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Abstract

In this paper we establish the existence of solutions of a more general class of stochastic
integral equation of Volterra type. The main tools used here are the measure of noncom-
pactness and the fixed point theorem of Darbo. The results generalize the results of Tsokos
and Padgett [9] and Szynal and Wedrychowicz [7]. An application to a stochastic model
arising in chemotherapy is discussed.

1. Introduction

The mathematical description of various processes in physical, biological and engi-
neering sciences give rise to random or stochastic integral equations. Theoretical
treatments of such problems can be found in [5,8,9].

The most important problem examined up to now is that concerning the existence
of solutions of considered equations. It is solved mostly by the Banach fixed point
principle, the Schauder fixed point theorem, and successive approximations [5,6,8,9].
In this paper we use the notion of measure of noncompactness in a Banach space
and the fixed point theorem of Darbo type ([1,2]). This approach allows us to
weaken the conditions of [7]. An example of the equation considered in this paper
is in chemotherapy of a two-organ biological system. First, we discuss a stochastic
model for chemotherapy in a single organ biological system. A closed system with a
simplified heart, one organ or capillary bed, was described in Tsokos and Padgett [9].
The heart is considered as a mixing chamber of constant volume, and the recirculation
of blood in the system is with constant rate of flow. Also, it is assumed that the
injection of drug is given at the entrance of the heart producing a known concentration
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in the blood plasma. As the blood flows through the organ the particles of drug are
assumed to enter the extracellular space only by the process of diffusion through the
capillary walls. Bellman, Jacquez and Kalaba [4] developed a deterministic model,
but the concentration of drug in the plasma in given areas of the system is more
realistically considered as a random function of time due to the random nature of the
diffusion process.

The injection is given at the entrance of the heart resulting in a concentration
" / (0 , 0 < t < ti of drug in plasma entering the heart, where t; is the duration of the
injection. Let r > 0 be the time required for the blood to flow from the exit of the
organ to the entrance of the heart. The concentration of drug in plasma entering the
heart at time t > r, uR(t\ w) is a random variable, and is given by

uR(t;w) =

0, t < 0,

0<t<r,

u,(t) + u(e, t — x;w), t>r,

where «/(f) = 0 if t < t,,e is the length of the capillary in the organ, u(e, t\ w) is the
concentration of drug in plasma leaving the organ at time t, and c is the constant flow
rate of plasma in the capillary bed.

The concentration of drug in plasma leaving the heart uL{t\ w) satisfies the integral
equation, see [3,4,9]:

uL(t; w) = (c/ V*) I {uR(s; w) - uL(s; w)) ds, t > 0. (1)
Jo

The concentration of drug entering the organ at time t is given by

M(0, t\w)=\
[uL(t - T;W), t>x.

The concentration of drug leaving the heart uL(t; w) satisfies the semi-stochastic
integral equation

uL(t; w) = G(0 + / * (•*, uL(s; w)) ds, (2)
Jo

where
/•no

G(t)= / (c/V)uL(s)ds, (3)
Jo

0 < t < t,,
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V* is the constant volume of the heart, and

k (s, uL(s; w); to) = - ( c / V*) [uL(s; w) - u(e, s - t; w)].

Tsokos and Padgett [9] proved that a semi-random solution of (2) exists, that is a
deterministic solution in 0 < t < r and a random solution in x < t < M, where
r < M < 00, u < M, whereas Szynal and Wedrychowicz [7] studied the problem
under less restrictive conditions.

Now let us discuss the two-organ biological system. Let uj (s, t; to) denote the
random concentration of drug in organ j at point s in the capillary at time t, for
j = 1,2. Let Cj be the constant volume flow rate of blood in organ j , j = 1 , 2 , and
c = ci + c2. Then c is the total constant-volume flow rate of blood in the system.

The concentration of drug entering the heart uR(t;w) after time T is a random
variable for each t > r, and is given by (refer Tsokos and Padgett [9]):

0, t<0,

uR{t;w)= \u,(t), 0 < f < r , ( 4 )
C\Ut(e, t — r; w) + c2u2(e, t — r;io)

u,(t)+ — ^ - ^ —, r<t<M,
c

where «, (e, t; w) is the concentration of drug in plasma leaving organ j (at the e end)
at time t, j = 1,2, and u/(t) = 0 for t > //.

Substituting (4) in (1), we have

uL(t;w) = -^ I \u,(s)-
v Jo L

-Fjf-«*-Fjf
= G(t) + J2 kj (s, uL(s; to); w) ds, (5)

where kj, (s, uL(s; w); to) = — (c/ V*) [uL(s; w)/2 — CjUj(e, s — r; to)}. We shall
prove that a semi-random solution of (5) exists under milder conditions than those of
Tsokos and Padgett [9]. Note that (5) has a deterministic solution when 0 < t < x.

