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LOW, COMPUTABLY ENUMERABLE SETS HAVE
HYPERHYPERSIMPLE SUPERSETS

PETER CHOLAK., RODNEY DOWNEY"“, AND NOAM GREENBERG

Abstract. A longstanding question is to characterize the lattice of supersets (modulo finite sets),
L*(A), of a low; computably enumerable (c.e.) set. The conjecture is that £*(4) = £*. In spite of claims
in the literature, this longstanding question/conjecture remains open. We contribute to this problem by
solving one of the main test cases. We show that if c.e. 4 is low, then 4 has an atomless hyperhypersimple
superset. In fact, if 4 is c.e. and low,. then for any X3-Boolean algebra B there is some c.e. H O A such
that £*(H) =~ B.

§1. Introduction. The concern of this article is the interplay of two fundamental
structures arising in classical computability, the lattice of computably (recursively)
enumerable (c.e.) sets and Turing reducibility <z. Turing [18] defined 4 <7 B as
the most general notion of reducibility between problems coded as sets of non-
negative integers. Reducibilities give rise to partial orderings which measure relative
computational complexity. In the classic paper [11], Post suggested that the study
of the lattice of c.e. sets was fundamental in computability theory. In the words of
Soare [17, p. viii]

“Post [11] stripped away the formalism associated with the
development of recursive function theory in the 1930’s and revealed
in a clear informal way the essential properties of r.e. sets and their
role in Godel’s incompleteness theorem”.

Computably enumerable sets are the halting sets of Turing machines, i.c., the
domains of partial computable functions. They thus represent natural “semi-
decidable” problems, such as instances of Hilbert’s 10th problem, the Entschei-
dungsproblem, the Post Correspondence Problem, sets of consequences of formal
systems, and many others.

The interplay of these two basic objects, Turing reducibility and c.e. sets, has along
and rich history. The c.e. sets under union and intersection form a lattice, denoted by
£, and a common object of study is £*, which is £ modulo the congruence =*, where
A =* B means that the symmetric difference of 4 and B is finite. The Turing degrees
of c.e. sets form an upper semilattice, denoted by R. Ever since the groundbreaking
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paper of Post, there has been a persistent intuition that structural properties of c.e.
sets have reflections in their degrees, and vice versa. In particular, definability in £
should be linked with information content as measured by Turing reducibility.

The simplest possible illustration of this is the fact that the complemented
members of £ are exactly the members of 0, the degree of the computable sets.
One of the main avenues of attack has been to link properties of c.e. sets with the
jump operator, 4’ = {e | ®4(e) |}. the halting problem relative to A. The jump
operator gives one way of understanding information content of members of R.
A deep example is Martin’s result [10] that the Turing degrees of maximal sets are
exactly the high c.e. Turing degrees. Here a c.e. set A4 is high if @ =1 A’, i.e., if
the jump operator does not distinguish between 4 and the halting problem ©'.
A coinfinite c.e. set 4 is maximal if it represents a co-atom in £*, that is, if for every
ce.set W D A, either A=W or A ="N.

On the other hand, we call 4 low if A’ =1 &', that is, if the jump operator does
not distinguish between 4 and the computable sets. Such sets have relatively little
information content, so we would guess that low sets should perhaps share some
properties with the computable sets.

This intuition has seen many realizations in the study of the Turing degrees of
low c.e. sets. One such example is Robinson’s [12] result that if we have c.e. sets
B <7 A with B low, then we can split A = A; LI A, as two c.e. sets with 4; & B
Turing incomparible with 4, @ B. This result shows that splitting and density can
be combined above low c.e. degrees, something that, famously, Lachlan [8] showed
fails in general.

How is this intuition reflected in the properties of low c.e. sets in £*? Soare
[16] showed that if 4 is low then £*(A4) = £*. Here £*(A) denotes the lattice
of c.e. supersets of 4 modulo =*. Thus it is impossible to distinguish 4 from
O using properties of its lattice of supersets. We remark that Soare proved that
the isomorphism is effective in that there are computable function f and g with
We = Wy, (from £*(4) to £*) and W, — Wy, for the return map. inducing the
isomorphism.

Note that Martin’s Theorem says that if a c.e. degree is high then it contains a
maximal set 4. If 4 is maximal then £*(A4) is the two-element lattice—as far as
possible from £*. It is natural to wonder what level of computational power for
degrees stop c.e. sets with those degrees from resembling computable sets. A natural
demarcation seems to be at low;. Recall that a set A is low; if the double jump does
not distinguish between 4 and the computable sets: A” =1 @”." Shoenfield [13]
proved that if a c.e. Turing degree is not low,, then it contains a c.e. set B that has
no maximal superset. Hence, in particular, £*(B) % £*. It follows that if there is a
collection 7 of degrees characterized by their jumps, such that deg(4) € J implies
L*(A) = £*, then J must be a subclass of the low, degrees.

Maass [9] extended Soare’s result to prove that for a c.e. set 4, £*(A) is effectively
isomorphic to £* if and only if 4 is semilow, 5. Here a c.e. set 4 is called semilow 5
if {e: W, C* A} is Z,. Being semilow; s is a “pointwise” variation of lowness. It is

'Indeed the reader should recall that, more generally, a set A is low,, if A™  the pth jump of A4, is as
low as possible: 4 = @) equivalently, A, = A;‘H; and a A, set 4 is high,, if its n'" jump is as high

as possible: 41 = @D equivalently, A4, = Aﬁﬂ.

https://doi.org/10.1017/js1.2025.10146 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2025.10146

LOW, COMPUTABLY ENUMERABLE SETS HAVE HYPERHYPERSIMPLE SUPERSETS 3

known that a c.e. degree that is not low contains a c.e. set which is not semilow; s.
In particular, there are low, sets which are not semilow; 5 (Downey, Jockusch, and
Schupp [3, Theorem 1.5]).

The following conjecture has been around for some time.

CoNIECTURE 1.1 (Soare and others). If 4 is a coinfinite low, c.e. set then
L*(A4) 2 E*.

This conjecture is stated as an open question in Soare [17]. We remark that
Conjecture 1.1 has been claimed as a theorem in several places, notably as being
due to Harrington, Lachlan, Maass, and Soare as stated in Harrington—Soare
[5. Theorem 1.8], as well as in lectures by Soare in the late 1990s. But despite
the best efforts of computability-theorists in the last 30 or so years, no proof has
appeared, so it is surely an open question by this stage.

Notice that for this conjecture to hold, we must need some other method of con-
structing the isomorphism than an effective isomorphism. Likely if Conjecture 1.1
is true, then methods along the lines of the powerful A; methods introduced by
Soare and Harrington [5] or Cholak [1] will likely be needed. Cholak [1] gave some
partial evidence for the validity of the conjecture by showing that every semilow,
c.e. set with the outer splitting property has L*(A) = £*. 1t is not important for our
story what these properties are, save to say that they give weaker guessing methods
than semilow, s-ness, but which are sufficient given the A3 isomorphism method. In
this article we make a modest contribution supporting Conjecture 1.1. We will soon
explain what we mean by guessing, and how our work fits into the programme of
establishing the conjecture.

Lachlan [6] proved that if 4 is low, then 4 has a maximal superset (i.e., £*(4)
contains a co-atom). This is currently the strongest general result about all low; c.e.
sets. It is likely not too difficult to modify Lachlan’s technique to extend this result
to k-quasimaximal sets, c.e. sets which are the intersections of exactly & maximal

sets, by simultaneously constructing k& maximal supersets M, ..., M} of 4 such
that M; #* M; for i # j. If Q is k-quasimaximal then £*(Q) is a k-atom Boolean
algebra.

Lachlan [7] proved that L£*(A) is a Boolean algebra if and only if it is
hyperhypersimple. Hyperhypersimple sets were defined, if not constructed, by
Post [11]. Recall that a coinfinite c.e. set A is called simple if its complement
A =N \ 4 contains no infinite c.e. subsets. A much stronger property is that 4
is hyperhypersimple, which is defined as there being is no collection of infinitely
many finite, pairwise disjoint, uniformly c.e. sets, such that each element of the
collection intersects the complement of 4. However, Lachlan’s characterisation in
terms of Boolean algebras is used more often. A hyperhypersimple set A4 is atomless
if £*(A) is the atomless Boolean algebra. In a talk in 2006, Cholak pointed out the
next test case for the low, conjecture: atomless hyperhypersimple sets. In this article
we affirm Cholak’s conjecture.

THEOREM 1.2. Every coinfinite low, c.e. set has an atomless hyperhypersimple
superset.

We now try to explain why this is an important test case for the full low, conjecture.
By necessity, this explanation is somewhat technical as it revolves around issues of
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As guessing and arguments akin to those of the deep paper [5] by Harrington and
Soare.

The reader might recall Friedberg’s [4] construction of a maximal set M. For
each e, we need to ensure that if W, O M, then either W, =* M or W, =* N,
whilst still keeping M coinfinite. At each stage s we will have listed in order the
elements of the complement ME = {b;, | i € }. To make M coinfinite, we make
sure that for each e, lim; b, ; = b, exists. For the maximality requirement, the idea
is to make, for all n > e, the n'™ member of the complement of M a member
of W,, as follows. Assuming that b, , ..., b, 15 € W, but b, & W, 1, if we see
some x = by, € W, for m > n, we make x = b, ;.| by enumerating the elements
buygs... by 15 Into My, causing b, ;1 € W,. If this happens for each n > e then
W, UM =* N. On the other hand, if we fail to keep finding such b,, ;, from some
point n onwards, then W, U M =* M.

Of course, we have to worry about differing requirements putting things into M
since W, might want to make b, ; € W,, and some other W, might want to put
this into M to cause b,; € W,,, so we need some way to reconcile such conflicting
requests. This is done using the Friedberg-Muchnik priority method. In modern
terminology, if ¢’ > e, then the requirement dealing with W,, will guess the eventual
behaviour of W, and therefore be able to align with it: either wait for elements of M©
to enter W,, before attmepting to find elements of the complement in W,,; or only
start acting at a stage after which no more elements of M C enter W,. To implement
this, Friedberg’s brilliant idea was using e-states.” The e-state of b at stage s is the
binary string that records the indices d < e such that b € W, . Friedberg’s idea is
to put, for each n > e, b, into the lexicographically maximized e-state. This means
that almost all of the complement of M will be in the same e-state, and hence be in
W, or out of W,. In our constructions below, we use the modern tree-of-strategies
terminology, rather than explicitly using e-states. However, the notion of e-states
appears necessary when constructing isomorphisms of lattices of c.e. sets, and so
will be useful for the current discussion.

Suppose that we try to emulate Friedberg’s method to construct a maximal
M D A, where the opponent is controlling the c.e. set A. It is within the opponent’s
power to take elements from the complement M ? such as b;,, and declare that
they are in M, since they are in 4., and M O A. The danger in implementing the
strategy above for dealing with W, is that we could believe that we see infinitely
many elements of M in W,, and keep dumping elements not yet seen in W, into
M. but then the elements of W, go into A. This would result in M being cofinite.
We should think of the elements of 4 as “phantom elements”, ones that shouldn’t
really be considered, except that we cannot know this in advance. The way around
this is for the requirement to guess whether there are infinitely many numbers that
arein W, and notin 4, i.e., if W, \ 4 is infinite. This statement is I1,(A4); since 4 is
low,, this means that this statement is As.

