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THE C'-ALGEBRAS OF SOME INVERSE SEMIGROUPS

RACHEL HANCOCK AND IAIN RAEBURN

We discuss the structure of some inverse semigroups and the associated C*-
algebras. In particular, we study the bicyclic semigroup and the free monogenic
inverse semigroup, following earlier work of Conway, Duncan and Paterson. We
then associate to each zero-one matrix A an inverse semigroup CA , and show
that the C -algebra OA of Cuntz and Krieger is closely related to the semigroup
algebra C'(CA).

An inverse semigroup is a semigroup 5 in which, each element x has a unique
"inverse" x* satisfying xx*x = x and x*xx* = x*; it turns out that the map x —» x*
is then an involution on S ([12], V.1.4). Through this involution, the semigroup algebra
C<S becomes a *-algebra, and has an enveloping C*-algebra, called the C*-algebra of
the semigroup (see below). Here we shall discuss several specific inverse semigroups,
investigate the structure of their C-algebras, and study the connections with other
well-known C*-algebras.

We shall take the point of view suggested by Duncan and Paterson [9]. They
observed that inverse semigroups are precisely those semigroups which can be realised
as *-semigroups of partial isometries on a Hilbert space, in which the "inverse" of an
element is the adjoint of the corresponding linear operator ([9], 1.1). (For this reason,
we shall call x* the adjoint of x.) Using this approach and the structure theory of
partial isometries, Conway, Duncan and Paterson gave an elegant classification of the
monogenic (that is, singly generated) inverse semigroups ([3, Section 1]; Preston has
also given a purely algebraic version [16]).

If S is an inverse semigroup, the '-algebraic structure on C<S = sp{6r: x 6 S} is
denned by SxSy = Sxy and (Sx)* = hx-; the '-representations n: CS —> B(H) are then
the linear extensions of the '-representations of S as partial isometries on the Hilbert
space H. (From now on, all our representations will be assumed '-preserving.) Since
every partial isometry has norm 0 or 1, for any representation TT of C<S and / £ C<S,
we have

Received 27 April 1989

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 SA2.00+0.00.

335

https://doi.org/10.1017/S0004972700028483 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028483


336 R. Hancock and I. Raeburn [2]

thus

H/ll = sup{||7r(/)|| :n:CS-* B(H) is a representation}

is a well-defined C-seminorm on CS — in fact, it is a C*-norm, because the regular
representation is known to be faithful [20], The completion C*(S) of CS in this norm
is the C*-algebra of the semigroup S: note that its representations are by definition in
one-to-one correspondence with those of S. (Other equivalent definitions are given in
[9, p.44].)

The structure of the C*-algebra C*{S) has already been investigated for various
semigroups and classes of semigroups ([14, 0, 3]). In particular, Conway, Duncan and
Paterson have described the C*-algebras of the monogenic inverse semigroups ([3],
Sections 2, 3), and for the bicyclic semigroup and the free monogenic inverse semigroup
these turned out to be algebras which had often appeared in other contexts. We shall
start by giving an alternative analysis of these two examples; our results go a little
further than those of [3], and some of them also appear to be slightly different. In any
case, we hope our systematic approach will shed some light on the results of [3], and
also motivate our subsequent analysis of other semigroup algebras.

In Section 2 we introduce an apparently new class of semigroups which we call the
Cuntz-Krieger semigroups. Their definition was inspired by work of Cuntz and Krieger,
in which they study the C*-algebras generated by families of partial isometries whose
initial and range projections satisfy relations governed by a zero-one matrix A (see
[7]). We modify their relations slightly, replacing them with ones which only involve
multiplication, and let CA be the semigroup defined by this new set of relations. We
prove that CA is an inverse semigroup, by constructing a faithful representation of CA

as a "-semigroup of partial isometries. The C-algebra C*(CA) is not quite the same
as the algebra OA of [7], but it is very closely related: each C*{CA) contains an ideal
/ isomorphic to a few copies of the compact operators, and the quotient C*(CA)/I is
isomorphic to O\.