The aim of this paper is to prove an existence theorem for a more general stochastic
integral equation of the form

ftl /* t

x(t;w) = h(t;w) + y^ Kj(u,x(u;w);w)du, (6)
j=\ Jo

where t > 0 and
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(i) w € £2, the sample space of the complete probability measure space (Q, A, P),
(ii) x (t; w) is the unknown random function for ( e K + ,

(iii) h(t; w) is the known random variable, for t e U.+,
(iv) Kj(u,x(u;w);w) are stochastic kernels defined for 0 < u < t < oo and

w € £2, j = 1, 2, . . . , m.

2. Mathematical preliminaries

We denote by L2(Q, A, P) the space of A-measurable square integrable maps
x(t; w) with

1/2

= (f\x(t;w)\2dP(w)\ .

We now give the following definitions.

DEFINITION 1. We shall call x(t;w) a random solution of the stochastic integral
equation (6) if for every fixed t € K+, x(t; w) € L2(£l, A, P) and satisfies (6).

Throughout this paper X will denote an infinite dimensional real Banach space
with norm || • || and the zero element 0. V(x, r) stands for the closed ball centered at
x of radius r. Denote by Mx the family of all nonempty bounded subsets of X, and
by Nx the family of all relatively compact and nonempty subsets of X.

The following axioms defining a measure of noncompactness are taken from Banas
andGoebel[2].

DEFINITION 2. A nonempty family B c Nx is said to be a kernel (of a measure of
noncompactness), provided it satisfies the conditions
(a) U e B = > U € B;
(b) U e B, V c U, V ̂  0 = > V e B;
(c) U, Ve B=*aU + (l -a)Ve B, a € [0,1];
(d) U e B => Conv U e B;
(e) B c (the sub-family of B consisting of all closed sets) is closed mNc with respect

to the topology generated by the Hausdorff metric.

DEFINITION 3. The function fi : Mx —> [0, +00) is said to be a measure of
noncompactness with kernel B (ker/n = fi) if it satisfies the conditions

(i) n(U) = 0*=* UeB;
(ii) n{U) = n(U)\

(iii) /x(Convf/) =
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(iv) f/C V = > n(U) < n{V);
(v) ii(aU+(l-a)V)<a»(U) + (l~a)(i(V), a € [0, 1];

(vi) if Un € Mx, Un = Unand Un+l c Un, n = 1,2,... , andif l im^/x(Un) =
0, then U = D~ i % * 0-

If a measure of noncompactness fi in addition satisfies the following two condi-
tions:

(vii) fi(U + V) < n(U) + fi(V);
(viii) ii(.aU) = \a\n(U), a e R;
it will be sub-linear.

Let M c X b e a nonempty set and let /A be a measure of noncompactness on X.

DEFINITION 4. We say that a continuous mapping T : M —> X is a contraction
with respect to /i (//.-concentration) if for any set £/ e Mx its image 7{/ e Mx, and
there exists a constant & € [0, 1) such that

We shall use the following modified version of the fixed-point theorem of Darbo
type.

THEOREM 1. Let C be a nonempty, closed, convex and bounded set of X and let
T : C -> C be an arbitrary ̂ .-contraction. Then T has at least one fixed point in C
and the set Fix T = [x € C : Tx = x} of all fixed points of T belongs to ker fi.

Let /?(•) be a positive continuous function defined on [0, oo) such that

lim supp(f) = p0.
T—°° t>T

Let Cp denote the space of all continuous maps;c(f;.) from K+ into L2(Q, A, P) with
the topology defined by the norm

11*11, = sup{/>(Oil*(OIL*: * > 0 } < o o .

The space Cp with norm || • ||p is a real Banach space, see [1].
Now for x e Cp, U e MCp, T > 0 and e > 0, we put

/5T(x, e) = sup { | | p ( 0 * ( 0 - p(s)x(s)\\o : t,se [0, T], \t - s\ < e];

p T ( x , € ) : x e U } ;
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a(U) = Urn supsup||x(/)||t2p(0;
T-KX>

b(U) = lim sup sup {||p(/)*(*) - p{s)x(s)\\Li];
T^°° s,t>T

a(U) +sup{p(Om(t/(O) : t > 0};
sap{p(t)m(U(t))) : t > 0};

where m is a sub-linear measure of noncompactness on MLt^<AtP) and

{je(0eL2(n,A,P): JC e U].

The functions /i0 and Hi define sub-linear measures of noncompactness on Mc- It
is also known that ker fi0 is the set of all sets U e Mc such that the functions belonging
to U are equicontinuous on any compact subset of K+ and

uniformly with respect to x € U. Further properties of /x,0 and /Xi can be found in [1]
and [2].