Lachlan’s proof in [6] (see also [17, Theorem XI.5.1]%) is a reasonably delicate
construction that uses a version of A; guessing. Lachlan’s original proof seemed

2Thus, in effect, the e-state method is a forerunner of infinite injury arguments.
3This is the notorious “blondes and brunettes” construction in Soare.
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ad hoc and combinatorial. As part of our article we give a new thematic proof of
Lachlan’s Theorem based around Az guessing on an w-branching priority tree. As
both the “yes” and “no” answer to the question whether W, \ 4 is infinite are X;
(as A3 = X3 N I13), the outcomes are pairs (“yes”, n) and (“no”, n), where #n is the
witness for the X3 predicate holding. When considering more than one requirement,
we are guessing the answers for a Boolean combination of I1,(4) questions; but
these too will be A3, so will be subject to the same guessing procedure. A; priority
arguments are much less common in computability theory than the usual infinite
injury arguments (such as the Thickness Lemma, or the Minimal Pair argument)
which can be performed on finitely branching trees. Harrington and Soare [5],
Downey and Greenberg [2], and Shore and Slaman [14, 15] are some examples of
Az arguments.

The method of A3 guessing does not appear to be sufficient for results stronger
than the construction of a maximal superset. Suppose that we are trying to show
that £*(A4) = £*. For each e and each e-state g, we need to ensure that infinitely
many elements of N have e-state ¢ (with respect to the list of c.e. subsets of N) if
and only if infinitely many elements of A have e-state o, with respect to a listing
of the c.e. supersets of 4. The e-states correspond to measures of intersections and
non-intersections of c.e. sets.

The method of Aj guessing will allow us to correctly guess which e-states we
should try to fill. But now we have the more complicated task of actually finding
potential elements and enumerating them into the correct sets, so that we can match
e-states as required. The difference between the maximal set construction and the
more general construction is that in the former, for each e, there will be exactly one
e-state that we need to populate. So there, the only difficulty is in guessing which
e-state will be populated; once this is decided, all elements of the complement of M
will be enumerated into the same sets (as usual, except for finitely many). If there
are more than one e-state to populate, say o and 7, then given an element b that at a
stage s seems to be in the complement of the set we are building, we need to decide
whether to enumerate b into sets so as to make the e-state of b either ¢ or 7. We need
to ensure that both ¢ and 7 will be populated by infinitely many “true” elements,
elements that are not in 4. The question is whether given such b at stage s, should
we believe that this is the true situation, and, moreover, what do we do if we act on
false beliefs?

The key to all proofs we mentioned (Soare, Maass, Cholak, etc.), where £*(A4)
is shown to be isomorphic to £* is some kind of guessing procedure to understand
when elements seem to be truly outside 4. If 4 is low, semilow, or even semilow; s we
have a “pointwise” testing process where we can guess whether individual elements
are in A°, and get the answer more-or-less immediately. For example, suppose that
A is low. Then using, for example, the Robinson trick, we can ask 4’, and hence
@', whether some z € AE (in some desirable e-state) is actually outside 4, and must
eventually get a true “yes” if there are infinitely many such potential z. In his proof
that semilow; 5 c.e. sets have lattices of supersets effectively automorphic with £* [9],
Maass points out that indeed, it is not enough to know that there are infinitely many
elements in some state, but we also need to capture them. Maass’s outer splitting
property, mentioned above, is an elaboration on the low guessing technique, that
works if 4 is semilow s.
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The key problem appears to be that of splitting e-states. For some e-state o, we have
somehow guaranteed that infinitely many true elements (elements outside 4) have
e-state . Suppose that A; guessing tells us that both ¢°0 and 6”1 are (e + 1)-states
that need “filling”. In the construction, we are given an infinite set £ of elements
in state o, and we know that infinitely many of these are outside 4. The problem is
to split E into two sets Ey and E|, while ensuring that both Ey \ 4 and E; \ 4 are
infinite. We would then enumerate the elements of E; into the (¢ 4+ 1)™ c.e. superset
of A, making them have (e + 1)-state ¢"1, while keeping the elements of E, outside
that set, making them have (e + 1)-state ¢"0. This is precisely what is required in the
construction of an atomless hyperhypersimple superset. As Cholak pointed out.*
the dynamics of Lachlan’s construction do not seem to be modifiable to obtain this.

In our main construction in Section 3, we introduce a novel method for performing
this splitting. This method does not rely solely on Aj guessing; we also use
domination properties of low, sets, namely, the fact that if 4 is low,, then there
is a @'-computable function that dominates all functions computable from 4.

To end this discussion, we should mention why our new technique does not
seem to immediately solve the original problem of showing that £*(4) = £*. The
issue is very delicate, and as is often the case, relies on discrepancies in timing.
When constructing an atomless hyperhypersimple superset H, we are, in some sense,
controlling the supersets of H, which means that all e-states have equal status (this
is by necessity an imprecise simplification). When constructing an isomorphism, the
opponent has within their power to shift elements from one e state to another. There
is a difference between what are colloquially known as “low” and “high” e-states.
The opponent can move elements from low to high e-states. Unlike the low guessing
construction, or the construction relying on the outer splitting property, our splitting
method is not immediate: we have to wait an unknown amount of time until we get a
certification that certain elements are outside 4, and for finitely many elements, such
certification may never happen. While we are waiting for certification, the opponent
will shift elements outside a desirable low state. With our new splitting method,
we are thus able to split high states, but not low states. In the hyperhypersimple
construction, all states are high.

In addition to Lachlan’s characterisation of hyperhypersimple sets, he also
classified the isomorphism types of the resulting Boolean algebras: he showed that
the Boolean algebras £*(A4) for hyperhypersimple sets 4 are precisely the £3-Boolean
algebras—quotients of the computable, atomless Boolean algebra by X3 ideals. We
show in this article that Theorem 1.2 can be extended to obtain all such algebras as
the lattice of supersets of a superset of any given low; c.e. set.

THEOREM 1.3. Suppose that A is a coinfinite, low; c.e. set. Let B be a X3 Boolean
algebra. Then there is a c.e. superset H D A with L*(H) = B.

§2. Maximal supersets. As mentioned above, in order to present our proof of
Theorem 1.2, it would be useful to first give a “modern” or at least “thematic” proof
of Lachlan’s theorem, using A3 guessing on a priority tree.

TueoreM 2.1 (Lachlan [6]). Every low, coinfinite c.e. set has a maximal superset.

4As did Maass in unpublished handwritten notes from a seminar.

https://doi.org/10.1017/js1.2025.10146 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2025.10146

LOW, COMPUTABLY ENUMERABLE SETS HAVE HYPERHYPERSIMPLE SUPERSETS 7

2.1. Discussion. We are given a coinfinite, low; c.e. set 4; we enumerate a maximal
ce.set M DO A.

This proof follows, to a certain extent, the A; automorphism machinery of
Harrington and Soare [5]. The construction is performed on a tree of strategies,
similarly to many infinite injury priority arguments. Nodes on the tree represent
guesses about the eventual behaviour of some aspects of the construction, and
use their guesses to meet a requirement that they are assigned to. In the current
construction, nodes of length e + 1 make guesses about how the e c.e. set W,
interacts with the construction, and attempt to meet the e maximality requirement:
either W, UM =*N, or W, UM =* M. We will identify a true path, the path of
nodes whose guesses are correct; nodes on the true path will be successful in meeting
their requirements.

In some ways, though, the usage of the tree of strategies is quite different from
most constructions. For one, at a stage s of the construction, we do not define a
path of “accessible” nodes, those whose guesses appear to be correct at that stage.
Further, there will not be much explicit interaction between strategies: they will
not impose restraint, or cause initialisation of other strategies. We will not use the
terminology of relative priority.

More importantly, we use the tree as the hardware of a pinball machine. We view the
priority tree as growing downwards; so the root of the tree is the “top” node. During
the construction, we place some balls at the root of the tree. These balls represent
numbers that at a stage s of the construction are not in 4, (the stage s approximation
to the given c.e. set 4). At any given stage, there will be only finitely many balls on
the machine, but we will ensure that every element of the complement A® of 4 is
placed on the machine at some stage. Once placed at the root, we allow balls to move
between nodes on the tree. Some balls may be enumerated into M, at which time they
are removed from the machine. This includes all the elements of A4, since 4 C M.
We will ensure that balls that are never enumerated into M only move during finitely
many stages of the construction, so they eventually arrive at a permanent “resting
place”. The main mechanics of the construction are the determination of which balls
move, where they move to, and which balls are removed from the machine.

We remark that the term “pinball machine” was earlier used by Lerman, to
organise priority arguments (often used for embedding lattices into the c.e. degrees).
The Harrington—Soare pinball machine, that we use here, is different in that the
balls move from the root to other nodes, which is an opposite direction to Lerman’s
machines.

As mentioned in the introduction, another aspect of the Harrington—Soare
machinery is the employment of As-guessing. This is the main way that we use,
in this construction, the assumption that 4 is lows. In a typical I1, argument (such
as the minimal pair construction), during the construction we guess the outcome of
IT, questions based on what we see at each stage. In the current construction,
we ask more complicated questions, namely, I1,(4) questions, and we use the
fact that IT1,(A4) C Asz. Rather than observing the construction and making guesses
accordingly, we are given an approximation to the answer to a Az statement, that
may or may not be aligned with what is measured at a given stage; we just know that
in the limit, the approximation will give us the correct answer. As we shall detail
below, we will rely on the recursion theorem to ensure that we indeed approximate
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the correct answers. The guessing process for A; facts is more complicated than
that of I, facts. Namely, to guess membership in a Az set S, we need to guess an
answer (n € S or n ¢ S), and to guess an existential witness for the X3 predicate
being guessed. This implies that the tree of strategies needs to be infinite-branching.

2.1.1. The requirements. Let us consider now the goals of the construction. As
discussed, the balls that are never removed from the machine will be precisely the
elements of MC. Each such ball will eventually settle as a “resident” of some node
S on the tree. For a node a on the tree, we will let Y (o) denote the collection of
balls which are permanent residents of nodes f = «. The rules about ball movement
will ensure that Y («) is a d.c.e. set. To enter Y (), a ball x will need to first pass
through «. i.e., be a resident of « at some stage. It may later move to extensions of
. It is possible that it will be removed from Y («) by being pulled by some node,
that lies to the left of o on the tree. In any case, balls can be removed from Y (o)
by enumerating them into M. We will ensure, however, that Y () U M is in fact a
c.e. set, though not uniformly in «. This is because either only finitely many balls
outside M will ever enter Y («), or finitely many balls outside M ever leave Y (a),
or Y(a) = Q.

We will ensure the following:

(a) For each node f on the true path, Y (8) =* MC. That is, all but finitely many
elements of M will have passed through f at some stage and settled at f§ or
some extension of S, i.e., below f (recall that our trees grow downwards).

(b) For each e, if B is the node on the true path of length e + 1, then Y (p) is
either almost contained in, or almost disjoint from, W,.

(c) We also need to ensure that M is coinfinite.

For (a), we will ensure that only finitely many balls have permanent residence to
the left of f, to the right of 5, or above f.

For (b), we will ensure that either all balls that ever pass through S are already
seen to be in W, when they do, or that we know that only finitely many elements of
W, will ever be available to pass through f. In the first case, the node f will ensure
that all but finitely many balls outside W, will be enumerated into M (we will say
that they are eliminated from the machine).

For (c). we will ensure that infinitely many nodes f on the true path hold on
to balls and ensure that they are not eliminated, i.e.. keep them out of M. Similar
action will ensure that balls indeed only move finitely much, i.e., they do eventually
settle at some node.

2.2. Setup. We now go into the details.

2.2.1. The tree. 'We let the tree of strategies be the collection of all sequences of
the symbols fin, and oco,. These symbols are called outcomes. We write a < f to
indicate that « is a prefix of £.

In addition to extension, we will use the Kleene—Brouwer ordering on the tree. To
define this we fix an ordering of the outcomes, say

oog < fing < o001 < finy < ...
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We say that « lies to the left of f, and write a <, . if a and f are incomparable
(neither is a prefix of the other), and a(k) < B(k) for the least k such that
a(k) # B(k). We write oo < f if either a <7 8 or f < . As this is the only linear
ordering of strategies that we will use, we use the notation a < f rather than
a <k f.

