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Abstract In this paper we give a relation between the Futaki invariant for a compact complex manifold
M and the holonomy of a determinant line bundle over a loop in the base space of any principal G-
bundle, where G is the identity component of the maximal compact subgroup of the complex Lie group
consisting of all biholomorphic automorphisms of M . Using the property of the Futaki invariant, we
show that the holonomy is an obstruction to the existence of the Einstein–Kähler metrics on M . Our
main result is Theorem 2.1.
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1. Introduction

Let M be a compact connected complex m-dimensional manifold, H(M) the finite-
dimensional complex Lie group consisting of all biholomorphic automorphisms of M ,
and h(M) its Lie algebra consisting of all holomorphic vector fields on M . A Kähler
metric with Kähler form ω is called an Einstein–Kähler metric if the Ricci form of ω is a
constant multiple of ω. In [4] Futaki defined a Lie algebra homomorphism f : h(M) → C,
which is called the Futaki invariant, and proved that f(X) = 0 for any X ∈ h(M) if M

admits an Einstein–Kähler metric. Let ∇ be a type (1, 0) connection of the holomorphic
tangent bundle TM with its connection form θ and L(X) the gl(m; C)-valued 0-form
defined by L(X) = LX − ∇X for X ∈ h(M). Then, by multiplying a constant factor to
the Futaki invariant in [4], the Futaki invariant is expressed as follows:

f(X) =
∫

M

cm+1
1

(
i

2π
(L(X) + Θ)

)
, (1.1)

where c1 is the first Chern polynomial and Θ is the curvature form of θ (see [5, Propo-
sition 2.3]).

Now let G be the identity component of the maximal compact subgroup of H(M), ϑ

its Lie algebra, and π : P → B any principal G-bundle over a smooth manifold B with a
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connection. Let h be any G-invariant Hermitian metric of TM . Then we can assume that
the type (1, 0) connection ∇ is a G-invariant unitary connection. Let L be the virtual
holomorphic G-bundle over M defined by

L = ⊗m+1(K−1
M − τ), (1.2)

where K−1
M is the anticanonical bundle of M and τ is the trivial complex line bundle over

M with the trivial G-action. Then the metric h and the standard metric of τ define a
G-invariant metric hL of L, and the connection ∇ and the trivial connection of τ define
a G-invariant unitary connection ∇L of L. Moreover, since the complex manifold M

has the natural spinc-structure, the half spinor bundles S± on M are defined and the
L-valued spinc-Dirac (Dolbeault) operator,

DL : Γ (S+ ⊗ L) → Γ (S− ⊗ L),

on M is defined by using the metrics h, hL and the connections ∇, ∇L. Here we can define
a smooth fibration of manifolds F → B with fibre M by F = P ×G M . Since G preserves
all structures defining DL, we can define a locally constant family of spinc-Dirac operators
DF := P ×G DL parametrized by B. Let ζ be the determinant line bundle of the family
DF . Then it is clear that ζ = P ×G K, where K is a one-dimensional complex G-module
defined by K = ∧k((ker DL)∗) ⊗ ∧l ker((DL)∗), where k and l are the dimensions of
ker DL and ker((DL)∗), respectively. Hence, the connection in P defines the connection
of ζ and the holonomy holζ(γ) of ζ around any loop γ in B is defined.

2. Main result

The next theorem is our main result.

Theorem 2.1. Let γ be any loop in B and b any point on γ. Assume that a horizontal
lift of γ in P connects a point p ∈ π−1(b) with the point p exp X ∈ π−1(b) for X ∈ ϑ.
Then the following equality holds:

holζ(γ) = e−2πif(X).

Proof. The strategy for the proof is as follows. First we will give a relation between the
holonomy holζ(γ) and the eta invariant of M ×S1 with respect to a metric corresponding
to the holonomy by using Witten’s holonomy formula. Then we will show that the Futaki
invariant f(X) is equal to the integral of the Chern form on M × D2 whose boundary
is M × S1 by means of direct calculation. We will finally show that the eta invariant is
equal to the integral by using the Atiyah–Patodi–Singer Theorem.