3. Main results

Now we shall make the following assumptions concerning (6).
Letr € K+be fixed. Weassumethatthefunctions;t(f; tu), h(t;w),and Kj(u, z;w),

j = 1,2,... , m in (6) are real valued, x and h are product measurable on K+ x Q,
and Kj (u, z; u;) are product measurable on l + x I x Q for each z.

Let A(t; w) e Loo(S2, A, P) and

IIIA (/) 111 = P-ess sup | A (r; w) |.
wen

THEOREM 2. Assume that the Junctions Kj, j = 1 ,2 , . . . , m, and h in (6) satisfy
the following conditions:

(i) Kj; : RL+ x R x IR —> K are sub-linear. That is there exists nonnegative
functions Ay and Bj belonging to Loo(Q, A, P) such that \Kj(t,x(t;w);w)\ <
Aj(.t;w)\x(t;w)\ + Bj(t;w),j = 1,2, . . . ,m;

( i i ) M ; = s u p { p ( O / o ' ( l l l ^ ( i i ) | | | / p ( t t ) ) d i i : t e K + } , ; = 1, 2 , . . . , m and

0 < M < 1 w f t e r e M = £ y
m

= 1 M ; ;

( i i i ) Nj = s u p { p ( / ) / 0 ' ( | | | B y ( H ) | | | / / » ( « ) ) d i i : r e R + } , y = 1 , 2 , . . . , m

(iv) lim,
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(v) \im^0Op(t)f^\\\Bj(u)\\\du = 0, j = l,2 m;

(vi) lim,^ p(t)\\Kj(t,x(t)) - Kj(t,y(t))\\L2 = 0, j = 1 ,2 , . . . ,m uniformly

with respect to x andy belonging to V(Q, r), where r = (\\h\\p + N) / ( I — M);

(vii) the mapping z(t;w) -*• Kj(t, z(f,w)) from Cp -*• Cp is continuous in the

topology generated by \\ • \\p, j = 1 ,2 , . . . , m;

(viii) there exist Lj satisfying 0 < L < 1, where 5Z7=i A; = L,

m (J Kj(u, U(u))du\ < Ljm(U(t)),

s > 0, x € U C V(0, r) : /> (Oil* (OIL' < II ^ll,}-

77ie/z f/iere exists at least one solution x e Cp of (6) such that

limp(t)\\x(t)\\L2=0.
I-K3O

PROOF. Define F on Cp by

(FJC)(/; W) = h(t; w) + f^ I Kj («,*(«; w); w) du. (7)
j=\ Jo

FOTX e Cp, by assumptions (i)-(iii) of the theorem, we get

p(t)\\(FxXt)\\L* < Pit) ||A(0IIL> + V f II ̂ - («,x(«)) || L2du\

L ^ ^ J
r

(ll|A,(M)|||//>(M))rfM

that is

\\Fx\\p<\\h\\p + \\x\\pM + N. (8)

Therefore F maps Cp into Cp. Moreover we note that F : V(0, r) -+ V(0, r) for
r = (\\h\\p + N)/(l — M). We now prove that the map F is continuous in the ball
V(0, r). Let x, y 6 V(0, r). By (vi) for any given e; > 0, j = 1 ,2 , . . . , m, we can
choose T > 0 such that

p (0 || Kj (t, x (0) - K, (r, y (0 ) || LJ < cj, when r > T. (9)
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Furthermore, we can assume without loss of generality that there exists T > 0 such

that |||A; (01II > l,j = 1 , 2 , . . . , m, where t > T and

| | |A , | i r = min{| | |A,(u) | | | : 0 < u < T) > 0, j = 1 , 2 m,

Put pT = max{p(«) : 0 < « < T}. We have for t > T

p(t)UFx)(t)-(Fy)(t)\\L2

| du

Kjiu.xiu)) -Ktlu.y{u»\L,du.
jT[JT P\U)

Then we have

supp(0H(^)(0 - (Fy){t)\\L2 < V [ r - — 1 - + ej] (10)

whenever \\x — y\\ < S. Also for ely- > 0 we have

s u p p ( t ) \ \ ( F x ) ( t ) — (Fy)(t)\\Li < / f i y w h e n e v e r H* — y \ \ p < 8. ( 1 1 )

Hence, by (10) and (11), for given e > 0, ||FJC — Fy\\p < e whenever ||JC — y||p <
8, x,y 6 V(0, r). Therefore F is continuous on the ball V(0, r).

Let e > 0, T > 0 be given and ( ,$e [0, T], \t - s\ < e. By (7) for 0 < s < t and
x e U C V{0, r), we have

\\p«)(Fx)(t)-p(sHFx)(s)\\L2
<\p(t)-p(s)\\\h(t)\\L2+p(s)\\h(t)-h(s)\\L2

f Kj(u,x(u))du\ +P(t)ir\[ Kj(u,x(u))du
J0 II/.2 > = 1 WJs

By using (i)

\p(t)~p(s)\ [' Kjiu,
Jo

x(u))du\\

+ max{|||fiy(M)|||:0<M<r}].
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Similarly we get

Pis)

Stochastic Volterra integral equations

Kj(u,x(u))du

<\t- s\p(s) (rmax{\\\Aj(u)\\\p(u) : 0 < u < T}

(M) : 0 < u < T}).

