = Nj. By [6, Lemma 1, page
652], Nf = Nf and N§ = Nf, where p is the right complementor on A. As
(N{)* = (Nf)? = N and (Ng)* = (N§)? = Ng, we obtain Ny = Np = G4,

THEOREM 5.6. Let A be a semisimple right complemented Banach algebra. Then
() &% =N = Ny

(i) &F, =N =N}

If A is also an annihilator algebra, then

(i) ¥ = N = cl (NL) = cl (Ng).

V)N, =Ng =N, NA=NpN A

PROOF. (i) This was proved above.

(ii) Since A is a closed ideal of L ,, by Corollary 3.6, we have 4} & A7 = L.
Similarly /2 @ 4" = L, As A, C A% we obtain A, = A% Likewise
Nr = AR Now, by [11, Theorem 3.3, page 83], &, = A" =A}. Hence
&7, =N =N

(iii) Suppose A is an annihilator algebra. Then, by Proposition 5.3, Theorem 5.5
and (i), we have

Ni=c, (N)NA=¢cl, (8,)NA4=8, Nd=AH/NA.
Therefore, in view of Corollary 5.4,
A=A = ([0 A7) =, ((VF)"),

where p is_the right complementor on 4. By [6, Lemma 1, page 652}, (Nf)? =
(Nf)? = N;. Hence 4 =cl; (N.). Likewise A = cl, (Ng). By (i), 47 =
N g

(iv) This follows from Proposition 5.3 and (iii).

Theorem 5.6 answers some of the questions in [11] (see [11, page 85)).
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