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Abstract

Background. In model-based economic evaluations, the effectiveness parameter is often
informed by studies with a limited duration of follow-up, requiring extrapolation of the treat-
ment effect over a longer time horizon. Extrapolation from short-term data alone may not
adequately capture uncertainty in that extrapolation. This study aimed to use structured expert
elicitation to quantify uncertainty associated with extrapolation of the treatment effect
observed in a clinical trial.
Methods. A structured expert elicitation exercise was conducted for an applied study of a
podiatry intervention designed to reduce the rate of falls and fractures in the elderly. A
bespoke web application was used to elicit experts’ beliefs about two outcomes (rate of falls
and odds of fracture) as probability distributions (priors), for two treatment options (inter-
vention and treatment as usual) at multiple time points. These priors were used to derive
the temporal change in the treatment effect of the intervention, to extrapolate outcomes
observed in a trial. The results were compared with extrapolation without experts’ priors.
Results. The study recruited thirty-eight experts (geriatricians, general practitioners, physio-
therapists, nurses, and academics) from England and Wales. The majority of experts (32/38)
believed that the treatment effect would depreciate over time and expressed greater uncer-
tainty than that extrapolated from a trial-based outcome alone. The between-expert variation
in predicted outcomes was relatively small.
Conclusions. This study suggests that uncertainty in extrapolation can be informed using
structured expert elicitation methods. Using structured elicitation to attach values to complex
parameters requires key assumptions and simplifications to be considered.

Introduction

Decision-analytic model-based economic evaluation (MBEE) is intended to generate relevant
costs and treatment effects for competing alternatives, over an appropriate time horizon (1–3).
The characterization of uncertainty (parameter, structural, methodological, and decision) is a
fundamental component in the design and conduct of MBEE (4). Methods for incorporating
uncertainty into decision models have received substantial attention over the past two decades
(5;6). Quantifying what this uncertainty looks like is more problematic with continued debate
about appropriate methods and what to do in the absence of available evidence.

Temporal uncertainty arises when the time horizon for the specified MBEE exceeds the
observed end point for available evidence. This type of uncertainty poses specific challenges
(7). The finite, and often limited, duration of follow-up in randomized controlled trials
(RCTs), used to populate the effectiveness parameter for treatments in MBEE, means it is nec-
essary to extrapolate and predict the lifetime impact on outcomes (1). Ideally, external data
from an appropriately designed observational study should be used. Such data are rarely avail-
able. Instead, outcomes can be extrapolated directly from the trial or instead, through scenarios
representing assumptions or statistical models of the relative effect of treatment after the evi-
dence end point (7;8). Neither of these approaches appropriately quantify uncertainty around
the generated predictions for use in MBEE. Extrapolation ignores uncertainty in the predictive
accuracy of the statistical model fitted to short-term data. Scenario analysis underestimates
uncertainty if none of the scenarios accurately represent the expected trajectory of the treatment
effect (8). One option is to delay approval decisions until temporal uncertainty has been resolved
when longer-term data are made available. However, delays have consequences for patients who
will not realize the benefit of the treatment or incur costs while waiting for research to report (7).

In the absence of empirical evidence, an alternative approach is to use structured expert
elicitation (SEE) of experts’ beliefs to characterize uncertainty in the progression of the
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treatment effect to make decisions in the absence of required data
or while waiting for data collection to be completed (7;8). Experts’
beliefs can be captured as probability distributions (experts’ pri-
ors) to represent their uncertainty in the expected value of a
parameter. There is a growing interest in using expert elicitation
to characterize uncertainty in MBEE, but there are only a few
applied examples that attempt to elicit temporal uncertainty
(9–13). The published studies used a range of methods to extrap-
olate different types of parameters, predominantly when “short-
term” outcomes are available to experts. This study elicited experts’
beliefs to quantify temporal uncertainty regarding the relative effect
of a multifaceted podiatry intervention designed to reduce the rate
of falls and fractures in the elderly, compared with treatment as
usual (TAU). It is the first such study to our knowledge that elicited
the relative effect (rate and risk ratios) before the short-term effect
had been reported.