We let 4 denote the root of the tree (the empty sequence).

2.2.2. Notation for the pinball machine. As discussed, at each stage, finitely many
balls x will reside at some nodes of the machine. We let

S(a),

denote the collection of x that reside at the node « at the beginning of stage s. We
let Y (), be the collection of all balls that at the beginning of stage s reside at « or
below a, i.e., at some extension of a:

Y(a), = | S(8),-

pra

So Y (4), is the collection of balls that are on the machine at the beginning of
stage s.

2.2.3. True stage, and delayed, enumerations. Since the given set 4 is low,, it is
not high. C.e. sets that are not high have “true stage” enumerations with respect
to any given computable growth rate: for any computable function f; there is a
computable enumeration (A4,)° of A such that for infinitely many stages r, the first
f(r) many elements of the stage r complement AE are “correct”: they are elements
of the complement A° (see [17, Lemma XI.1.6]).°

We fix an enumeration (4, ) of A, that is true with respect to the function f (r) = r2.
During the construction, though, it will be useful to delay this enumeration. We will
define, during the construction, an enumeration (A4;) of A, such that for all s there
is some r such that A, = A,. We will write n(s) = r.

Let s be a stage, and suppose that n(s) = r. We will let the construction run: balls
will move around, or be enumerated into M, and it will be useful to keep track of
these actions as happening during several stages: s, s + 1, s + 2, and so on. While
we are doing this, we keep our enumeration of A fixed: that is, A=A, = Agi1 =
Agio = .... After finitely many stages, we will reach a stage ¢ > s at which we decide
that there is nothing we want to do. We then declare 7 to be a “new balls” stage, and
set Aoy = Apq1. i, setn(r+1)=r+ 1.

Thus, the function s +— n(s) will be weakly increasing and onto; we will have
n(s +1) # n(s) exactly when s is a new balls stage, in which case n(s +1) =
n(s) 4+ 1. What is important is that the enumeration (A4), is given to us, whereas

SHere the notation (A4,) refers to the infinite sequence of finite sets Ay, A;.... that form the
enumeration of 4.

®Note that the term “true stages” is sometimes used to refer to the Dekker “nondeficiency” stages:
we will not use these.

7Recall that the index s denotes the objects as they are at the beginning of stage s. During stage s we
perform some actions, resulting in the objects indexed by s + 1. Thus, if during stage ¢ we place new
balls on the machine, these balls will be elements of Y (4),;. not of Y (2),.
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the enumeration (A4;) is defined by us during the construction: based on how the
construction develops, we decide whether to declare a “new balls” stage, i.e., when
to increase n by 1 and thus enumerate more numbers into 4. We start with n(0) = 0.
Observe that for any stage s, n(s) is the number of new balls stages ¢ < 5. We will
ensure that there are infinitely many new balls stages. so that indeed | J, 4, = 4.

DEFINITION 2.2. We let

Q, = {the smallest n(s)*> many elements of AE}

A stage s is A-true if Q; C AC.

Thus, if s < ¢ are successive new balls stages, then O, = Q42 = -+ = Q;, and
s + 1 is A-true if and only if all the stages s + 1,5 + 2, ..., ¢ are A-true. A stage s is
A-true if and only if the stage r = n(s) is true for the enumeration (A4, ) with respect
to r — r2. By assumption, there are infinitely many such r. As we will ensure that
s + n(s) is onto, there will be infinitely many A-true stages s.

We will ensure that at every stage s, Y (1), \ M; = Q;. So at a new balls stage s,
we will place all the elements of Q, ) that have not yet been put on the machine, at
the root. As stages go by, some of these elements may be enumerated into M.

The reason for using true stages for the function f (r) = r? is the following. If s is
a new balls stage then

Q1] = Q5] +2n(s) + 1> | Q] + ns).

Thus, at a new balls stage s we will be adding more than #(s)-many new balls to
the root of the machine; and we will use the fact that n(s) — oco. As time goes by,
we will be getting balls at the root in increasing number, and infinitely often, all of
these balls will be 4-correct.

2.2.4. A3y guessing. By assumption, A is low,, ie., II(4) C As. Thus, any
Boolean combination of I1,(A) statements is equivalent to a X3 statement. Since
there is a universal I1,(A4) set, this is effective: given w, a Boolean combination of
I1,(A) statements, we can effectively find a X5 statement y such that y holds if and
only if y holds.

In turn, from y we can effectively produce a uniformly computable collection of
nondecreasing sequences £(y.n) = (£(y.n),) for n € N such that:

e y holds if and only if for some . (. n) is unbounded.

To see this, write y as InVx3y O(n. x, y). Then we let £(y. n), be the greatest x < s
such that for all x” < x, there is some y < s such that 8(n, x’, y) holds.

Shortly, for each node o on the tree of strategies, we will formulate an “« question”
w(a), which will be a IT,(A4) statement. In other words, the collection of nodes o
such that w(«) holds is IT,(A4). Using the transformation above for the statements
w(a) and =y (a) (both are Boolean combinations of I1,(A) statements), we obtain
families of sequences £(w(a).n) and £(—y(a).n). By the recursion theorem, we
know a computable index for the construction, and so can have access to these
families of sequences during the construction.?

8For the reader who may less comfortable with such a use of the recursion theorem, we provide a
few details. For each e, we can view the e partial computable function ¢, as the function that tells
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2.2.5. The a question.
DEFINITION 2.3. Let o be a node. The statement w (o) is:
For every k € N there is an A-true stage s for which

|Y(0‘)3 n I/V\ahl > k.

As just discussed, during the construction we have access to the sequences

(w(a).n) and £(—y(a).n). Now for each node f we define a (single) sequence
(B) by induction on the length |B]:

o l(1)y=s:

o U(fooy)s = min{ﬁ([)’)s,é(x//(ﬁ), n)s};

i g(ﬁAfinn)s = min{f(ﬁ)s»g(_“ﬂ(ﬁ)a n)s}'

Thus, via the sequences £(y), the children y of f together try to answer the f
question.

‘
;

LEmMA 2.4, For all o
(a) forall s, £(a)y < s;

(b) ifa < f then €(a); > £().: _
(¢) if€(a) is unbounded then there is some child B of a such that £(B) is unbounded.

ProoF. Mostly immediate; (c) holds because for every «, one of () and =y ()
holds. -

Also, by definition, £(/) is unbounded. We can therefore define the following.

DEFINITION 2.5, The true path s the path of nodes o such that ?(e) isunbounded,
but for every ff <; a, £(f) is bounded.

In other words, A is on the true path, and if « is on the true path, then the child
of a on the true path is the leftmost child g for which £(f) is unbounded. This is
the leftmost child that guesses a correct witness for the X3 version of w(a) or its
negation. Lemma 2.4(c) implies that the true path is infinite.

2.2.6. Pulling and eliminating. We will now discuss the heart of the construction:
how to decide where balls move, and which are enumerated into M. The following
terminology will be useful:

e a fin-node is a nonzero node f whose last entry is fin, for some n (that is,
B = (B7) fin, for some n); and similarly,
e an oo-node is a nonzero node whose last entry is oo, for some 7.

Here note that for a nonzero node «, we let a~ denote a’s parent, the result of
removing the last entry of «.

us what the construction is: for each s, we interpret . (s) as the code of the state of the construction
at stage s. For each e we can calculate a I1,(A4) index for the set of « for which () holds according
to the construction described by .. and using this, a computable index for all the resulting sequences
2(w(a), n) and £(—y(a), n); and given that, an index f (e) such that ©r(e) describes the construction
which is performed using these sequences. A fixed point ¢, = ¢ £(e) is the construction that we actually
perform. Note that regardless if ¢, is partial or not. ¢ (,) is always total. and so the fixed point is total.
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The next definition will govern the movement and enumeration of balls. We
will explain the details after we give the definition. The rough idea, though, is the
following. If f is an oo-node of length e + 1, then we will ensure that Y (8) C W,
by only allowing elements that have already entered W, to enter Y (). On the other
hand, if § is a fin-node, then we get Y (B) N W, =* @ “for free”, by the fact that
the f~ question (") fails. As discussed, in the first case, an co-node 8 will want
to enumerate into M any balls it sees that are outside W, . If § is correct about
its guess, then this will not cause N C* M, because w () holds: sufficiently many
balls will not be enumerated into M. The complexity of the definitions comes from
the need to deal with nodes to the left of the true path, that have wrong opinions.

For any node £, let

Y(<B)y =UJ Y0, 1 v < B}

and let

Y(<P), = Y(<Lp), =UJ{re), s v <8}
Here recall that y < 8 denotes the Kleene—Brouwer ordering, not the lexicographic
ordering.

DEFINITION 2.6. A ball x is pullable by a nonzero node f at stage s if:

(('; x € Y( D\ Y(SB)y:
(iii) IY(B)SI < £(p)s: and
(iv) if f is an co-node then x € Wg- ;.

A ball x is eliminable by a nonzero node [ at stage s if:

(v) x e Y(B),\ Y<Bs:
(vi) x #min Y(8),: and
(vii) x < £(B)s.

Let us explain. (i) and (v) mean that x resides at 8’s parent 8. or at or below one
of f’s "of 5. These are the regions from which £ is allowed to pull. Thus, balls on
the machine will only move downward in the Kleene-Brouwer ordering: either to
the left, or drop from a parent to a child.

(i1) will help ensure that each ball outside M eventually stops moving: it cannot
keep being pulled by longer and longer nodes. (vi) will help show that M is coinfinite.
A node ~ on the true path will guard one ball (the smallest that it can see), and
ensure that it is not enumerated into M.

The fact that an co-node f is only allowed to pull balls in W, is in conflict with
the requirement that Y () =* M C Itis simple to reconcile the conflict: if at a stage
s, x is in a region from which f can pull, and x ¢ W, , then § can simply enumerate
x into M and remove it from the machine. The danger, of course, is that numbers
go into W, slowly, and we may be too hasty in enumerating them into M, risking
M =* N. To avoid this, we use the sequences £(y), which will ensure that each node
y to the left of the true path eventually stops enumerating into M numbers from A C,
If 8 is an co-node on the true path, we need to ensure that Y (8) is infinite, i.e., that
it sees enough numbers in W, sufficiently early. We will show that this follows from

w () being true.
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Thus, (iii) and (vii) ensure that nodes to the left of the true path eventually stop
acting: they stop eliminating or pulling balls x € AC. (Balls x € 4 are “phantom”
balls; the right way to think about them is as if they were never there, and so pulling
them does not count as acting.) This uses the fact that if y lies to the left of the true
path, then £(y) is bounded. Of course, these restrictions also restrain the action of
a node f on the true path. Here, we note the difference between (iii) and (vii), i.e.,
the difference between the conditions x < £(f), and | Y (f),| < £(B);. The issue is
of timing.

The main step of the verification will be to ensure that if § lies on the true
path, then the number of balls in Y (f) during A4-true stages is unbounded (this
is Lemma 2.14 below). Suppose that this is known for p~ (either by induction, or
directly from w (7). if § is an co-node). We need to ensure that if the opportunity
arises, in a true stage, then f will act by pulling balls. It could be that at such stages,
£(pB); is too small, compared to the size of the balls that need pulling. This is why
we do not require that x < £(f), when deciding whether to pull x or not; we need
to consider the number of balls we currently have, i.e., | Y (f),].