In the special case where A has all entries 1, the algebra OA is the Cuntz algebra
On [4], and the connection with an inverse semigroup On had been noticed by Renault
[17], although he did not explicitly identify On with a quotient of C*(On)- However,
the generalisation to arbitrary A may also be of some interest: the semigroup CA is a
new ingredient in the interplay between the structure of OA and that of the topological
Markov chain associated to A (see [7, 6]).

While we hope we have already provided good evidence that the C*-algebras of
inverse semigroups can be interesting, we can also point to other places in the theory of
C*-algebras where inverse semigroups may arise naturally. It seems likely, for example,
that the algebras studied by Salas [18] will be associated to those of inverse semigroups:
indeed, Robin Balean has recently verified that they are generated by '-semigroups of
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partial isometries, although it is not yet clear how many different inverse semigroups
are involved or what the results of [18] say about their algebras. For a more speculative
example, we observe that there are various constructions in the literature (for example
[13, 5]) which look suspiciously like crossed products by actions of inverse semigroups.

1. MONOGENIC INVERSE SEMIGROUPS

The first semigroup we shall consider is the bicyclic semigroup C, which is the
semigroup generated by two elements p, q subject to the relation qp = 1. One way to
see that this is an inverse semigroup is as follows. First observe that every element of
C can be written in the form pnqm for some n, m ^ 0. Next, let 5 be the unilateral
shift on I2, and note that p = S, q = S* satisfy the relation qp — 1; thus there is
a homomorphism <j> ol C onto the semigroup generated by S and S*. But the set
{5n(5'*)m} is closed under the adjoint operation, so this is an inverse semigroup by [9,
1.1], and <j> must be an isomorphism since the operators Sn(S*)m are distinct.

If 7r is a representation of C on Hilbert space, then the operator 7r(p) is an isometry
and 7T is therefore equivalent to a representation in which 7r(p) = U © (S ® l a ) , where
U is unitary and 5 ® l a is a shift of multiplicity a, possibly infinite ([10], p.117).
We may as well suppose a > 1, since | |T ( / ) | | is not decreased by adding another
summand to TT. NOW an elegant argument of Coburn ([2], Section 3) shows that the map
5 —» U ©(S® la) induces an isometric isomorphism of C*(S) onto C*(U © (5® la)) :
thus the representation n which sends p to 5 is isometric for the C'-norm on CC,
and C*(C) =* C*(S). Coburn has also proved that C*(S) C B(l2) contains the algebra
K of compact operators and has C*(S)/K = C(T); this result and this algebra are
of fundamental importance in C*-algebra theory and operator theory, where C'(S)
appears as the C-algebra generated by the Toeplitz operators with continuous symbol
(see, for example, [8, Chapter 7]).

Next we wish to consider the free monogenic inverse semigroup T: monogenic
means it is generated as a semigroup by one element u and its adjoint u* , and free means
that, whenever x is an element of an inverse semigroup 5 , there is a homomorphism
4>: T —* S with <f>(v,) = x. Such a semigroup is obviously unique up to isomorphism,
but, again, the requirement of uniqueness of ad joints means it is not at all obvious that
there is one - indeed, Schein has shown that such an T cannot be realised in terms of
generators and finitely many relations [19]. We shall sketch a proof of existence, similar
in spirit to that given by Preston ([16], Sections 1,2), and which is implicit in [3].

LEMMA 1 . 1 . Let S be a monogenic inverse semigroup with generator u.

(a) Every element ofS has the form («*) «'(«*)"*, where k, I, m are integers
satisfying I ^ 0, / ^ k > 0 and / ^ TO ̂  0.
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(b) If the elements in (a) are all distinct, then (S, u) is a free monogenic
inverse semigroup.

Part (a) is proved in [16], Section 1; the proof is a tedious reduction, but is ele-
mentary in the sense that it uses only the commutativity of idempotents in S ([12],
V.I.27). If x belongs to another inverse semigroup T, and the given elements of S are
distinct, we can define <f>: S —> T by

since the reductions involved in part (a) are valid in any inverse semigroup, the map
defined this way is a homomorphism.

