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ABSTRACT 

The nonlocal character of the radiation field sinnificantly modi
fies the radiative damping of perturbations in the solar photosphere. 
Gravity waves are not usually considered to exist in the solar photo
sphere because the radiative damping time, when based on the Newtonian 
approximation, is too short. However, this restriction does not apply 
to low order gravity waves. In fact, with the inclusion of nonlocal 
effects, the radiative damping for low order gravity waves becomes 
negative for some region in the photosphere and thus acts as a driving 
mechanism for gravity waves there. 

1. INTRODUCTION 

Several of the features of the observational results reported by 
Stebbins et al. (1980) have been interpreted by Hill (1980) as evidence 
for the existence of gravity waves in the solar photosphere. Penetra
tive convection is an effective driving mechanism for gravity waves. 
This process should copiously produce gravity waves just above the con
vection zone in the solar atmosphere (Stein, 1967). However, the 
analyses of Souffrin (1966) and Stix (1970) using the Newtonian approxi
mation for the radiative damping show that gravity waves cease to exist 
if the radiative damping time, TR, is less than the inverse of the 
Brunt-Vaisala frequency. The radiative damping time is quite small and 
less than the above critical inverse frequency when computed for the 
lower photosphere using the Newtonian approximation. As a result, it 
has been argued on theoretical grounds that gravity waves cannot exist 
in the lower photosphere, although an effective mechanism for their 
generation occurs there. 

In examining the nonadiabatic term in the energy equation describing 
stellar oscillations, Hill and Logan (1980) discovered that the nonlocal 
character of the radiation field contributes significantly to radiative 
damping of wave phenomena in stellar atmospheres. For gravity waves 
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this might resolve the discrepancy between Hill's (1980) interpretation 
of the observational work of Stebbins et al. (1980) and the previous 
theoretical result based on a local analysis. 

2. THE BEHAVIOR OF RADIATIVE DAMPING FOR LOW ORDER GRAVITY HAVES 

The nonadiabatic term in the energy equation contains a factor 
proportional to the mean intensity through which nonlocal effects are 
manifested. Let us consider the perturbation in the mean intensity 
at some point in the optically thin atmosphere of the sun. The per
turbation in the mean intensity will be an intenrai of the Derturbation 
in the source function over the entire atmosphere weighted by a trans
mission factor. If the spatial scale of the horizontal and vertical 
variation of the disturbance is larger than the local opacity scale 
height, distant regions of the atmosphere can influence this integral. 
The value of the perturbation in the mean intensity will then deviate 
significantly from that represented only by a local value of the per
turbation in the source term. 

The perturbation in the mean intensity, J, for an atmosphere 
stratified in the z direction is given by 

2ir TT/2 

4TT 

1 f (to f de •tsece — . „ , PK tane dz (1) 

where K is the mean gray absorption opacity, t is the optical depth de
fined with the mean gray opacity, to is the optical denth of the at
mosphere, S is the integrated (over frequency) source function, and 
the'prime (') indicates the Eulerian perturbation. If we assume the 
horizontal variation in the source function is of the form exp(iknx), 
we can then express the variation in the source function as 

r-1 i l l C Z /o\ 

S = q e e (2) 

where a is a complex number that can be used to model the z deDendence 
of S'. The horizontal variation can then be immediately integrated and 
we can write 

J1 = / q'f(s)ds (3) 
-00 
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and J0 is a zero order Bessel function, H K is the local opacity scale 
height which is a function of z, s is a dimensionless parameter defined 
by 

z/H (5) 

and the point of evaluation for J' is at z = 0. The relationship be
tween the horizontal wavenumber for a wave in the solar atmosphere and 
the i value of the spherical harmonic describing the oscillation is: 

AU + D (6) 

where Re is the solar radius. 
Following the seminal work of Spiegel (1957), we write the local 

radiative damping time for a gray-absorbing atmosphere as 

T 

R V (B1 - J1) (7) 

where Cp is the specific heat at constant pressure. If the horizontal 
and vertical wavenumbers multiplied by the local opacity scale height 
are both less than one, the integrand in equation (3) is not localized 
around the point of evaluation for J'. The dimensionless temperature 
perturbation can be associated with a complex vertical wavenumber g. 
To investigate the effect of the nonlocal aspect of the radiation field, 
we set a equal to the real part of g and expand J' as 

J'(tJ 
r=0 V • 3tr, *,£&) (-t/ Ir _ p (t0,a,a) (8) 

where ti is the optical depth where the maximum contribution to the 
integral of equation (3) occurs, 

r ( t 0 , £ , a ) / f U ^ d s (9) 

and ^p) is a binomial coefficient. In order to integrate equation (9) 
one must, in general, have a relationship between t and s. However, 
when i and a both equal zero, equation (9) can be integrated directly. 
I-n particular, the integral for r equal to zero is 

I°(t ,0,0) = 1 -
E2<V (10) 
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where E2 is the exponential integral given by 

co . 