First note that f(X) ∈ R. We can demonstrate this fact as follows. Since both the
G-action and the connection ∇ preserve h, it follows that LXh = 0 and ∇Xh = 0. Hence
it follows that L(X)h = 0, and therefore L(X) is skew-Hermitian with respect to the
metric h and has only pure imaginary eigenvalues, as does Θ. Hence it follows that

f(X) =
∫

M

cm+1
1

(
i

2π
(L(X) + Θ)

)
∈ R. (2.1)
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Now let S1 = R/Z be the circle with coordinate t (0 � t � 1), g0 the metric on S1

which comes from the standard metric on R, W the product space W = M × S1, and
qS : W → S1 the natural projection. Then the horizontal subspace q∗

STS1 of the fibration
qS : W → S1, which is different from the obvious horizontal subspace, is defined by
the vector field Y := X + (∂/∂t), where X ∈ ϑ is identified with the real vector field
corresponding to X. Hence we can define the product Riemannian metric of TW =
TM ⊕ q∗

STS1 by h ⊕ (g0/ε2), where ε is an arbitrary positive constant. Let ζW be
the determinant line bundle of the trivial family DL × S1 parametrized by S1, and let
holζW (S1) be the holonomy of ζW around S1 with respect to the connection in W defined
by q∗

STS1. Since the horizontal curve γ̃ = {(exp sX · p, b + s) | 0 � s � 1} in W connects
the point (p, b) with the point (expX · p, b) for any point (p, b) ∈ W (p ∈ M , b ∈ S1),
holζW (S1) equals exp X|K ∈ C, which coincides with holζ(γ). Hence it follows that

holζ(γ) = holζW (S1). (2.2)

Here the connections ∇, ∇L and the horizontal subspace q∗
STS1 define unitary con-

nections ∇W of TW and ∇′ of the virtual bundle LW := L × S1 over W . Let AW
ε be

the LW -valued self-adjoint Dirac operator on W defined by using the connections ∇W ,
∇′, the metric h ⊕ (g0/ε2), and the spinc-structure of TW defined by the natural spinc-
structure of TM and the unique trivial spinc-structure of TS1, ηW

ε the eta invariant of
AW

ε , dW
ε := dim kerAW

ε and ξW
ε := 1

2 (ηW
ε + dW

ε ). Then the next equality follows from
the Witten’s holonomy formula [3, Theorem 3.16]:

holζW (S1) = lim
ε→+0

(−1)Index(DL)e−2πiξW
ε , (2.3)

where Index(DL) is the Atiyah–Singer index of DL.
Let θW denote the connection form of ∇W . Then we can see that

θW = q∗
W θ + L(X) dt,

where qW : W → M is the natural projection because

∇W
∂/∂tZ = ∇W

Y Z − ∇W
X Z =

d
ds

[exp(−sX)∗Z]s=0 − ∇XZ = L(X)(Z)

for any Z ∈ h(M). Now let I = [1, 2] be an interval with coordinate r, C the cylinder
defined by C = I × S1 = {(r, t) | 1 � r � 2, 0 � t � 1}, and V the product space
V = M × C. Then the boundary of V consists of two components W1 = M × {1} × S1

and W2 = M ×{2}×S1. Let ϕ(r) be a smooth function such that 0 � ϕ(r) � 1, ϕ(r) = 0
for r ∈ [1, 4

3 ], ϕ(r) = 1 for r ∈ [ 53 , 2], and (z1, z2, . . . , zm) a local holomorphic coordinate
on M . Let Y r denote the vector field on V defined by

Y r = ϕ(r)X +
∂

∂t
.
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Then a complex structure JV and a Hermitian metric hV on V is defined by using the
complex structure J and the Hermitian metric h on M as follows:

JV

(
∂

∂zi

)
= J

(
∂

∂zi

)
, JV

(
∂

∂r

)
= εY r,

hV

(
∂

∂zi
,

∂

∂zj

)
= h

(
∂

∂zi
,

∂

∂zj

)
, hV

(
∂

∂r
,

∂

∂r

)
= ε2hV (Y r, Y r) = 1,

hV

(
∂

∂zi
,

∂

∂r

)
= hV

(
∂

∂zi
, Y r

)
= hV

(
∂

∂r
, Y r

)
= 0.