Now consider the *-subsemigroup of B(l2 © Z2) generated by S (B S*, where S is
again the unilateral shift. Since any element of this semigroup has the form Sn(S*)m ©
Sk(S*) , this is a '-semigroup of partial isometries and hence an inverse semigroup.
To see that it is a free monogenic inverse semigroup, we just need to check that the
elements

(5* © S)k(S © S'fiS* © S)m = S'-fc(5')m © S*(S*)'"m

are distinct, and this can be easily done by applying them to the sequence {1/n} £ I2.

REMARK 1.2. We can deduce from this by taking free inverse products of T that there
are free inverse semigroups with arbitrary sets of generators. Since the construction of
free inverse products is straightforward (see [12, VII.4.5]), and the known constructions
of free inverse semigroups are quite complicated (for example [15]), this may be a
relatively efficient existence proof!

The structure of C*(^") is described in the following theorem of Conway, Duncan
and Paterson ([3], Section 2). In it, Jn denotes the truncated shift on Cn defined with
respect to the usual basis by J n (z i , . . . , zn) = (0, Z\,..., zn-i) • The operator ®^L.2Jn

had previously been studied by Bunce and Deddens [1], and the treatment in [3] used
their results. However, our proof is more direct, and the facts about © Jn proved in [1]
will follow from it. Both proofs are based on the same theorem of Halmos and Wallen
[11].

THEOREM 1 . 3 . If u is a generator (or the free monogenic inverse semigroup T',
then u —> J = Q^L2Jn extends to an isomorphism of C*(F) onto C*(J).

PROOF: If ir is any representation of J-', then in particular 7r(un) is a partial
isometry for all n , and hence fl"(u) is a power partial isometry in the sense of [11].
Thus by [11], TT(U) can be decomposed as a direct sum

*(«) = W © (S ® 1Q) © (5* ® 1̂ ) © (®~=2(Jn ® l t j ) ,
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where W is unitary, S is the unilateral shift, Jn is the truncated shift on C n , and
a, /?, Jfcn are multiplicities, possibly infinite. Conversely, the "-semigroup generated by
any operator T of this form consists of partial isometries, hence is an inverse semigroup,
and there is a representation TT of T with TT(U) = T. Thus it will be enough for us to
prove that, if kn > 1 for all n , then the map

T = W © ( 5 ® l a ) © (5* ® 1,) © (®ZL2{Jn ® U J ) -+ J = ©~=2 Jn

extends to an isomorphism of C*(T) onto C*(J).

The elements of the form p(T, T*), where p(X, Y) is a polynomial in two non-
commuting variables, are dense in C*(T), and the map p(T, T*) —> p(J, J*) is well-
defined since it just picks off some direct summands. We shall show that \\p(T, T*)\\ =

\\p(J, J*)\\ for any such polynomial. The multiplicities do not affect the norms, and
therefore

\\p(T, n i l = max{||p(W, W)\\, ||P(5, 5*)||, \\p(S*, S)\\,

It is well-known that \\p{W, W*)\\ ^ \\p(S, S*)\\ ([2], Section 3), and we claim also that
\\p(S,S*)\\<\\p(J,J*)\\.

To see this, fix e > 0 and choose ( = ( 6 i 6 , • • •) € I2 such that ||£|| = 1, & = 0 for
large Jfc (say for k > N) and \\p{S, S')£|| > \\p(S, S*)\\ - e. Choose n > deg P + N,

set £n = ( & , . . . , £„) e C" , and observe that

this works because there are enough O's at the end of £n to ensure that no non-zero

entry can get killed by J£ for r < deg P. Since ||£n|| = 1, this implies

\\p(Jn, J'JW > IIPU*. K){tT)\\ = \\P(S, s')£|| > MS, s*)\\-c,

and we therefore have

j , r)\\ = sup ||P(jn, J ; ) | | ^ \\P(s, s*)\\,

as claimed.