On the other hand, there is no reason for haste in eliminating balls; we just need to
ensure that in the limit, all but finitely many “deviant” balls do end up in M (these
are the balls outside ., when f ensures that M c C* W,). So it is legitimate for us
to require the stronger condition x < £(f); when considering elimination. And in
fact, it is important that we do so. The reason is a little delicate. Suppose that «, the
node on the true path, is a fin-node, but that y is an co-child of «~ that lies to the left
of a. Since y is allowed to only pull elements of W, (again ¢ = |a|), and W, may
be small (indeed, may be empty). it may be the case that Y (y) never reaches the size
lim, £(y),. Thus, y is always “hungry” for balls. If we allowed 7 to eliminate balls
whenever | Y (y),| < £(y),, it may never stop doing so. For pulling balls, the weaker
condition | Y (y),| < £(y); is sufficient. since if y keeps pulling balls x ¢ A, we will
argue that eventually the size of Y (y) reaches lim, £(y),. and y will stop acting.

We will need the following for the construction.

Lemwma 2.7. If x is a ball on the machine at some stage s, and is pullable by some
node [ at stage s, then there is a <-least such f.

PROOE. There are only finitely many nodes « such that x € Y (). namely, those
a < y where x € S(y),. The ball x is pullable only by children of such nodes «, and
ones which are < y. The order-type of all of these nodes (according to the Kleene—
Brouwer ordering) is a well-ordering. namely, of order-type w (finitely many to the
left of y, and the children of 7). —|

2.3. Construction. At the beginning of stage s, we already have specified M and
Y (a), forall a.. We start with M, = @, and no ball is on the machine at the beginning
of stage 0.
At stage s there are three possibilities.
(a) If there is a ball on the machine which is pullable by some node, then for each
such ball x, let § be the <-least node by which x is pullable; we move x to
(by setting x € S(f),.1).

Observe that in this case, we move all balls on the machine that are pullable by some node. not only
by the “strongest” or “highest priority” node, a notion that we did not define.
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(b) If no ball on the machine is pullable by some node, but some ball on the
machine is eliminable by some node, then we enumerate each such x into
M, and remove it from the machine.

(c) If no ball on the machine is either pullable or eliminable, then s is declared to
be a new balls stage. Recall that this means that we set n(s 4+ 1) = n(s) + 1,
i.e., that possibly A, # As.

(i) Welet M,y = M, U Ay, and remove any x € A, from the machine.
(i) We place any x € Q.1 \ My, which is not already on the machine, at
the root of the machine, i.e., we put it into S(1), ;.

2.4. Verification.

LemMA 2.8. Foralls, Y(1), = Q, \ M.

PrOOF. By induction on s. If x € Y(4),,; \ Y (), then x € Qyy1 \ Myi: if
X €0\ Osyithenx € Agyyandsox € My andsox ¢ Y(4),,,. 4

2.4.1. Finite ball movement. As mentioned above, we say that x is a permanent
resident of a node f if x € S(f3), for all but finitely many stages s. We let S(f) be
the set of permanent residents of f.

Lemma 2.9. If x € |, Y(4), and x ¢ M then x is a permanent resident of some
node.

PrOOF. Since x ¢ M., for all but finitely many s, we have x € Y (4),. By (ii) of
Definition 2.6, if x resides at some node f at some stage, then || < x. Among such
nodes, x only moves downward in the Kleene—Brouwer ordering. Since the subtree
of nodes of length < x is well-founded (has no infinite path), the Kleene-Brouwer
ordering restricted to such nodes is well-founded, and so, x cannot move infinitely
often. o

Lemma 2.9 implies the following.
Lemma 2.10.  There are infinitely many new balls stages.

Thus, as n(s) — oo, every x ¢ M is eventually put on the machine and is never
removed from the machine. This shows the following.

LeEMMA 2.11. Every x ¢ M is a permanent resident of some node.
We let Y (o) = lim; Y(a); = g, S(B):s0 Y (1) = MPC.
2.4.2. True path. Recall that the true path (Definition 2.5) is the collection of

nodes o such that £(c) is unbounded, but for all y <; «. £(y) is bounded. We
observed that the true path is an infinite path of the tree.

LEMMA 2.12. If « lies on the true path, then there are only finitely many stages at
which some node y <; o either pulls or eliminates a ball x € A®.

Proor. This is proved by induction on the length of «; it is vacuously true for
a = . Suppose that this is known for ™. Let

/= max| lim ¢(8); : B <z aisa child ofof} .
§—00

https://doi.org/10.1017/js1.2025.10146 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2025.10146

LOW, COMPUTABLY ENUMERABLE SETS HAVE HYPERHYPERSIMPLE SUPERSETS 15
By Lemma 2.4(b),

[ = rnax{sliﬁnoloé(y)‘Y y<ra&y - o[}.
Then by (vii) of Definition 2.6, no number x > / is ever eliminated by any y <; «
extending o~ (indeed, whether it is an element of AC or not). By induction (from
left to right) on the children S of o~ which lie to the left of a., we show that § pulls
only finitely many x € A%, Suppose that this is true for all y <, . Then after some
stage, every ball x ¢ A which is pulled by /. is not later pulled by a node to the left
of . and is not eliminated by any descendant of 8, and so is an element of Y (f). So
if # pulls infinitely many x € AC. then Y () is infinite. But then, | Y (f),| > / for all
but finitely many stages s. By (iii) of Definition 2.6, at such stages. f pulls no balls,
a contradiction. -

As a result:
LemMMA 2.13. If « lies on the true path, then Y (< ) is finite.
The main lemma is the following.

LeMMA 2.14. If « lies on the true path, then for every k there is some A-true stage
s such that | Y (a),| = k.

PrOOF. We prove this by induction on the length of «. First we consider & = A.
If 5 is a new balls stage and s + 1 is 4-true, then, as discussed above, at least n(s)
many new balls from Q,4; are placed in S(4),,: and n(s) — oc.

Suppose that o # A lies on the true path, and that the lemma holds for a~. Let s
be a stage after which no y <; « pulls or eliminates any ball x € 4%; in particular,
no y < « pulls any ball during an A4-true stage s > so. Further, if s > 59 is A-true
then Y (<, a), = Y(<r ). as all balls on the machine at stage s are from AC. Let
m = | Y (< a)|, which by Lemma 2.13 is finite.

Let k € N. There are two cases.

First. suppose that « is a fin-node. By induction, there is an A-true stage s > s
for which

|Y(a )| = k+m+1.

Choose such s sufficiently large so that £(a); > k. If |Y(a),| > k then we are
done. Otherwise, | Y (a),| < £(a)s. Every x € Y(a ), \ Y(<a), larger than |« is
pullable by « at stage s. Now Y (a”), contains at most one x < |a|, namely, x = ||
(asevery x € Y(a ), hassize > |a|)"; and as discussed. | Y (<, a),| = m. Hence,
there remain at least k — | Y (a),| many balls in Y (o), that are pullable by «. Since
s > 59, and s is A-true, no node to the left of « pulls such balls at stage s. Hence, at
stage s, all balls pullable by a will actually be pulled by c. and moved to Y (), ;.
Also, no balls already in Y (a), will be pulled to the left. Since balls are pulled
at stage s. no balls are eliminated (anywhere on the machine) at stage s—we only
eliminate balls if no balls are pullable. So Y (a), C Y(a),,,. and overall, we see

10For the purposes of this argument, let us agree that 0 ¢ N, so that this calculation applies to o = A
as well.
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that | Y (a),, | > k. Since s is not a new balls stage, s + 1 is also A-true, and so is as
required.

If « is an co-node, then the argument is the same, except that we need an A-true
stage s > so such that £(a); > k and such that

¥ (@), N Wia s =k +m+ 1,

since « is allowed to pull only balls from W),-| ;. However, since () is unbounded,
w(a”) holds, which gives us exactly what we need. Note that in this case, we do not
need to use the inductive hypothesis on o, nor is it sufficient for our purposes.!’ -

REMARK 2.15. During the proof of Lemma 2.14, we relied on our stipulation that
we do not eliminate any balls during a stage at which some balls are pullable. So we
showed that we can get | Y (a),, | = k. but it is possible that immediately after that,
some balls from Y (), are eliminated, reducing the size of the set. It seems quite
silly that Lemma 2.14 would depend on such an unimportant timing trick.

Indeed. it does not. We could allow balls to be pulled and eliminated at the same
stage. But then, in order to prove Lemma 2.14, we would need to first show that if
more and more balls are supplied to Y («), then many of these balls would not be
eliminated. We will now do this; it is merely a convenience for our presentation, to
delay this part of the argument, instead of essentially proving Lemmas 2.14 and 2.16
together.

2.4.3. M is not everything.
LEMMA 2.16. For every o which lies on the true path, Y (a) # @.

PrOOF. Let a be a node which lies on the true path; let sy be a stage after which
no ball x ¢ A is pulled or eliminated by any node y <, «. Let x be the smallest
number in AC for which there are stages t > s > s¢ such that:

-x € Y(a):

— s is A-true and x < max Y (a),.

Such x exists by Lemma 2.14 (we can take t = s). Let stages t > s > 5o witness x.

By induction on stages r > ¢, we argue that x € Y (), and that x = min Y («),.
The minimality of x ensures that x = min Y («),. Let r > ¢, and suppose that x =
min Y (a),. By Definition 2.6(vi), at stage r, x is not eliminable by any child of a;
since r > 9, x is not eliminated by any node at stage r. Similarly, since r > s, x is
not pulled by any node to the left of « at stage r. Hence. x € Y (), . Any y < x on
the machine at stage r + 1 is an element of AC, as s was A-true. and so by minimality
of x, will not enter Y (), ;. 5

As a result:

LemmA 2.17. M is coinfinite.

Curiously, this means that we would not need to prove Lemma 2.14 by induction. if we already
knew that there are infinitely many co-nodes on the true path. This is true, however, we need Lemma
2.14 to prove this.
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ProoF. Since the true path is infinite, for every finite D C M C there is some a
on the true path such that D N Y(a) =@: Y(a) C ML and so by Lemma 2.16,
M #£D. 5

2.4.4. Maximality.

LEMMA 2.18. For every a on the true path, Y (o) =* MC.

ProOOF. We know this holds for a = 4, and so it suffices to show that if o # A4
lies on the true path then Y (a) =* Y (o). By Lemma 2.13, Y (< «) is finite, so it
suffices to show that all but finitely many elements of Y (o) \ Y (< a) arein Y ().
Let x € Y(a) \ Y(<z ), and suppose that x > min Y (o).

If s is sufficiently late, then £(a); >x. x€ Y(a),\Y(<ra),. and
x > min Y (a ),. Then x is eliminable by « at s. Hence, x must in fact be pulled by
« at stage s. B

REMARK 2.19. Recall that the reason for eliminating balls is when we want M c c*
W,; we then need to enumerate the complement of W, into M. However, this was
not incorporated into the definition of “eliminable”, and it seems that Lemma 2.18
relies on elements of W, being eliminable by fin-nodes (when |Y (a),| > £(a)y).
This is not necessary. In Definition 2.6, we could add the clause “f is an co node and
X ¢ W4 to the definition of eliminability."” But then we would need to separate
the proof of Lemma 2.18 into cases. If « is an co-node, then the proof is as above.
If it is a fin-node, then we argue that as £(«) is unbounded. it will eventually pull
balls x as above.

The proof of Theorem 2.1 is concluded with the following lemma.
LeEMMA 2.20. M is maximal.

Proor. Let e € N; let a be the node on the true path of length e + 1.

First. suppose that « is an co-node. Every ball pulled by « is already an element
of W,, so Y(a) C W,. By Lemma 2.18, M C* W,.

Next, suppose that « is a £ in-node. Since £(c) is unbounded. we know that y ()
fails: there is some k such that for every A-true stage s,

[Y(a ), N W,.,| < k.

Then |Y (o) N W,| < k. For otherwise, there would be a set D C Y(a )N W,
of size k + 1. But then, for all but finitely many stages s, D C Y (a™), N W,. so
|Y (), N Wes| =k + 1 for some A-true stage s, which is not the case. It follows
that Mt W, =* 0. 4

§3. Atomless supersets. We modify the construction above to prove Theorem 1.2:
every coinfinite low; c.e. set has an atomless, hyperhypersimple superset.