Methods

This SEE was designed in accordance with a published reference
protocol (14) and reported in line with published recommenda-
tions (15).

Intervention

A multifaceted podiatry intervention involving education, exercise,
foot orthoses, and footwear was designed to reduce the rate of falls
and fractures in the elderly, with an associated impact on costs
and health-related quality of life (HRQoL). The clinical and cost-
effectiveness of the podiatry intervention in the first year of
treatment has been evaluated in a published trial (16;17). In the
trial, the podiatry intervention led to a modest reduction in the
rate of falls [rate ratio = .88; 95 percent confidence interval (CI),
.73–1.05] and an increase in the risk of fractures after a fall (risk
ratio = 1.32; 95 percent CI, .65–2.76), although neither effect was
statistically significant. These trial results were not available when
designing the SEE exercise reported here.

Decision Problem

The podiatry intervention was designed for indefinite use, with a
potentially long-term effect on mortality through a reduced risk
of falls. The appropriate time horizon for this decision problem
and associated analysis was, therefore, a life time (1). The decision
problem for SEE was to generate estimates of the lifetime impact
of the podiatry intervention compared with TAU, in the absence
of empirical evidence. Crucially, this SEE assumed that the long-
term effect of the podiatry intervention was correlated with the
observed effect in the trial.

Elicitation Protocol

A pre-specified protocol to direct the elicitation exercise was pro-
duced (see Supplementary File 1) and piloted (see Supplementary
File 2). The goal was to develop a SEE protocol that could be com-
pleted by an individual working in isolation within 1 h. Protocol
development was guided by two physiotherapists with expertise in
fall prevention.

Defining the Relevant Experts

Experts were defined as clinicians and/or researchers who: had
applied knowledge of foot and ankle physiology; understood the

risk factors for falling; understood the role of fall prevention inter-
ventions; and had direct experience of delivering behavioral inter-
ventions to patients. These identified experts included: clinicians
representing a range of settings (fall prevention, fall treatment,
and regular contact with at-risk population); different professions
(geriatricians, nurses, physiotherapists, and researchers); and dif-
ferent levels of patient contact and professional experience (details
in Supplementary File 1).

Identifying the Relevant Elicitation Parameters

The target parameter to be quantified in this SEE was defined as
the relative change in the treatment effect for the podiatry inter-
vention relative to TAU, over a lifetime horizon. A change in the
treatment effect is not directly observable in RCTs or clinical prac-
tice (hence an unobservable parameter), and so it is difficult to esti-
mate accurately (18). The parameter of interest was, in keeping with
published recommendations (14), broken down into quantities that
can be observed and measured: the defined outcomes for patients
that do (do not) receive the podiatry intervention.

Two outcomes were elicited to capture the treatment effect: (i)
rate of falls and (ii) the risk of having a fracture after a fall (risk of
fractures thereafter). Elicited outcomes with (and without) the
podiatry intervention were used to derive two treatment effects:
(i) the rate ratio of falls and (ii) the relative risk of fractures.
The temporal change in the treatment effect was then derived
from treatment effects at two time points: (i) the treatment effect
at 1 year after starting treatment (comparable to that observed in
the RCT) and (ii) the treatment effect at a second (specified) time
point.

Eliciting the Relative Change in the Treatment Effect

Six steps (see Figure 1) were followed guided by the SEE exercise
protocol (Supplementary File 1) to quantify the relative change in
the treatment effect.