Next we observe that the unitary Un e Un(C) defined by Un(^,..., £„) =
(6.. • • •, 6 ) satisfies UnJnU* = J* , and hence U = ®Un satisfies UJU* = J*. Thus if
q(X,Y) = p(Y,X), the previous claim implies

\\P(S\S)\\ = \\q(s,s*)\\ < \\q(j,n\\ = \\p(r,J)\\ = \\up(j,r)u*\\ = ||P(J,J-)| | .

We have now shown that ||p(T,r*)|| = \\p(J, J*)\\ for any polynomial p; thus the
map p(T,T*) —* p(J,J*) is isometric, and extends to an isomorphism of C*(T) onto
C*{J). D
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REMARK 1.4. It follows trivially from this theorem that the partial isometry J = ®Jn

must also generate the free inverse semigroup T. In view of this, it is perhaps slightly
surprising that C*{S © 5") and C"( J) are not isomorphic as C"-algebras: C*{S © 5*)
is a proper quotient of C'(J), as was proved in [3] via an analysis of C'(S © 5*) and
C*(.F)A (see Proposition 1.5 below). In fact this distinction can be seen at the purely
algebraic level: while the '-semigroup generated by S © S* is isomorphic to T, the
representation of Q.T which sends the generator U to T = S © 5* 6 B(l2 © I2) is not
faithful. Indeed, the operator

rp*rp2rp* /rp*\2rp$rp* rp+rpZfrpm\2 , /m*\2m4/m«\2

= SS* © SS* - SS* © S2(S*)2 - S2(S*)2 © SS* + S2{S*)2 © S2(S*)2

vanishes. This appears to contradict the assertion made at the botom ofp.20 of [3], and
hence raises again the question of whether Q.T has a unique C*-norm (see [3, Corollary
2.15]). To settle this, we give a description of the spectrum of C*(T).

PROPOSITION 1 .5 . The spectrum of C*(T) consists of the representations wn

(for n > 2), which send u to Jn; ITS, ffs«, which send u to S, S* respectively; and

pe (for 0 ̂  6 < 2ir), which send u to etB. The topology is described by:

(a) {7rs,7rs.} U {pe: 0 < 0 < 2TT} is a closed subset C of C*(J7)A, in which
Ws = ns U {pe}, TTJT = TTS« U {pe} and {pe} is topologically a circle; C

is the spectrum of the quotient C*(S © 5*) of C*(J");

(b) the subset {nn : n ^ 2} is discrete, and 7rn converges to every point of
C as n —• oo.

PROOF: AS we saw in the proof of the preceding theorem, any representation of
!F sends u to a power partial isometry, and, conversely, any power partial isometry
generates a representation of T. It follows from the Halmos-Wallen Theorem that
the only power partial isometries which act irreducibly are S, 5*, Jn and the scalars
{eie}, so the first part is clear. Notice that 7rn(C"(.F)) = Mn(C), />e(C7'(J")) = C and
ns(C*{F)) = ns'iC*^)) = C{S) contains K(l2) (by Cobum's theorem), so C*(F)

is type / and C*(F)* = Prim C\T).

The quotient map irs: C*(F) -> C\S) embeds C*(S)* as a closed subset d

of C*(.F)A; Coburn's theorem identifies the representations in C\ as its and {pe},

topologised so that e'9 —» pe is a homeomorphism of T onto {pe}, and the closure of
ns is the whole of Cx. Similarly, TTS. : C*(T) -> C*(S*) embeds C*(S*)* = C*(5)A

as a closed subset C2 = TS* U {pe} > topologised the same way. (This is slightly more
subtle than it looks: if ee is the representation of C*(S) which sends S to ex8, then
eg o TTS = pe = S-e ° TS* .) Thus C = C\ U C2 has the topology described. To see that
C is closed, we observe that the element

(1) * = l i ' t tV - ( « ' ) 2 u V - u V ( u ' ) 2 + {u*fu\u*f
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belongs to kerns H kern's. = Ic = U{ker»r : TT 6 C}, but not to any ker7rn for n < 2;
thus Ic <t ker7rn for any n , and no irn belongs to C. The direct sum ITS ffi ?rs* has
kernel Ic, and hence induces an isomorphism of the quotient A/Ic with spectrum C

into C*(S) © C*(S*); since its © its* is the representation which sends u to S ffi 5* ,
the image of ir s ffi *•$• is just C*(S © Sm) and we have identified C with C*(S ffi S*)A.
We have now proved (a).