The new ingredient is a process for splitting a stream of balls in two, each infinite
outside of 4.

12This would make it easier for us to allow pulling and eliminating balls at the same stage, if we so
wished, as it would ensure than no ball is both pullable and eliminable by the same node (see Remark
2.15).
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3.0.1. Boolean algebras and binary trees. Recall that we can generate Boolean
algebras from trees. If 7 C 2<“ is a tree, then B(T) is the quotient of the free
Boolean algebra with generators o € T', modulo the relations:

e every 7 € T is the join of its children;
e if 0,7 € T are incomparable then a A 7 = Op (7).

Equivalently, we can think of B(T) as the collection of finite unions of the sets
[61N[T]. forallo € T, ordered by set inclusion; in this version, 7 is identified with
[z]1N[T].

Note that this implies that if 7 is a leaf (or more generally, if 7 is not extendible to
an infinite path on T). then 7 = Op(7: and that A = 1. Every countable Boolean
algebra can be presented in such a way (up to isomorphism) by considering a tree
of nonzero finite Boolean combinations of any sequence of generators."” For our
purposes in this section, we rely on the fact that the atomless Boolean algebra
is B(2<”), the one generated by the full binary tree.'"* Thus, given a coinfinite
low, c.e. set A, we will enumerate a superset H O A4, and construct a tree of sets
(Z(p) : p € 2<) satisfying:

(i) z(2) =* H®:

(ii) for each p, Z(p) is infinite;

(iii) for each p, H U Z(p) is c.e.;

(iv) for all p € 2<®, Z(p"0) and Z(p"1) are disjoint, and Z(p) =* Z(p"0) U

Z(p"1);
(v) for every c.e. set W D H there is a finite set D C 2< such that W \ H =*
U{Z(p) : p e D}.
This suffices: to see that £*(H ) is a Boolean algebra, it suffices to show that it is
complemented (see [17, Section X.2]). Indeed, if W O H isc.e., by (v), let D C 2<¢
be a finite set such that W\ H =* | J{Z(p) : p € D}. By (iv), we may assume
that all elements of D have the same length, say k. Let E = {0, 1}* \ D; then H U
U{Z(p) : p € E} is a complement of W in £*(H): by (iii). it is c.e. (ii) and (iv)
also ensure that £*(H ) has no atoms.

As we are using the A; machinery, the sets Z(p) U H will not be uniformly c.e.
rather, they will be =* to sets whose indices we can read off the true path of the
construction.

3.1. The setup. We will use the same general mechanism as above. We will have
an infinite-branching tree of strategies, that will serve as a pinball machine on which
we move balls around. When numbers are enumerated into H, they will be removed
from the machine; the complement H C will consist of the balls that have permanent
residence at some node on the tree.

Toward enumerating the sets Z(p), each ball x on the machine at some stage s
will have a label p € 2<®. As with residence on the tree, the label of a ball x ¢ H

B1In greater detail: if {b,} is a set of generators of B, then we let 7 be the set of all sequences & such
that by = A\ {b; : a(i) = 1} A A {=b; : o(i) = 0} is nonzero. See the proof of [17. Theorem X.7.2].

14In general, the atoms of B(T') are those nodes that isolate a path, so if 7 C 2<% has no leaves, then
B(T) is atomless if and only if it is perfect. Among all perfect trees, we choose T = 2<¢ as it makes the
notation simplest.
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will stabilise (indeed, the label can change only when x moves). If the final label of
x is p, then we will put x into Z(p’) for all p’ < p.

We will use the notation S(a),, Y (a),. Y (<L @), etc. as above. We will use similar
notation that also specifies labels. Namely, for a node « on the tree and p € 2<¢, we
will let S(a. p), denote the collection of all balls x which at the beginning of stage
s, reside at o and have label p. We will let

Y(a.p), = U {S(a’,p’)S raxad & p< p’}.

That is, Y (. p), consists of the balls x which at the beginning of stage s.

o reside at some o’ = «, and
e have a label p' = p.

So as discussed, the elements of Y (. p), are those elements in Y (), that at
stage s we intend to put in Z(p). So at the end of the verification, we will let
Z(p) = Y (4. p). the collection of all balls x € Y (1) whose permanent label extends
p. As in the previous construction, if o is on the true path, then Y (o) =* H C so

Z(p) =" Y(a.p).

3.1.1. The requirements. In the current construction, we will have two kinds of
requirements. The analogues of the maximality requirements from the previous
construction are the requirements for meeting (v) above. For each p € 2<® of
length e, we will ensure that either Z(p) C* W, or Z(p)N W, =*&. Thus,
D ={pe{0.1}¢ : Z(p) C* W,} will show that (v) holds for W,. The way to meet
these requirements will be very similar to the previous construction, except that the
a question will be more complicated; for each p € {0.1}¢, we will need to guess
whether we will see enough balls to make Z(p) C W, while ensuring that Z(p)
is infinite. The mechanism of pulling and eliminating will be used to achieve that,
but we will see that the definitions of “pullable” and “eliminable” need to be more
complicated.

The other requirements are new: they ensure that (iv) above holds. Namely, for
each p. we need to ensure that Z(p"0) and Z(p"1) form a splitting of Z(p) (up
to finite differences), into two infinite sets. In the construction, we will have nodes
devoted to such a requirement. The task for such a node is to take balls with label
p. and decide whether to extend their label to either p"0 or p”1. The difficulty, of
course, is that during the construction, we do not know whether a ball x is in 4 or
not. It would be very bad if all but finitely many balls x that we direct to p"0, for
example, will end up in A4, as that would make Z(p"0) finite. Unlike the other kind
of requirement, A3 guessing is not sufficient for this task: we know that there will
be infinitely many x ¢ A4 with label p. We need to somehow obtain individual balls
that we have a good reason to guess are not in 4.

Our main contribution is precisely this: a new method for certifying that groups
of balls are not in 4. As we will explain later, in fact, to perform this certifying and
splitting, it will be notationally convenient to have not just one level of nodes devoted
for each requirement, but two; nodes and their children together will perform these
tasks.

So we will have two kinds of nodes.
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(i) Decision nodes, of length 3e, whose task, for each p € {0.1}¢, to decide W,
on Y (e, p). We call a node of length 3e an e-decision node.

(i) Splitting nodes and their children, of lengths 3e + 1 and 3e + 2. The children
of a decision node « of length 3e + 1 will pull balls with labels p of length e,
and decide to extend their label to either p”0 or p”1. We call a node of length
3e + 1 a parent e-splitting node, and a node of length 3e + 2 a child e-splitting
node.

3.1.2. True balls rather than true stages. As above, we will make use of a true-
stage enumeration (4,) of 4 with respect to the function f(r) = r2. We will use
the same mechanism as above to slow down this enumeration to an enumeration
(Ay) defined during the construction, again letting n(s) = r when A; = A,. As in
the previous construction, if we move or enumerate balls, or perform any other
action, at a stage s, then will set 4, = A4, (by setting n(s + 1) = n(s)). When no
other action is taken at stage s, we will declare s to be a new balls stage, and set
n(s+1)=n(s)+ 1.

As in the very first part of the proof of Lemma 2.14, this ensures that infinitely
often, the root of the tree receives large collections of balls which are all outside 4.

However, unlike the previous construction, there will be an element of delay in
ball movement. In order to ensure that both Y (c, p"0) and Y (c, p"1) receive many
balls outside A, a child of a splitting node « will hold on to many balls in Y («. p)
until it receives confirmation from @' that these balls are indeed outside 4. (Infinitely
often, this confirmation will be incorrect, but infinitely often it will be correct, and
this will be sufficient for our purposes; we will see that what is important, is that each
individual attempt at certification makes only finitely many mistakes.) The stages at
which such confirmation is received do not need to line up with the 4-true stages.
So we will not be able to directly prove Lemma 2.14 for the current construction.
Rather, instead of looking for “completely true” szages, at which every ball on the
machine is correct. we will simply ensure that we get more and more true balls.

DEFINITION 3.1, A number x € AC is A-true at stage s if
Al x+1=A4; | x+ 1.

That is, not only x will not enter A in the future, but no number y < x currently
outside A will enter 4 in the future. If we get enough of these, we do not really care
that larger balls are not 4-true at the same stage.

DerINITION 3.2. As in the previous construction, we let Qs be the set of
n(s)?-smallest elements of AE. We let C; denote the collection of x € Q; which
are A-true at stage s.

3.1.3. The questions and the tree. A decision node a needs to decide, for each p
of length e, whether to make Z(p) almost contained in W, or almost disjoint from
W.. This means that the a question is more complicated. Let « be an e-decision
node. For each set D C {0, 1}¢, the statement y (a, D) says:
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D is the set of p € {0. 1} for which for every k there is some s such
that

|Y (. p)y N Wes NCy| > k.
The outcomes of « are
D,

foreach D C {0.1}¢andeachn € N, ordered in order-type w in some way. Note that
w(a. D) will hold for precisely one D C {0, 1}¢, and we will ensure that Z(p) C* W,
if and only if p € D (and otherwise, Z(p) N W, =* &).

Since each w(a. D) is a finite Boolean combination of I1,(A4) statements, it is
equivalent to a X3 statement, so as in the previous construction, we obtain uniformly
computable, nondecreasing sequences £ (i (a, D). 1), such that (o, D) holds if and
only if for some n, é_(t//(a,D),n) 1s unbounded. As above, we use these to define
sequences £(«) for nodes a; these will only be used for nodes « that are the children
of decision nodes. So we recursively define:

o If & = (a”)"D,, is the child of a decision node o, then we let £(«), be the
minimum of £(y (™, D). n)s, and £(B); for any f < « that is also the child of
a decision node.

It is more difficult to explain now why we need both parent and children splitting
nodes. If « is a parent e-splitting node, then its children are a"n for all n € N, ordered
naturally. If f is such a child, then 8 has a unique child 87 on the tree (which will in
turn be an e + 1-decision node). The outcomes 7 of o do not quite represent guesses
about the behaviour of «; we will discuss them later.

3.1.4. Updating previous definitions. We update notation from the previous
construction. For a node « and p € 2<%, and a stage s, we let:

e Y(<pa, p), be the collection of balls that at the beginning of stage s, reside
at some node f that lies to the left of «, and have label extending p. That is,
Y(<pe.p)y =Upc,a Y(Bp)y = Y(<ra),NY (L p):

o Y(<a.p)y = Y(<pa.p),UY(a.p)y.

DerFINITION 3.3, Let o = (a”)"D,, be a child of an e-decision node, and let
p€{0,1}.
A ball x is pullable by (c. p) at stage s if the following all hold:
(i) x € Y(a.p), \ Y(Sa.p)y:
(i) x > |al:
(iii) either:
o |Y(a.p),| < £(a)s,or
o Y(a,p), # @and x < max Y(a, p),:
(iv) if p € D then x € W,.
A ball x is eliminable by (a, p) at stage s if:
(V) x € Y(a.p), \ Y(<a. p)y:
(vi) x # min Y(a", p),: and
(vii) x < £(a)y.
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We need to comment on the new part of this definition, namely, the second part
of (iii). The issue is that, as mentioned above, we will not be able to directly show
that Y (a), is “full” during A-true stages (in the sense of Lemma 2.14), only that
it gets “filled” by A-true balls (see Proposition 3.13(b) below). Consider a node o
on the true path (a child of a decision node). At a stage s, the parent o may have
many A-true balls. At the same stage. « already has larger balls and so does not feel
“hungry” (| Y (a. p),| = £(a),). But because s is not an A-true stage, the balls that
a has may be false. The problem is solved by allowing « to pull balls smaller than
ones it already has, even if it does not feel “hungry”. This modification is sufficiently
tame soGthat nodes on the left of the true path will again only pull finitely many balls
from A4°."