1 w 

A finite optical depth for the atmosphere is easily seen from equation 
(10) to decrease the magnitude of J'. 

Including only the first term in the series of equation (8), the 
damping time for a gray-absorbing atmosphere in L.T.E. in the low wave-
number regime can be written as 

» 4 (g-a)z, _ 

V " TF e I°(tn,*,a) (12) 
. 0 rl ° 

where OQ is the_Boltzmann constant and Z] is the difference in heights 
between T/| and t0. The typical value of the difference between T/| and 
T 0 is 0.5 with T] being the greater of the two (cf. Hill and Logan, 
1980). Using equation (12) and assuming a constant opacity scale height 
of 90 km with 3 - a equal to zero, the damping times for the solar model 
of Bahcall et al. (1973) can be computed for different z's and a's. 
Figures la through If show the computed damning times for aHK equal to 
0, 0.18, and 0.45 respectively, with 1 equal to 1 and 1000. The damping 
times computed in the Newtonian approximation are also shown for com
parison (represented by the dotted curves). In all of the solid curves 
a prominent region of negative damping times appears. This corresponds 
to amplification of the disturbance. 

3. IMPLICATIONS FOR GRAVITY WAVES IN THE SOLAR ATMOSPHERE 

A gravity wave with a i value less than or of the order of several 
thousand and with |eHK| less than one is far from beina overdamDed in 
the photosphere and in fact should be driven as shown above. The 
growth rate of an oscillation will of course depend on its overall 
damping, but the wave will not be damped out of existence a priori. The 
change in the magnitude of the damping due to the inclusion of nonlocal 
effects not only allows gravity waves to overlap the region of penetra
tive convection, which can mechanically generate the waves, but also 
permits a coupling of the waves through radiative transfer to the 
penetrative convection and to turbulent motion in the convection zone. 

The Newtonian damping time is independent of scale when the non
local aspect of the radiation field is included. However, the radiative 
damping time for small wavenumbers differs qualitatively from that for 
large wavenumbers. Letting the horizontal wavenumber go to infinity to 
derive an effective Brunt-V'aisaTa frequency from the dispersion rela
tion therefore automatically excludes the proper consideration of the 
low wavenumber behavior. 

TR 
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Figure 1. Radiative damping times computed from equation (12) as a func 
tion of optical depth for i = 1 and 1000 and for gHK = 0, 0.18 and 0.45. 
The dotted line represents the Newtonian radiative damping time. 
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An examination of Figures la through If shows that the driving and 
therefore possibly the amplitude of an oscillation both depend on its 
vertical growth rate. This might explain the necessary "anomalous 
boundary conditions" discussed by Hill (1978) in the comparison of the 
long period solar oscillation observations and those of the 5 min modes. 

Another consequence of driving is that the momentum and energy flux 
of an amplified wave must increase. This must show up in the momentum 
and energy budgets of the mean flow. Therefore, if waves which have 
been amplified through their interaction with the radiation field are 
present, we would expect radiative equilibrium to be established at a 
lower mean-field temperature than the local temperature for radiative 
equilibrium without the disturbances. 

The above analysis shows that the Newtonian approximation fails to 
reproduce the qualitative behavior of radiative damping for low order 
gravity waves. One is led to conclude that a local analysis based on 
the Newtonian approximation cannot be used to dismiss the existence of 
gravity waves in the solar photosphere nor used against the interpreta
tion of observations in terms of gravity waves. 

In order to understand the observational properties of pulsations 
in stars other than the sun where radiative damping in the envelope is 
also important, it may be necessary to consider the nonlocal aspect of 
the radiation field. 

This work was supported in part by the National Science Foundation 
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DISCUSSION 

J. COX: How thick in kilometers is the driving region? 
LOGAN: I don't know how T and the depth in kilometers are related. 

We go to log T = - 0.8. 
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