101

(14)

We need to recall the definition of the modulus of continuity which is defined for all
real functions u as

vT(u;e) = sup{\u(t)-u(s)\:t,se[O,T],\t-s\<e}, e > 0. (15)

Now, by the properties of p, h and (15), we get

\imvT(h;€) = 0, j = 1, 2, . . . , m, \\mvT{p;e) = 0. (16)

Therefore by (12) to (14) and (16) we get for U c V(0, r)

Fix now U C V(0, r). We prove that

a(FU)<Ma(U).

(17)

(18)

It is clear, by the definition of the integral, that for any given a, > 0 there exists a
positive integer H, = n, (a;) such that, for n > rij,

f |||A;(I0|||(||;C(I0IIWP(M))/>(«)<*«
Jo

-^t/n)\\\Aj{kt/n)\\\(\\x(kt/n)\\o/p{kt/n))p(kt/n)

Let T < t. Put kj. = max{/t : 0 < k < n, kt/n < T). Then we have

< a>.

(t/n)\\\Aj(kt/n)\M\\x(kt/n)\\L2/p(kt/n))p(kt/n)
*=**•+'
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Now for any given a" > 0,

(20)
x max{|||Ay-(n)|||/p(T) : 0 < r < 7 > - ' ]

< a", for sufficiently large n.

Similarly for any given a'" > 0,

h < sup{p(OII*(Olk» : t > T} n / \\\Aj(u)\\\/p{u))du + am) (21)

for sufficiently large n. Therefore, by (19)—(21), we get

m pi

;=1 •'0

s u p { p ( O i l * ( O i k * : ' > ^ J -

(u)\\\du.

Thus, by assumptions (iv) and (v), we obtain

Urn suptsuplptolK^cXOIL* : t > T}}

< (a' + a" + ra'")p0 + M jim^sup {sup {p(OII*(OIU> : ' > ^)) •

Let a' -> 0, a" ^ 0 and a'" -> 0. Then we get (18). Finally by (17) and (18)
we obtain iio(FU) < D/xo(f/) where D = max{M, L). This proves that F is a (j,0
contraction. Now by Theorem 1 the proof is complete.

4. Example

We shall apply the above theorem to (5). Suppose that the function in (5) satisfy
the following conditions:

(i) kj : K+ x R x ft ->• R are sub-linear,

\kj(s,uL(s;w);w)\ < |c/ V*|(|«i (5; io)| + \uj(e, s;w)\),

where Uj(e, s;w) e Loo(S2, A, P),j = 1, 2;

(ii) M = s u p { p ( 0 | c / V | / 0 ' ( l / p ( s ) ) £ f o : r e R + } , 0 < M < 1;
(iii) ty = sup {p(t)\c/ V*\ /0' Hliiy (e, 5)|| | rf5 : r € R+} < 00, N = ̂  + N2;
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(iv) liml^oop(t)\G(t)\ = 0;
(v) l i m ^ 0 0 | c / V | / 0 ' | | | i i y ( e , s ) | | | r f j = Of j = l,2

(vi) Urn,-*,*,p(t)\\kj(t, uL(t)) - kj(t, vL(t))\\L2 = 0 forj = 1,2 uniformly with
respect to uL and vL e V(0, r) where r - (G + N)/{\ - M), G = s\ip{p(t)\G(t)\ :
t e K+};
(vii) the mapping uL(s; w) -*• kj(s, uL(s; w)) from CP(K+, L2(£2, A, P);p) into

CP(K+, L2(Q, A, P);p) is continuous in the topology generated by the norm || • ||p;
(viii) there exists Lj,j = 1, 2, 0 < Lx + L2 < 1 such that

m ( f kj(s, U(s);w)ds\ < L;

U(t) = {uL(s) € L2(V,A, P),s>0,uL e UcV(0,r):p(t)\\ud0\\Li<\\U\\p},

where r = (G + A0/(l - M).

Then by Theorem 2 there exists at least one solution uL e Cp of (5) such that
lim,^oo/> (OH«/.(/) II i » = 0 .

REMARK. Equation (5) corresponding to a two-organ biological system can be
extended to an m-organ biological system which is still more realistic. In an m-organ
biological system, the concentration of drug in plasma leaving the heart uL(t;w),
satisfies the integral equation

uL(t; w) = G(t) + ^2 k' (5>

j=\ Jo

By the main theorem this equation has a solution.
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