3.1.5. Certification. Since A is low, and c.e., some @'-computable function
dominates all A-computable functions (this follows from Martin’s characterisation
[10] of the high degrees as those that compute functions that dominate all computable
functions).

DeriNiTION 3.4, We fix ¢ to be a @ -computable function that dominates
all A-computable functions. We also fix a computable approximation (p,) =
(¢0. 1. ...) of .

Let a be a parent e-splitting node, and fix p € {0, 1}¢. The very rough idea of
splitting is that « will define blocks of balls, and hold on to these balls until ¢ gives
confirmation to release these balls to nodes below. The k! block will contain at least
2k many balls. For now, let us forget about &’s children, and imagine that released
balls are passed to the next splitting node (if o did not have multiple children then
there would be a unique (e + 1)-splitting node extending o). When the k™ block of
balls is certified by ¢, then k of the balls in that block will receive the label p"0, and
the rest, the label p”1.

For this purpose, we will define an 4-computable function f**. An input k € N
for /' indicates an attempt to capture and test the k™ block of balls. Suppose
that at some stage r, for all m < k, the m™M-block of balls is currently defined, and
that « holds 2k many balls with label p (that are not associated with any existing
block). We would then declare these balls to constitute the k™ block, and define
frh (k) > @, (k). The A, 1-use u = u;"’; (k) of this computation will bound at least
2k-many elements of the block.

We then wait for a stage s > r at which one of two things happens. Either
Ay | u# A,y | u, in which case f”(k)1. This A-change likely involves some
elements of the block entering 4. We will then wait for o to obtain new balls, that
will allow us to redefine a new k™ block.

Otherwise, we hope to see ¢(k) > f{” (k)= f/ (k). This means that
ws(k) > o, (k). We will regard this as evidence that elements from the block
will not later enter A4, and say that the block is certified. We then process the block

131t may be difficult to envision how this situation can come about, since smaller balls are put on the
machine earlier than larger balls. However, the collection of balls pullable by a node is not always an
initial segment of the collection of available balls, since only some may be elements of some W, whereas
the others may not yet be eliminable by the same node. So the order “breaks” as balls move on the
machine.
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as described above, splitting it evenly between p"0 and p”1, and passing the balls in
the block to the next node below.

Of course, it is possible that neither of these events happens: the computation
f:7 (k) is never undefined. but ¢ (k) never exceeds the value of that computation.
Therefore, while we wait, we will try to define the (k + 1)™-block, and so on.

The argument that this works will be by contradiction. We want to argue that
infinitely many blocks will be released, and infinitely many of those will be 4-correct,
i.e., only contain balls from AC, Assuming this is not the case, we will want to show
that /7 is a total function. If this is shown, then we obtain the desired contradiction
from the fact that ¢ dominates f*”, showing that for almost all k, the correct kth
block will in fact be certified and released. To show that £ is total (under the
assumption for contradiction), we use the fact that (k) changes only finitely
many times. This implies that the k™ block will be released only finitely many times,
and so eventually, an A-correct k" block will be defined, showing that (k) |.

Thus, the use of the certification process is in the delay it imposes on the release
of balls. If we didn’t wait for certification, then it is possible that we would keep
redefining and releasing some k" block. none of whose versions is A-correct. It
would then be possible that of the blocks that we release, all but finitely many of
the balls that we target to p"0, say, end up in A4, resulting in Z(p"1) =* Z(p). so the
splitting requirement is not met.

We now come to the need for multiple children. The reason is delicate. We want to
argue that an A-correct definition of some f%” (k) will eventually be made. Imagine
the following sequence of events:

(1) f*r(k) is defined at some stage.

(2) While waiting for certification, we also define f*”(k + 1) (after all, we do
not know where ¢ starts dominating).

(3) The (k + 1)™ block is certified and released, but not the k™ one.

(4) Some x in the k™ block enters A, making both f*?(k) and f*’(k + 1)
undefined.

Now, all we know, by induction, is that an analogue of Lemma 2.14 holds for a: for
all m, there is some stage s at which C; N Y (a. p), has size at least m. If s is such a
stage after these events unfolded, then it is possible that the bulk of C; N Y (a, p), is
actually lying well below a—it is part of the (k + 1)-block that was released at step
(3) above. Since these balls are not currently residing at o, we cannot use them to
define a new k'M-block. Unless...we pull them back up to o from wherever they are
currently residing.

Now, in all similar constructions, pulling balls from below is a source of
innumerable problems. Just as a simple example, it becomes much more difficult
to argue that balls outside H will eventually reach a permanent residence, since
pulling balls back up is increasing in the Kleene—Brouwer ordering. More seriously,
it will be difficult to show that the sets H U Y (y, p), for y on the true path, are c.e.
So we will not do this. A work-around is to allow « to have infinitely many children
a’n. While waiting for certification, each block will “reside” at one of the children.
Indeed the block waiting at a child # will simply be S(8. p),.

While the k" block is waiting at a*n, all blocks defined later will reside at children
of « that lie to the right of a"n, namely, children «"m for various m > n. When the
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k™ block is dissolved (at step (4) above). it is now fine for a*x to pull all balls from
the right, even those that were released to lower nodes, and use them to constitute
a new k" block.

One can think of a’n as representing the guess that ¢ starts majorising /% from
input #. This is not exactly right but the intuition is not far off.

Another point to make is that for distinct p, the function ¢ may start dominating
the various functions f*7 at different locations. The argument above will show that
for each p € {0, 1}¢, there is some child § that releases p-blocks infinitely often.
However, to obtain a child of « on the true path, we need the same f to work for all
p. Thus, in the definition of certification below, we will let a child f hold on to its
blocks, until all of them (one for each p) are certified. and only then will it release
them all.

We can now give the details. Let o be a parent e-splitting node; let p € {0, 1}°.
As discussed, we will define a function f*”, with intended oracle 4. So at various
stages s, for various k, we may have f (k) | or not, and if it is defined, then we will
declare a use u = ug’ (k) for this computation. The usual rule applies: if f* (k) .
with use u, and 4; | u = Az | u, then f*7 (k)| = £ (k) with the same use. If,

s+1

on the other hand. A | u # A,y [ u. then we declare that £/ (k). Note that
this will only happen if s is a new balls stage, and during such stages, we do not
define new computations /7, (k).

We will define 5 (k) only for k > 1, since there is no point in dealing with a
block of size 0.6

We will ensure thatif k > 1 and f§”(k + 1) then f7(k) | as well, that is, the
domain of /7§ is a (finite) initial segment of N\ {0} (see Lemma 3.15 below).

When we define a computation f7 (k) (at some stage r — 1), then we will declare
that the k™ block is currently waiting at some child § of a; we will record this by
setting k2 (B) = k (note that « is determined by ). This notation implies that at
most one p-block is waiting at f at a given stage.

Ifk{(B) | =k then f{*" (k) |. Thus. if k() | = k but £/ (k) 1 then we declare
that k7 (/) 1. That is, if the k'™ block is waiting at 8 at (the beginning of) stage s.
but is dissolved when passing from stage s to stage s + 1, then no block is waiting
at ff at stage s + 1.

If B releases balls at stage 5. then we will also set k;, (§) 1. even though 7/ (k) |:
at stage s + 1, the block does not wait at f anymore.

We will ensure that if k¢ () |. then for every child y of « that lies to the left of 3.

we have k7 (y) | as well (and k¥ (y) < k7 (B)). Again, see Lemma 3.15.

DErFINITION 3.5. Let « be a parent e-splitting node, let p € {0,1}¢, and let f be a
child of a.. Let s be a stage.
(a) A ball x is pullable by (B, p) at stage s if:
(i) x € Y(e.p), \ Y(<P.p),: and
(ii) k%(B) 1 (that is, no p-block is waiting at 8 at stage s).
(b) Let k > 1. We say that (B. p. k) is ready for definition at stage s if:
(ifi) £ (k) 1. and £ (k = 1)}
(iv) k¢ (B) 1; and

16 And it is notationally simpler than requiring the k™ block to have size 2k + 2.
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a.p

(v) lettingv = ug”(k — 1) ifk > 1,v = 0 otherwise, S(f3, p), contains at least
2k many balls greater than v.
(c) We say that S8 is certified at stage s, if for all p € {0, 1}¢:
(vi) k{(B)|:and
(vii) @s(k) > [ (k). where k = k{(f).

LEmMA 3.6. Suppose that x is pullable by some node at stage s. Then:

(a) For each node B, there is at most one label p such that x is pullable by (. p).
(b) There is a <-least node 8 such that x is pullable by (. p) for some p.

ProoF. For (a), suppose that x is pullable by (B. p). Then either 8 is a child of
an e-decision node or a child e-splitting node, |p| = e, and x € Y (B, p). So p is the
initial segment of length e of x’s label at stage s.

(b) is as in Lemma 2.7. 4

LeEMMA 3.7. Let a be a parent e-splitting node, and let p € {0, 1}¢. Let s be a stage.
Suppose that no balls are pullable by any node at stage s. Then there is at most one
child B of a and one k such that (B, p. k) is ready for definition at stage s.

PrOOF. The number k is unique by (iii) of Definition 3.5. Say f < 8’ are children
of a. If k§(B) 1. then every x € Y(f’, p), is pullable by (8, p); so by assumption on
s. Y(B'.p), = . whence (f’. p. k) cannot be ready for definition at s by (v). —

3.2. Construction. We start with Hy = @ and no ball on the machine.
At stage s we operate according to the first case that applies.

(a) There is a ball on the machine which is pullable by some (., p). For each such
ball x, let f be the <-least such. We move x to reside at f§ at stage s + 1, and
we set x’s label at stage s + 1 to be p.

(b) There is a ball x which is eliminable by some pair (f, p). We enumerate all
such x into H, | and remove them from the machine.

(c) There is some child e-splitting node that is certified at stage s. In this case, for
each such f for which there is no y < f that is also certified at s, for each
p € {0, 1}, letting k = k% (B). we:
e move all x € S(f, p), to the unique child g of ;
o for all children y > B of o, we set ka ()1
o for the k-least many balls x € S(f. p),. we change their label to p"0; for all

other balls just moved to 87, we change the label to p"1.

(d) There is some child e-splitting node f, some p € {0,1}¢, and some k > 1,
such that (8, p. k) is ready for definition at stage s.For each such pair (. p).
for the unique such k, letting o = -, we define

fili(k) = @g(k) + 1.
a.p

Let v =us”(k—1) if k > 1, v = 0 otherwise. Let xi, x». ..., enumerate (in
order) the elements of S(f. p), that are greater than v. We let the A,-use
ug, (k) of the new computation be x5, + 1.We set k” () = k.
(e) If no case above applies, then s is declared to be a new balls stage.
(i) Welet Hy 1 = H; U Ay1, and remove any x € A, from the machine.
(ii) We place any x € Q,.1 \ H, 1 not already on the machine at the root of

the machine, and give it the empty string as a label.
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(iii) For any e-splitting child node f8, a child of some «, if k/(f) ] = k but
foh (k)1 then k7, (B) 1.

3.3. Verification. We start with some observations on ball movements and labels,
that follow from the instructions.

LemMA 3.8. Let a be a node, s be a stage, and suppose that x € S(a);.

(a) If't > s and x € S(B),. then B < « (in the Kleene—Brouwer ordering).

(b) If t > s and x € S(a), (that is, x has not moved between stages s and t), then
X’s label at stage s is the same as x’s label at stage t.

(c) If a is an e-decision or e-splitting node (parent or child ), then x’s label at stage
s has length e.

(d) If t > s and x € Y (), then x’s label at stage t extends x’s label at stage s.

The proof of Lemma 2.8 gives the following.
LemMa 3.9. Foralls, Y(4), = Q; \ H;.
LemMA 3.10. If a ball x resides at a node o at some stage, then |a| < x + 2.