Then we can define a unitary connection θV of TV by

θV = q∗
V θ + ϕ(r)L(X) dt,

where qV : V → M is the natural projection. Note that the restrictions of the metric and
the connection on V to W2 coincide with those of W and hence W2 is identified with W .
Now the curvature form ΘV of θV is computed as

ΘV = dθV + θV ∧ θV = q∗
V Θ + ϕ′(r)L(X) dr ∧ dt (mod dzi ∧ dt),

and hence it follows from (1.1) that

∫
V

cm+1
1 (TV, ΘV ) =

∫
V

(
Tr

(
i

2π
ΘV

))m+1

=
∫

M

(m + 1)
(

Tr
(

i
2π

Θ

))m

Tr
(

i
2π

L(X)
) ∫ 2

1
ϕ′(r) dr

∫ 1

0
dt

=
∫

M

cm+1
1

(
i

2π
(L(X) + Θ)

)
= f(X), (2.4)

where c1(TV, ΘV ) is the first Chern form with respect to ΘV .
Now let U be the product space U = M × D2. Then the product complex structure of

the complex structures on M and D2 define a complex structure on U , which coincides
with JV near the boundary ∂U = W1. We give a rotationally symmetric Hermitian metric
hD on D2 which is a product metric of (1−δ, 1]×S1 near the boundary ∂D2 = {1}×S1 =
S1, where the metric on S1 is g0/ε2. Let θD be the type (1,0) unitary connection of TD2

and ΘD its curvature form. Then the product metric of h and hD define a Hermitian
metric hU on U , which coincides with hV near W1, and the direct sum of θ and θD define
a unitary connection θU of TU , which coincides with θV near W1. Let N denote the
complex manifold with boundary W2 = W defined by gluing U to V along the boundary
W1. Then the metrics hV , hU and the connections θV , θU define a Hermitian metric hN

and a unitary connection θN of TN . We denote by ΘU , ΘN the curvature forms of θU ,
θN , respectively. Let c1(TM) be the first Chern class of TM and [M ] the fundamental
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cycle of M . Then it follows from (2.4) that∫
N

cm+1
1 (TN, ΘN ) =

∫
V

cm+1
1 (TV, ΘV ) +

∫
U

cm+1
1 (TU, ΘU )

= f(X) + (m + 1)cm
1 (TM)[M ]

∫
D2

c1(TD2, ΘD) ≡ f(X) (mod Z).

(2.5)

On the other hand, let LN be a virtual bundle over N defined by LN = ⊗m+1(K−1N −
τ). Then the metric hN and the connection θN naturally define a metric and a unitary
connection of LN , whose restriction to ∂N = W coincides with those of LW = LN |W .
Hence, using the metrics, the connections and the natural spinc-structure of TN , we
can define the LN -valued spinc-Dirac operator as in the previous section. Then since the
restrictions of the metric hN and the connection θN to ∂N = W coincide with those of
TW and hN , θN are products near W , it follows from the Atiyah–Patodi–Singer Index
Theorem (see [2, (4.2)] and [1, (4.3)]) that∫

N

ch(LN , ΘN ) Td(TN, ΘN ) ≡ ξW
ε (mod Z), (2.6)

where ch(LN , ΘN ) is the Chern character form of LN and Td(TN, ΘN ) is the Todd form
of TN . Here, since

ch(LN , ΘN ) = {ch(∧m+1TN, ΘN ) − 1}m+1 = cm+1
1 (TN, ΘN )

and the leading term of Td(TN) is equal to 1, it follows from (2.5) and (2.6) that

f(X) ≡ ξW
ε (mod Z). (2.7)

Moreover, since the Futaki invariant does not depend on the choice of ε, it follows from
(2.2), (2.3) and (2.7) that

holζ(γ) = (−1)Index(DL)e−2πif(X). (2.8)

Here it follows from the Atiyah–Singer Index Theorem (see [1, (4.3)]) that

Index(DL) = ch(L) Td(TM)[M ]

= (c1(TM) + higher-order terms)m+1(1 + · · · )[M ] = 0, (2.9)

and hence it follows from (2.8) that

holζ(γ) = e−2πif(X).

This completes the proof of Theorem 2.1. �

The next corollary is an immediate consequence of Theorem 2.1 and the main theorem
in [4].
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Corollary 2.2. holζ(γ) = 1 for any loop γ in B if M admits an Einstein–Kähler
metric.

Remark 2.3. Let π : EG → BG be the universal G-bundle with the universal connec-
tion. Then, for any g = expX ∈ G, there exists a loop γg in BG such that a horizontal
lift of γg connects a point p ∈ π−1(b) with the point p · g ∈ π−1(b). Hence it follows from
Theorem 2.1 that holζ(γ) = 1 for any loop γ in BG if and only if f(X) ∈ Z for any
X ∈ ϑ, which is equivalent to the condition that f(X) = 0 for any X ∈ ϑ. On the other
hand, it is known (see [6, Theorems 5.1, 5.2]) that M does not admit an Einstein–Kähler
metric unless the Lie algebra h(M) coincides with the complexification of ϑ or ϑ itself.
If h(M) coincides with the complexification of ϑ or ϑ itself, f(X) = 0 for any X ∈ ϑ if
and only if f(X) = 0 for any X ∈ h(M).