We next show that each point 7rn is closed in C*(F) . The element

of C^" belongs to ker7Tn, but not to ker7rm for m ^ n, to ker7rs or to kervrs*, and
un belongs to ker7rn but not to kerpg for any 0; thus ker7rn is not contained in any
other primitive ideal of C*{T), and {*„} is closed in C*(.F)A = Prim C*{T). To see
that each point itn is also open, it is enough to show that irn is not in the closure of
{•7rm : m > n}UC; by part (a), this is equivalent to showing f] ker7rn is not contained

in ker7rn. But if n = 2, the element

(2) v = («n$ - u2(u*)2) (u«* - u'u)

of Q.T belongs to ker7rm for all m > 2, but not to ker7rn; if n > 2 the element

(3) w

belongs to ker7rro for all m > n but not to ker7rn. We have now shown that
is discrete. The final statement follows from the inequality | |p(5©5*, S* ffi 5)|| ^
\\p(J, J*)\\ established in the proof of Theorem 2.3, which implies that kerTTs ffi TTS« D
nker7rn. D

COROLLARY 1.6 . The semigroup algebra OF has a unique C*-norm.

PROOF: If A is the completion of CJ- in any C*-norm, then A must be a quotient
of C*(JF), and hence its spectrum must be a closed subset D of C*(^") . There are
three possibilities:

(a) D is a finite subset of {7rn};
(b) D - F U E for some finite set F C {*•„} and E closed in C;
(c) D contains infinitely many 7rn 's and hence all of C.

We can discard (a), because for large n, u" would be an element of Q!F whose image
in A vanished. Similarly, we can discard (b), because if t € CF is defined by (1) and
n is large, tun would have zero image in A. Thus D must have the form (c). But if
n > 2 and 7rn £ D, and w is given by (3), then the element un~1w of OF goes to
zero in A; if ir2 is missing, the element v given by (2) goes to zero. Thus D must be
all of C*(F)A, and A = C'i?). D
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REMARK 1.7. Proposition 1.5 includes the facts about C*(®Jn) established in [1],
p.268-270. Since the regular representation A of C.F is known to be faithful [20], it
follows easily from the corollary that the C*-algebra C*(T) generated by the regular
representation is isomorphic to C*(T) = C*(©Jn); this was proved in [3], Corollary
2.12 by computing A(u) = ©( Jn ® l n ) and invoking the results of [1].

2. T H E CUNTZ-KRIEGER SEMIGROUPS

DEFINITION 2.1: Let A = (A(i,j))"j=1 be an n x n matrix with each entry
A(i,j) = 0 or 1. The Cuntz-Krieger semigroup CA is the semigroup with 0 element
generated by the set {sj, tj : 1 ̂  ii ^ n} subject to the relations

(a) UsiU = U, SiUai — Si;
(b) ijii = 0 for j ^ i ;

( c ) (Usi){*iii) = A(i, j)(*,-i,-) = (afyXU'i);
(d) (Usi)(ijSi) = (iisj){Usi);

where, for x G CA, A(i,j)x means x if A(i,j) = 1, or 0 if A(i,j) = 0.

REMARK 2.2. We should point out that, even when A(i,j) = 1 for all i,j, this is not
the same as the Cuntz semigroup On studied in [17], p.141: there the relations (a) are
replaced by the stronger condition <,-s,- = 1. However, On is naturally a quotient of
this CA , and we shall see later what happens at the C*-algebraic level.