Step 1: Eliciting 1-Year Outcomes for TAU (Baseline)
The rate of falls was derived from the frequency distribution of
falls in a population by weighting each possible number of falls
by its probability. It was assumed that each individual patient
can experience more than one fall in a given time period, poten-
tially exceeding ten falls (19;20) per year. Eliciting the probability
of more than ten falls would be time-intensive. To reduce the bur-
den on experts, possible outcomes were grouped, confirmed to be
reasonable by a physiotherapist specializing in fall prevention,
into three categories capturing the conditional probability of
falling: at least once (P(x > 0), where x is the number of falls);
more than five times (P(x > 5|x > 0)); more than ten times
(P(x > 10|x > 5). Conditional probabilities were elicited to prevent
statistical incoherence (e.g., P (x > 5) > P (x > 0)), and assumed to
be independent. Eliciting correlation between the conditional
probabilities was deemed to be prohibitively cognitively bur-
densome, requiring in-depth training of experts in the concept
of correlation (21).

Experts’ priors were elicited for each of the three categories of
outcome as relative frequencies to derive the probability distribu-
tion of the rate of falls (details provided in Supplementary File 1).

The risk of fracture after a fall was elicited as odds to be con-
sistent with how these values are reported in the literature, and to
allow comparison of experts’ priors when assessing uncertainty
around different types of quantities.
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Step 2: Eliciting 1-Year Outcomes for the Podiatry Intervention
Step 1 was repeated to elicit the rate of falls and odds of fractures
for the podiatry intervention, relative to the baseline (TAU).
Experts were asked to express their beliefs about outcomes
1 year after starting the podiatry intervention, assuming that the
proportions of falls and odds of fractures without the intervention
were equal to their mode (a most likely scenario). The treatment
effect was assumed to be independent of the baseline outcomes.

Step 3: Deriving the Treatment Effect 1 Year after Starting
Treatment
The treatment effect 1-year after starting the podiatry intervention
relative to TAU was measured in two ways: rate ratios for falls
(RtR) and relative risk of having a fracture after a fall (RR).

Step 4: Capturing the Potential Impact of Time
Experts were asked whether they believed the effect of the podia-
try intervention would change over time using multiple-choice
questions (MCQs). Dependent on the answers to the MCQs, a
sub-sample of experts were asked to elicit outcomes at a subse-
quent time-point, determined by the experts.

Experts were asked to elicit outcomes in patients who contin-
ued to receive the podiatry intervention after the trial end point,
conditional on the outcomes in TAU remaining the same, to cap-
ture the change in the treatment effect. Age-related changes in
falls and fractures were adjusted for at the analysis stage (not
reported in this paper).

Step 5: Deriving the Treatment Effect at Second Time Point
The treatment effect for the podiatry intervention at a follow-up
time point after the trial completion was derived using the process
described in Step 3.

Step 6: Deriving the Temporal Change in the Treatment Effect
The change in the treatment effect (ΔTE) was assumed to be lin-
ear and relative to the treatment effect observed in the trial of the
podiatry intervention, derived using the following equation:

DTE = TEt2 − TEt1
TEt1

(1)

where TEt1 indicates the treatment effect 1 year after starting the
podiatry intervention, and TEt2 indicates the treatment effect at
the second time point.

The second time point at which the treatment effect was elic-
ited, t2, varied between experts by design. To make experts’ priors
on the change in the treatment effect comparable, ΔTE was used
to derive the annual change in the treatment effect, ΔATE using
the following equation:

DATE = DTE
t2

(2)

The treatment effect can take any value between zero and
infinity, and so ΔTE and ΔATE could take any value between
−1 and infinity, where ΔATE < 0 indicates the treatment effect

Figure 1. Methods for eliciting the treatment effect and changes in the treatment effect.
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would decrease (potentiate when TEt1<1, depreciate when TEt1 > 1),
ΔATE = 0 indicates no change in the treatment effect, and ΔATE
> 0 indicates that the treatment effect would increase over time
(depreciate when TEt1 < 1, potentiate when TEt1 > 1).

Selecting the Experts

A minimum sample of thirty experts was set as the target sample
size based on feasibility while ensuring a sufficient sample size to
reflect the views of a wide range of experts. The protocol in
Supplementary File 1 describes the expert recruitment process.