Let ϑp be the Ad(G)-invariant dense subset of ϑ consisting of the elements X such that
exp X is periodic and Ωp(B) the set of loops in B whose horizontal lifts connect a point
p ∈ π−1(b) with the point p · exp(X) ∈ π−1(b) for X ∈ ϑp. Then the next proposition
follows from [7, Theorem 1.4] and (2.9).

Proposition 2.4. Assume that γ is an element of Ωp(B). Then the following equality
holds:

holζ(γ) = exp
2πi
p

p−1∑
k=1

1
e−2πik/p − 1

Index(DL, gk),

where p is the order of g := expX and Index(DL, gk) is the Atiyah–Singer index of DL

evaluated at gk (see [1]).

Since Index(DL, gk) is computed by using the holomorphic Lefschetz theorem (4.6)
in [1], the holonomy holζ(γ) is computed concretely for γ ∈ Ωp(B).

Example 2.5. In this example we compute the holonomy for the complex manifold
introduced in [4]. Let Hi denote the hyperplane bundle over CP i and M the total space
of the projective bundle P (E) of the vector bundle E = π∗

1H1 ⊕π∗
2H2 over CP 1 ×CP 2,

where πi is the ith factor projection. Then the factor group P (GL(2;C) × GL(3;C)) of
GL(2;C) × GL(3;C) by the centre of GL(5;C) is isomorphic to the identity component
of H(M), hence h(M) is the complexification of ϑ, and M does not admit an Einstein–
Kähler metric (for details, see [4, § 3]). Now let π : EG → BG be the universal G-bundle
with the universal connection. Then, for any g ∈ G there exists a loop γg in BG such
that a horizontal lift of γg connects a point p ∈ π−1(b) with the point p · g ∈ π−1(b).
Here let X be an element of ϑp represented by the diagonal matrix with diagonal entries
(2πi/p, 2πi/p, 0, 0, 0) and set g := expX, which is an element of P (GL(2;C)×GL(3;C))
represented by the diagonal periodic matrix of order p with diagonal entries (α, α, 1, 1, 1),
where α := exp(2πi/p) is the primitive pth root of 1. Then the fixed-point set Ω(k) ⊂ M

of the gk-action is independent of k and coincides with the disjoint union of the two
components N1, N2, which are isomorphic to the base space CP 1 ×CP 2 of E and whose
normal bundles in M are isomorphic to π∗

1H1, π∗
2H2, respectively. Set x = c1(H1) and

y = c1(H2), which are the positive generators of H2(CP 1) and H2(CP 2), respectively.
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Then we have

c1(K−1
M |Ni) = c1(TM |Ni) = c1(TNi ⊕ π∗

i Hi) =

{
3x + 3y (i = 1),

2x + 4y (i = 2).

Let [Ni] denote the fundamental cycle of Ni. Since gk acts on π∗
1H1, π∗

2H2 via multipli-
cation by α−k, αk, respectively, it follows from [1, (4.6)] that

Index(DL, gk) = (α−kec1(K−1
M |N1 ) − 1)5(1 − αke−c1(π∗

1H1))−1 Td(TN1)[N1]

+ (αkec1(K−1
M |N2 ) − 1)5(1 − α−ke−c1(π∗

2H2))−1 Td(TN2)[N2]

= xy2 coefficient of

(α−ke3x+3y − 1)5(1 − αke−x)−1
(

x

1 − e−x

)2(
y

1 − e−y

)3

+ (αke2x+4y − 1)5(1 − α−ke−y)−1
(

x

1 − e−x

)2(
y

1 − e−y

)3

= (1 − α−k)(2α−k − 245α−2k + 1699α−3k − 2176α−4k)

+ (1 − α−k)(2541α5k − 2034α4k + 306α3k − 3α2k).

Hence we have

p−1∑
k=1

1
α−k − 1

Index(DL, gk)

≡ 2 − 245 + 1699 − 2176 + 2541 − 2034 + 306 − 3 = 90 (mod p),

because
p−1∑
k=1

αµk ≡ −1 (mod p)

for any integer µ. Therefore it follows from Proposition 2.4 that

holζ(γg) = α90,

which is not equal to 1 unless p is a divisor of 90. Hence it follows from Corollary 2.2
that M does not admit an Einstein–Kähler metric.
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