We want to show that CA is an inverse semigroup. Our proof will follow the same

general principles as those of Section 2: we begin by reducing elements of CA to a simple

form, then show that every element x of CA has an adjoint a;*, and finally construct a

faithful representation of CA by partial isometries. Since our relations are abstractions

of those considered in [7], we can achieve the first step in this program by checking that

the reductions in [7], Section 2, are still valid in our setting. For this we shall need some

notation. We write p; = a,-<i, g< = î s,- and note that our relations imply that pi, g;

are commuting projections. More generally, for any multi-index /x = (fii,.. -,fik) with

1 *s M> ^ ni w e se* IMI = fc a n < i

(Caution: we deliberately wrote /x backwards when defining t^.) In fact, pM and q^

are projections, but this is not yet obvious - it will follow from Lemma 2.3.

LEMMA 2 . 3 . (a) s^j ^ 0 => A(i,j) = 1; M ; ^ 0 =» A(j,i) = 1.

(b) If fi — (/*!,• • • ,Hk) is & multi-index such that sM ̂  0, tieii A(fij, /Xj+i) =
1 for 1 < j < k, and q^ = t^s^ .

(c) Every element of CA has the form s,,qxtv for some multi-indices p,, A,
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PROOF: We have

SiSj = SiUaiSjtjSj = 8i{A{i,i)sjtj)sj = A{i,j)si3j,

which immediately gives the first part of (a); the second is similar. The first assertion
in (b) follows from (a), and then

since A(^ 1 ,^ 2 ) = 1. After k steps like this, we obtain qu = t^a^ . To see that (c)
works, we just have to observe that

tjqi = (tjSjtj^tiSi) = tjA{i,j)Sjtj = A(i,j)tj,

and we can therefore reduce any word to one of the form

LEMMA 2 . 4 . For every element x OICA there is an element y satisfying yxy = y
and xyx — x; indeed, if x = sllqxtV) we can take y = svqxtp.

PROOF: Use Lemma 2.3 to write x = s^qxtv, and take y as suggested. Then

yxy = svqx(qnk)qx{qvm)q\tp by Lemma 2.3(b)

= s>'9vmqxqliki^ since the qi commute

= Svixtti-

Since the situation is completely symmetric, the same argument gives xyx — x. u

PROPOSITION 2 . 5 . For any zero-one matrix A, the Cuntz-Krieger semigroup
CA is an inverse semigroup in which aj = t;.

PROOF: Take H = C n + 1 © I2, let Pt be the projection onto the subspace of I2

spanned by {ci+fcTl : k £ N } , and let Qi be defined by

Qi(*,t)=

where 2} is z with the ith co-ordinate replaced by 0. Let 5,- be a partial isometry with
initial space Qi(H) and range space Pi(H) - defined, say, by viewing (z,£) G Qi{H)
as a sequence
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and writing this sequence in the slots labelled i + kn for k € N. Since it is easy to check
that the operators Si, T{ = S? satisfy the relations of Definition 2.1, we can define a
representation it: CA —* B(H) by 7r(a<) = Si, 7r(f;) = 5t*. We shall show that n is
faithful; since Lemma 2.4 shows that each n(x) is a partial isometry and Lemma 2.3
that IT(CA) is a "-subsemigroup of B(H), this will establish the result by ([9], 1.1).

We first show that s^qxty ^ 0 implies ^{s^qxtv) ^ 0. By Lemma 2.3(b), we have
A(nj,fij+i) = 1 for all j ; thus P^(H) C Qpj+l{H) for all j , and 5M is a partial
isometry with initial space Qnk{H) - in particular, 5M ^ 0. Similarly, ir(tv) = 5* is
a non-zero partial isometry with range space QVm{B). Since QVm(H), Q\(H) and
Q^H) all contain the vector (en + 1 , 0) 6 Cn + 1 @ I2, this means S^QxSt = ir^s^qxK)
is non-zero.