Proor. If « is the root then this is immediate. Otherwise, let 7 < « be the longest
node which is the child of a decision node. Each node only receives balls that have
already passed through their parent. Hence, there is a stage at which x was pulled
by . By Definition 3.3(ii), x > |5|: and |a| < || + 2. .

By Lemmas 3.8(a) and 3.10, as in the proof of Lemma 2.9, we getthe following.

Lemma 3.11. If x € |, Y(4), and x ¢ H then x is a permanent resident of some
node.

LEMMA 3.12. There are infinitely many new ball stages.

Proor. The point is that if not, then case (d) of the construction (defining
new blocks) can happen at most finitely often. In more detail: suppose, for a
contradiction, that sy is the last new balls stage. There is some stage s; > s after
which no balls are moved on the machine, or eliminated from the machine. If a new
computation " (k) is defined at some stage s > . then this computation is never
made undefined. For every child 8 of «. for all > s, if S(B, p), # @ then k7(B) |
(at stage s, the fact that a new computation is defined, implies that there are no
children of a which have balls, but insufficiently many to form a block: such balls
would be pulled away earlier than stage s). Hence, no further values of /' will be
defined after stage s. o

Since every element of AC is added to the root of the tree at some stage, it follows
that every x € H Cisa permanent resident of some node.

3.3.1. Defining the true path. We define the true path inductively. The root 4 is
declared to lie on the true path. Let a be a node on the true path.
o If o is a decision node, then the leftmost child g of o with £(8) unbounded is
on the true path.
o If  is a parent splitting node, then the leftmost child § of « that releases balls
infinitely often, lies on the true path.
e If o is a child splitting node, then its unique child is also on the true path.
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As above, if « is a decision node, then as one of the statements y (a., D) is true, one
of a’s children will lie on the true path. On the other hand, we will need to work to
show that if « is a parent splitting node on the true path, then one of its children
lies on the true path. For now, we do not know that the true path is infinite.

In fact, to show that a parent splitting node « which lies on the true path has a child
on the true path, we will need to already know that the analogues of Lemmas 2.12
and 2.14 hold for «.. Thus, we will need to prove both by simultaneous induction.

Recall (Definition 3.2) that we let

Ci={x€eQy:A4A; | x+1=4] x+1},
the collection of balls x € Qs which are A-true at stage s.

PrOPOSITION 3.13. Suppose that a node o lies on the true path.

(a) There is a stage after which for every node y that lies to the left of o, y does not
eliminate any balls from AL, nor is any ball from A® moved to p. 7

(b) Suppose that o is an e-splitting or decision node. Then for all p € {0,1}°, for
every k. there is some stage s such that | Y (o, p), N Cs| > k.

The proof of Proposition 3.13 will take some work. As discussed, we prove it by
induction on the length of .. For now, we note:

LEmMA 3.14. Let a be a node; suppose that there is a stage after which no ball is
moved to a node y <y a. Then Y (< ) is finite.

Proor. Every ball in Y (< ) isin A®, and is at some stage moved to a node y
that lies to the left of . By assumption, there are only finitely many such stages,
and at each stage, only finitely many balls are on the machine. -

3.3.2. Case I: Theroot We start the inductive verification of Proposition 3.13 by
verifying that it holds for the root. (a) is vacuous in this case; (b) is asin Lemma 2.14.
We note that this is the only part of the proof in which we use the fact that we are
using the true-stage enumeration of 4.

3.3.3. Case II: Decision nodes Suppose that « is an e-decision node that lies on
the true path, and suppose that Proposition 3.13 holds for a. Let f be a’s child
that lies on the true path; we show that Proposition 3.13 holds for f§ as well. Let
D C {0,1}¢ such that f = a"D, for some n. That is, p € D if and only if for all £
there is some s such that | Y (a. p), N W, N Cy| > k.

To show that (a) holds for 8, we only need a minor modification of the proof of
Lemma 2.12, reflecting the new second part of Definition 3.3(iii).

Let / be the maximum of limy £(y),, where 7 is a child of « that lies to the left
of f. Again, for any such y and any € = y that is a child of some decision node,
lim, £(¢),; < [. By Definition 3.3(vii), no such € ever eliminates any x > /.

Let y be a child of o that lies to the left of . and suppose (by induction) that
every child § of « that lies to the left of y eventually stops pulling any x € A® (and
so, from some stage, no ball from A is moved to any node that lies to the left of y).

17Balls can move to y without being pulled by 7. if y is the child of a child splitting node, and balls
are released by y~.
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Let p € {0.1}¢. For a contradiction, suppose that (y, p) pulls infinitely many
balls from A°C. By our assumption, almost all such balls remain in Y (y). By Lemma
3.8(d), the balls pulled by (y, p) that remain in Y (y) also remain in Y (y, p). Let s
be a late stage at which Y (y, p), contains at least / many elements of AC: these balls
Y(y.p),| = 1. Let a = max Y (y, p),. Then
by induction on 7 > s we show that @ = max Y (, p),: if this holds for #, then by
(iii) of Definition 3.3, the only numbers pulled by (y. p) are < a.

The proof that (b) holds for f is similar to that of Lemma 2.14, but here we use
the new (iii) of Definition 3.3. Fix p € {0,1}¢. By (a). let 5o be a stage after which
no ball from A4° is moved to. or eliminated by. any node y < f.

By Lemma 3.14, Y (<. pf.p) is finite; let m =|Y (<. B.p)|. If s> s and
x € Y(<1pB), N Cs. thenas x will not be later eliminated (and x ¢ 4),x € Y (<. f).
By Lemma 3.8(b), for all s > sp. Y(<.f.p), N Cs C Y(<.pB.p). Hence, for all
s> 50, | Y(<pB.p), NCs| < m.

Let k € N. Suppose that p ¢ D. By induction, there is some s > sy such that
|Y (e p)y N Cs| = k + m + 3 and such that £(8), > k. Let

R={xeCnY(ap) : x ¢ Y(<P.p), & x> |af}.

Since x > |a| -2 for all x € Y(a), (Lemma 3.10), |R| >k — |Y (B, p), N Cs|. So
as in the maximal set construction, we will be done once we show that either
|Y(B. p), N Cs| = k. or that every x € R is pullable by (f. p) at stage s (note that
in the latter case, s will not be a new balls stage. so C; = C,,1). Suppose that
|Y(B.p), N Cs| < k. The new part is that it is possible, in this case, that | Y (S, p),| >

2(B)s. IE| Y (B. p),| < £(B) then certainly all balls in R are pullable. If not, though,
since £(f)s > k. there must be some z € Y (f, p), which is not in C,. However,
C; \ H; is an initial segment of the balls on the machine at stage s. So all balls in R
are smaller than z. By the new part of Definition 3.3(iii), all balls in R are pullable
by (B, p) at stage s.

The case p € D is the same, using the fact that as w(a. D) holds; there is
some s > sp such that £(f); >k, and |Y(a.p), N C; N W] =
completes the proof that Proposition 3.13 holds for S.

3.3.4. Case III: Splitting nodes For the rest of the proof of Proposition 3.13,
let o be a parent e-splitting node that lies on the true path, and suppose that the
proposition holds for ae. We show that o has a child f on the true path, and that the
proposition holds for the unique child f* of 8 (and hence also for ).

Until the end of the proof of Proposition 3.13, we fix a stage sy witnessing that
Proposition 3.13(a) holds for c.

LemmMA 3.15. Let p € {0,1}¢; let s be a stage.

(a) Letk > 1. If £ (k) | then f{7(k —1) .

(b) If B is a child of o and k2 (B) |, then &7 (kL (B)) .

(¢) If B is a child of o and k% (B) |. then for every child y < B of a., ki (y) | and
ki (y) < k5 (B).

PROOF. (a) follows from the fact that when we define a new computation £/, (k).
we have /" (k —1) |. and we set u;/ (k) > ufw(k 1). Also, we note that such a

stage s is not a new balls stage, so 4, = A1, 50 ug™” (k — 1) = uy/ (k- 1).
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(b) is by our stipulation that when an A-change causes a computation f§”/ (k) to

become undefined at stage s + 1. and k = k7 (/). then we set k7 (8) 1.
(c) follows from the previous two parts, and the fact that a new computation is
always set up at the leftmost “free” child (a child with k7 (f)1); see the proof of

Lemma 3.7. =

Recall that we say that a computation 57 (k) | is A-correct if A; | u= A | u,
where u = u;’ (k) is the use of the computation f ¢ (k). Also recall that f o (k) is
A-correct if and only if forall z > s, /7 (k) .

LeEMMA 3.16. Let 8 be a child of a; let p € {0, 1}¢; let s be a stage. Suppose that
k = kP (B) . and suppose that the computation f (k) was defined after stage so, and
is A-correct. Then S(B. p), contains 2k many balls x < ug” (k).

PrOOF. Let r be the stage at which the computation was defined. Let X be the set
of x € S(p. p), such that x < u;"/, (k). Then by the construction. |X| > 2k. and by
assumption that the computation is A-correct, X C AC. By induction on 7 € [r, ]
we see that X C S(B, p),. Suppose that this holds for 7, and 7 < s. Since ¢ > sy, no
ball from X is pulled by a node to the left of . If y < f is a child of «, and any ball
from X is moved to Y (y),,,. then k7, (y)1: by Lemma 3.15. k7 _,(8) 1. But then,
since /" (k) is A-correct, there is no stage w > ¢ at which k%, (f) = k. contradicting
the hypothesis of this lemma. Hence. X C S(f),,;. -

The following follows from the construction.

LemMA 3.17. Let f be a child of o, and let p € {0, 1}°. Let s > s be a stage.

(a) Suppose that for all t > s. k! (B) ). Then f{7 (kY (B)) is A-correct, and for all
t > 5. k' (B) =kl (B). and B does not release balls at stage t.

(b) Suppose that s > so, k2(B) L. and f¢f (kP (B)) is A-correct. Suppose, further,
that for all children y < p of «, for all t > s, y does not release balls at stage t.
Then forall t > s, k" () ].

DEFINITION 3.18. Let S be a child of «, and let p € {0, 1}¢. We write k”(f) | if
k?(B) | for all but finitely many s.

The following is the main lemma.

LemmA 3.19. Let f be a child of o, and suppose that for every every child y < f
of a, for every p € {0, 1}, k?(y) |. Then for all p € {0, 1}, there are infinitely many
stages t such that kI (B) | and 17" (k! (B)) is A-correct.

An immediate consequence is the following.

Lemma 3.20. Let f be a child of o, and suppose that for every every childy < p of
a, for every p € {0,1}¢, k”(y) |. Then either:

1. forall p € {0,1}¢, k?(B) L: or
2. B releases balls infinitely often, in fact, for all p € {0,1}° there are infinitely
many t such that B releases balls at stage t. and 7" (k' (B)) is A-correct.

ProOF. Let 51 > 50 be a stage witnessing the assumption on the children y < f
of a:forall s > sy, forall p € {0.1}¢, k5 (y) L.

https://doi.org/10.1017/js1.2025.10146 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2025.10146

30 PETER CHOLAK. RODNEY DOWNEY, AND NOAM GREENBERG

Let p € {0,1}°. Let s > s; be a stage such that k7 (f)]. and f7(k{(B)) is
A-correct. If § does not release any balls after stage s, then by Lemma 3.17(b),
stage s shows that k” () |. So if f releases balls only finitely many times, (1) holds
for .

Suppose that f releases balls infinitely often; let ¢ be the least stage > s at which
B releases balls. The assumption that 5" (kf(B)) is A-correct, and s > s1, imply
that k = k/(B) = k7 (B) and that f;*” (k) | is A-correct, so ¢ is one of the stages as
required for (2). =

ProOOF OF LEMMA 3.19. Let 51 > 59 be a stage witnessing the assumption on the
children y < f of . Fix some p € {0, 1}¢. Let s, > 51 be any stage. We show that
there is some ¢ > s, such that k7(B) | and f7”(k7(B)) is A-correct. Suppose, for a
contradiction, that this is not the case. In other words:

@ If s > s, and k¥ (B) | = k. then there is some ¢ > s such that /7 (k) 1.