Now suppose that S^QxS; = 5M»QA<5;, ^ 0. We have

range S^QxSl C range 5M = Pn(H), range SM/QA/5;, C P

and Pi(H)±Pj(H) for i ^ j , so fii must equal /i'x. For any i, j we either have
Pj(H)±Qi(H) or P,-(JT) C Qi{H); since 5Ml5M ^ 0, we must have />„,(#) C
and Spj = Q^ 5MJ . Thus

5M1 • • • 5 , M Q A 5; = 5 ^ (SMQAS;) = 5JX

Repeating this argument, and supposing without loss of generality that |/x'| ^ |/x|,
we obtain QxS* = S^/QxiS*, for some shorter multi-index /x". Applying the same
reasoning to SvQx = S^iQx'S^,, yields either (a) Qx — SVIIQXIS^,,, or (b) SviiQx —
Qx> = Q\>s;,,.

Suppose (a) occurs. Then we must have u" trivial, for otherwise

0 / Qx(H) = SvllQx>S

which is impossible since (en+i, 0) belongs to Qx(B) but not to Pi(H) for any i.
Similarly, fi" must be trivial, and we have fi = y!, v = u' and Qx — Qx' • Bu* the
projection of Qx(H) in Cn + 1 completely determines the set {A }̂ (multiplicities are
irrelevant here), so we must have {A*} = {A -̂}, qx = qx> and s^qxtu = s^iqx'tv', as
required. Now suppose (b) happens. Then if i is the last entry in u" , we have QiQx' —
Sv'iQxSfji, and exactly the same reasoning implies that u" is trivial. Similarly, Qx> =
QxSfi.ii implies that the range of Qx> is contained in P^n^H), which is impossible unless
fi." is trivial. Thus Qx> = Qx> and, as above, this implies s^qxtv = s^iqxd^. We have
now shown that TT is faithful, and the result follows. D

We now wish to describe the connection between C*{CA) and the Cuntz-Krieger
algebra OA> which is generated by n partial isometries S,- whose initial and range
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projections Qi, P,- satisfy PjPi = 0 for j ^ i and Qi = £V M}ii)Pj- Now whenever
T is a representation of CA and Si = 7r(si), our condition (c) implies that Q,- ^
}£ • A(i,j)Pj. Our main theorem asserts that, loosely speaking, the element p = 1 —^P«
generates an ideal J of C*(CA), whose structure is independent of the matrix A, such
that the quotient C*(CA)/I is isomorphic to OA- For the last part to make sense,
we have to assume that A satisfies condition (J) of [7], which ensures that OA is
independent of the choice of partial isometries Si ([7], 2.13); for other A, we suggest
that C*(CA)/I could be used as a good analogue of OA- The proof of our theorem
is based on that of ([6], 3.1), which deals with a similar problem for the case where
A{i, j) = 1 for all i,j (see Remark 2.7).

THEOREM 2 . 6 . T ie elements of the form sa(q-y — J ^ q~tPi)tp span a closed ideal
I in C*(CA), which is isomorphic to the direct sum of at most 2n — 1 copies of the
algebra K of compact operators. If A satisfies condition (I) of [7], then C*(CA)/I is
isomorphic to OA •

PROOF: We shall write p = 1 — ]^P» &n& 3a<liPi0 for the generator
•sa(g7 — ^q-fPi)tfi; although CCA does not really have an identity, this should cause
no problems provided we always multiply p by some q^. If Jo = sj>{saqyptp}, then
Jo is obviously closed under left multiplication by elements of the form s^, and also by
elements of the form <77, since qiSj = A(i,j)sj. A product tvaa can only be non-zero if
either v = (a\, • • • , ctj) for some j < \a\, or a = (i/i, • • • , Vf.) for some k ^ |i/|. Thus
when tvsa ^ 0 we have

{ tviqVkq-yptp for some multi-index v' (if \a\ < |i/|)

qvkq-,ptp (if \a\ - |i/|)

qVisaiq-,ptp for some multi-index a ' (if \a\ > \v\).

The last two certainly belong to Jo, and the first is zero since t,- = Up, implies tip — 0
for any i. Thus Jo is closed under left multiplication by any element s^qxty of CA-

Exactly the same arguments work on the other side, so Jo is an ideal in CCA , and its
closure J is an ideal in C*(CA)-

We next want to show that, for fixed m, the span of {saq^ptp : \a\ ^ m, \/3\ ^ m}

is a direct sum of matrix algebras, and for this we need to decompose the projections
g7p into sums of minimal projections. For each nonempty subset J of {1,2, ••• , n} we
define

Tj =(n*)(n a-*))*
VtgJ / \i(J J

again this makes good sense in CA because the 1 's disappear when we multiply out. The
family {TJ : <f> ^ J C {1, • • • ,«}} consists of 2" — 1 mutually orthogonal idempotents,
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and we claim that every q\p is a sum of rj 's. To see this, we first note that for any
commuting family {z; : 1 ^ i < k} with jfc > 1, we have the formal identity

JC{1,—,*} \<€J / \i£J /

this can be checked by computing the coefficient of each XJC = J\ x,- on the left-hand

side. Thus if A = {Ai, • • • , A/} and {* : i £ A} = {*i,- • • ,»*}, we have

which establishes the claim.

We have now shown that every generator 8aq^ptp for / is a sum of elements of

the form aarjtp. Since r j commutes with each g,-, we have

{

(recall Up = psj = 0)

if /xjfc € J

otherwise.

If we fix J such that rj ^ 0 and set 7J* = {a = (<*!,-•• ,a*) : k ^m,ack G J } , then
the previous calculation with J = K says that

{savjt0 : a, p e IT}

is a complete set of matrix units; their span is an algebra A(m,J) isomorphic to
m

Af(ny, C), where rij = £ n*"1 \J\ is the number of elements in IJ. For fixed J, we
*=i

oo
have A(m, J) C A{rn + 1, J), and (J A(m, J) is a subalgebra of / whose closure Aj

m=l

is isomorphic to K. The above calculation also shows that A[m, J)A{1, K) = 0 unless
J = K, and since ^,A(m,J) = 70 is dense in J , it follows that I is the C"*-algebraic
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direct sum ®{Aj : rj ^ 0} . Since there are 2 n — 1 nonempty subsets J of {1, • • • , n } ,

this establishes the first part of the theorem.

Now let IT: C*(CA) -* B(H) be a non-degenerate representation with kernel / .

Then for any a , /? we have 7r(t^)(l — E ' K P O ) = 0, and

because a a g a t ( l — E P « ) belongs to I . Since 7r is non-degenerate, it follows that the

projection (1 — E T (P»)) >s zero. For each j , we have ir(qj) ^ S
*(qj)*(Pi) = 0 if A(j,i) = 0; therefore X > ( P < ) = 1 implies ir(g.) =
Thus the algebra n(C*(CA)) = C*{CA)/I is isomorphic to OA by ([7], 2.13). This
completes the proof of the theorem. U

REMARK 2.7. (1) If we try a similar argument for the semigroup On of [17], all the
projections g< = f ;̂ are 1, and the only r j which is non-zero is p = 1 — E Pi > which
occurs when J is all of {1, • • • , n } . Thus for this semigroup, C*(On) contains an ideal
I = K, such that C*(On)/I is isomorphic to the Cuntz algebra On. This is effectively
the argument given in ([4], 3.1), which we have merely adapted to our setting. When
n = 1, the semigroup O\ is the bicyclic semigroup we mentioned at the start of Section
1, and the algebra O\ — C*(Oi)/K is isomorphic to C(T) by Coburn's theorem.

(2) Theorem 2.6 shows that, for fixed n , the only part of C*{CA) which depends
on the choice of A is the quotient OA. In [7, 6] the structure of this algebra, and how
it depends on A, is discussed in detail. In particular, if A is irreducible (in the sense
that for each (i,j) there exists n with An(i,j) ^ 0 ) , and A is not a permutation
matrix, then OA is a simple C*-algebra ([7], 2.14).
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