Let m be the least such that there is some s > s, such that f§”(m) . For all
k <m. f5,"(k) | is A-correct. Hence. our assumption for contradiction implies:

®, Forall s > sy, either kJ (8) 1, or k4 (B) = m.
We claim:
®3 There are infinitely many stage s at which £ (m) 7.

Suppose, for a contradiction, that this is not the case. Thus, f**(m)|. Let r
be least such that f*(m) is A-correct, i.e., the correct computation f**(m) is
defined at stage r — 1. By the choice of m, r > s,. The computation is established at
some child y of a: k”(y) = m. Since r > s1, y > . By Lemma 3.15, if y > f8 then

k! (B) | < m, contradicting ®,. Hence, y = 8. But then, by @1, there is some s > r
such that £ (m) 1, giving the desired contradiction that establishes ®s3.

We also observe:

®q If s > 5o and f(m) 1 then k7 (B) 1.

This follows from Lemma 3.15 and ®,:if k = k7 (B) | then f* (k)| and k > m
so [ (m) .

There are only finitely many stages s such that k7 () = m and f releases balls at
stage s (this is the main point of using the certification process). To see this, let s be
such that k2 (B) = m and p releases balls at stage s. Let r be the stage at which the
computation f§”(m) was defined. Then @, (m) < f?(m) < ¢,;(m), in particular,
o, (m) # ;(m). Thus, there is at most one such stage s after the last stage at which
;(m) changes.

Let s3 > s, be a stage after which there are no such stages s; by ®3, assume that

" (m) 1.

®5 For all s > s3, either /&7 (m) 1 or k2(B) = m.

We prove ®s by induction on s > s3. By assumption, this holds for s = s3. Let
s > 3. First, suppose that f5” (m) 1. By ®4. k() 1. Hence, if a new computation
£ (m) is defined at stage s. it is established at f. setting k!, () = m. If not. then
/e +1( m) 1. Next, suppose that k? () = m. Since s > s3, f does not release any balls
at stage s. Hence, either k7 (8) = m. or £/ (m) 1.

Putting ®5 and the choice of s3 together, we obtain:
®e P does not release balls at any stage s > s3.
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By choice of sy and s;, after stage s3, no ball from AC is moved to B+, or from
B to any node to its left. So for all s > 53, Y(BT.p), = Y(BT.p).so Y(BT.p)is
finite. Let N = | Y (BT, p)|. Let v = u®?(m — 1) if m > 1, v = 0 otherwise.

By the assumption that Proposition 3.13(b) holds for «, let s > 53 be a stage at
which |Y(a, p), N Cs| > N +2m + v. Let X be the set of x € Y (a. p), N Cs such
that x ¢ Y(f"), and x > v.

Then |X|>2m, and for all 7 > 5. X C Y(a.p), \ Y(B7),. By ®; and ®4, let
¢ > s be a stage such that k() 1. Then by Definition 3.5, either X C S(f. p),. or
balls are pulled by /3 at stage ¢, resultingin X C S(f. p),.,. In either case, we obtain
astage r > sy at which 7 (m) 1, kL (B) T.and X C S(B. p),. So at stage r we define
a new computation f*/ (m) and set k', | (B) = m. The use u;| (m) is defined to be
x + 1 for some x € X. Since X C C,. this shows that /' (m) is A-correct. This
contradicts ®3, which finishes the proof of Lemma 3.19. -

LemMa 3.21. Some child of « lies on the true path.
Recall that this means that some child of « releases balls infinitely often.

PrOOF. Suppose, for a contradiction, that no child of «a releases balls infinitely
often. By induction on the children of «, from left to right, we see, using Lemma 3.20,
that for every child 8 of «, for every p € {0, 1}, k”(B) |. Fixing p, since the map
B+ k?(p) is injective (Lemma 3.15), we see that £ is total.

Since each f*” is A-computable, ¢ dominates max, f*”. Say this domination
starts at k*. Let f§ be a child of « that lies sufficiently to the right, so that for all
p € 10,1}, k?(B) = k*. Let s be sufficiently late so that for each p, for all # > s,
k'(B) L =k’ (B), and p,(k7) > f*,(k”(B)). But then, f8 is certified at each stage
t > s, and so, will release balls—contradicting Lemma 3.17. -

Let f be the child of « that lies on the true path.
LEMMA 3.22. Proposition 3.13 holds for both B and 5.

Proor. By Lemma 3.20. for every child y < f of «. for all p, k”(y)]. By
Lemma 3.17, eventually, each such child stops pulling any balls (whether from
A® or not), and does not release any balls. Thus, for each such y. only finitely many
balls ever enter Y (y), and each such ball is eventually removed from the machine,
or stops moving. This gives part (a) of Proposition 3.13 for 8+ (and hence for 8 as
well).

Part (b) follows from Lemma 3.20 as well. Fix p € {0,1}. Let 7 be a stage.
If k7(B)L=k. f’(k) is A-correct, and B releases balls at stage ¢, then by
Lemma 3.16, [S(f*. p),,1 N Cpy1| = 2k. By construction, in fact, for each i = 0, 1.
|S(ﬂ+~PAi)t+1 N Cra| 2 k.

If¢" >t kl,(B) L = k' and f;” (k') is A-correct, then k" > k. showing that these
numbers k go to co. -

COROLLARY 3.23. The true path is infinite, and Proposition 3.13 holds for every o
on the true path.

3.3.5. Therest The restis now straightforward. For each p € 2<%, et
Z(p)

be the collection of balls x ¢ H whose permanent label extends p.
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LEmMMA 3.24. Let o on the true path be an e-decision or splitting node. For every
p €{0,1}, Y(a.p) # Q.

ProoF. Very much like the proof of Lemma 2.16, except that replacing true stages
by Cy actually makes things slightly simpler. We may assume that « is an e-decision
node. Let sy be a stage after which nodes that lie to the left of @ do not eliminate
any balls, or pull any balls in AC. Let

X = min U(CS NY(a. p),).

>80

x exists by Proposition 3.13. Say s; > 5o and x € C;; N Y(a,p)sl. By induction
on r > s we see that x = min Y (e, p),. For t = s this is because Cj; is an initial
segment of Qy, . Suppose that x = min Y (. p),. Then x is not eliminable by any node
y=a.andsox € Y(a.p),, . Lety <x.Ify € Y(e.p),,,. thenas C;, C Cryy. we
have y € C,.1, contradicting the minimality of x. -

COROLLARY 3.25. Let « on the true path be an e-decision or splitting node. For
every p € {0,1}¢, Y (. p) is infinite.

It follows that each Z(p) is infinite.
LEMMA 3.26. For every a on the true path, Y (o) =* HP.

Proor. Like the proof of Lemma 2.18. The new part is when « is a child e-splitting
node; we need to show that every ball that lies to the right of a but below o is
eventually pullable by «. This follows from the fact that « releases balls infinitely
often: if o releases balls at stage s, then k” +1 (a) 1 for each p, and then every such
ball x is pullable by « at stage s + 1. .

As a result, for all p, if « is an e-decision or splitting node on the true path, then
Z(p) =* Y(a.p).

LemMA 3.27. Forevery p, H U Z(p) is c.e.

PrOOF. Let a be an e-decision node on the true path, where |p| = e. Then Y (a, p)
is c.e.: from some stage onwards, any ball outside H which enters Y (o) with label
p.will stay in Y (o, p). -

LEMMA 3.28. Forevery p. Z(p) =* Z(p"0) U Z(p"1). and Z(p"0) N Z(p"1) = O.

PrOOF. If « is an e-decision node on the true path with e = |p| + 1, then
Y(a.p) = Y(a.p0)U Y(a, p°1). .

LemmA 3.29. For every e, W, N HE is the union of finitely many sets Z(p), up to
finite difference.

ProOE. Like the proof of Lemma 2.20. Let « on the true path be a child of an
e-decision node. Then for all p € {0,1}¢, either Y(a,p) C W,, or Y(a.p)N
W, =* @. The result follows since Z(p) =* Y (. p) for each such p, and Z(p)
for p € {0.1}¢ partition HC (up to finite difference). =

COROLLARY 3.30. H is atomless hyperhypersimple.
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§4. Other Boolean algebras. In this section, we explain how to modify the proof
of Theorem 1.2 to show:

THEOREM 4.1. Let A be low, and coinfinite. For any X3-Boolean algebra B there is
some c.e. H O A such that L*(H) = B.

Let B be a £3-Boolean algebra. This means that it is the quotient of the (standard
computable copy of the) atomless Boolean algebra by a 3 ideal. An equivalent
characterisation is in terms of Boolean algebras generated by trees. Recall that for
atree T C 2<“ we defined the Boolean algebra B(T'). generated from the elements
of T according to the rules: (i) every t € T is the join of its children and (ii) if
0,7t € T are incomparable then g A 7 = 0p (7). We noted that this implies that if 7 is
non-extendible on 7, then v = Op (7 (and the atoms of B(T') are  where 7 isolates
a unique path of T). Note that there are other ways of producing Boolean algebras
from trees, for example, ones in which leaves of the tree are atoms. However, the
advantage of the representation that we chose is:

o The X3 Booleans algebras are precisely the algebras B(T'), where T is As.

(If we used the other representation, we would need X trees). The idea of the
modified construction is to add nodes that decide, for each p € {0,1}¢, whether
p € T or not, again utilising A3 guessing. A child f of such « that guesses that
p ¢ T will attempt to enumerate all of Y («, p) into H. The technique is identical to
eliminating balls to decide W, on Y (. p).

4.1. The construction. Most of the construction is as above, so we explain the
new ingredients. We now have four kinds of nodes:

e e-tree nodes, of length 4e;
e ¢-decision nodes, of length 4e + 1;
e parent and child e-splitting nodes, of lengths 4e + 2 and 4e + 3.

For an e-tree node a and E C {0, 1}¢, the statement v («, E) is:
E =TnA{0,1}°.

This is a finite Boolean combination of A3 statements. Again the children are o’E,
for E C {0,1}¢ and n < w. We define £(a"E,) = £(w(a. E). n)) as above.

DEerFINITION 4.2. Let f = " E,, be a child of an e-tree node «, and let p € {0, 1}¢.
We say that a ball x is pullable by (f. p) at a stage s if:
(i) x € Y(a.p), \ Y(<B.p)y:
(ii) p € E; and
(iii) either:
o [Y(B.p),| < £(B)s. or
o Y(B.p), # @and x < max Y (B, p),.

We say that x is eliminable by (. p) at stage s if:
(iv) x € Y(eup)s \ Y(<B.p)y:
(V) p ¢ E:
(vi) x # min Y (e, p),: and
(vii) x < £(a)y.
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We need to modify Definition 3.5(c) so that we require certification only for those
p € {0, 1} that are guessed to be on the tree 7. If « is an e-decision, e-splitting, or
(e + 1)-tree node, then we let

E(a)

denote the set E C {0, 1} such that for some n, £"E,, < «, where € is the e-tree node
preceding a. We let E(A) = {4}. Then in the new version of Definition 3.5(c), we
require that the conditions hold for those p € E().

The rest of the construction follows the atomless hyperhypersimple construction
above, verbatim.

4.2. The verification. For the verification, we only need to replace the second
part of Proposition 3.13. The new version of Proposition 3.13(b) replaces {0, 1} by
E(a):

o If o lies on the true path, then for all p € E (), for all k, there is some s such
that | Y (a. p), N Cs| > k.

The rest of the verification follows without change, showing that if p € T then
Z(p) is infinite, while if p ¢ T then Z(p) is finite.
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