Collecting the Expert Beliefs

Data was collected in September and October 2016. The elicita-
tion was conducted with each expert individually to avoid biases
such as “peer-pressure” potentially introduced using a group-
approach and to capture the variation in beliefs between different
experts. Experts were given the choice of completing the exercise
with the help of the investigator, either in person or on the phone.
Experts did not receive any financial rewards for completing the
exercise but were provided with lunch if completing the exercise
in person.

Data for the expert elicitation exercise were collected using a
bespoke web application (the elicitation tool) produced in Shiny
package for R (22), which is an extension of the MATCH code
developed by Morris et al. (23). The elicitation tool trained experts
on concepts of uncertainty and how to express their beliefs in the
required format, before taking them through the elicitation ques-
tions (see protocol in Supplementary File 1 for details).

Experts’ priors were elicited using the “Chips and Bins”
method (24), suggested to be more intuitive and at least as effec-
tive as other commonly used methods in experts not trained in
probabilities and statistics (14). The Chips and Bins method pro-
vides experts with a range of possible parameter values on the
x-axis of a grid and asks them to distribute the “chips” across
the intervals (“bins”) to indicate their uncertainty and generate
a “histogram” (see protocol in Supplementary File 1 for examples
of questions).

Prior Aggregation
The objective of data aggregation was to generate one probability
distributions for each treatment effect (RtR and RR). The priors
elicited from individual experts were aggregated mathematically,
using unweighted linear pooling (24;25).

Data Analysis

Data analysis focused on four elements: comparison of experts’
priors to trial outcomes; analysis of experts’ priors on the change
in the treatment effect; extrapolating the treatment effect; and sen-
sitivity analysis.

Comparison of Experts’ Priors to Trial Outcomes
The baseline outcomes and the treatment effect were compared
with the results of the trial of the podiatry intervention using
four summary statistics describing the proportion of experts:

• whose median values differed (lower/higher) to the observed trial
value (representing under/over-estimate of treatment effect);

• who included the observed value in their 50 percent credible
interval (CrI) or plausible range (representing overconfidence);

• whose values did not overlap with the 95 percent CI in the trial;
and

• who included the entire 95 percent CI in their plausible range.

Analysis of Experts’ Priors on the Change in the Treatment Effect
The derived annual changes in rate ratios and relative risk were
described by summarizing qualitatively whether experts believed
the treatment effect would depreciate (or potentiate) over time,
and the magnitude of the change. The direction of change in the
treatment effect implied by experts’ medians was compared with
their stated responses to assess the internal consistency of the priors.

Extrapolating the Treatment Effect
The treatment effect at different time points t was derived using
the following equation.

TEt = TEt−1(1+ DATE) (3)

Negative treatment effect predictions were manually adjusted to
zero. When experts believed that the treatment effect would depre-
ciate over time, the treatment effect was truncated at 1, assuming it
never changed direction (e.g., from beneficial to harmful).

ΔATE was adjusted to standardize its interpretation. As
described in Step 6 above, a positive ΔATE value could indicate
both potentiation and depreciation of the treatment effect,
depending on whether the podiatry intervention was beneficial
or harmful. For extrapolation, it was assumed that experts who
believed the treatment effect would depreciate over time believed
so even if the direction of the treatment effect indicated in their
prior was inaccurate (i.e., the median rate ratio was greater than
1, or the median risk ratio was less than 1). Therefore, when an
expert’s prior on the treatment effect was inaccurate, their prior
on ΔATE was inverted before being applied to the observed treat-
ment effect in Equation 3.

The predicted rate of falls and the risk of fractures derived
from priors are presented graphically. The differences were ana-
lyzed qualitatively, describing how experts’ beliefs, and assump-
tions made in the analysis, affected the predicted rate of falls.

Sensitivity Analyses

One-way sensitivity analyses (see Supplementary File 3) were used
to understand the impact of changing two key assumptions used
to derive the temporal change in the treatment effect:

• conditional independence between different outcomes (1–5, 6–
10, and >10 falls), and between the treatment effect of the podi-
atry intervention and the baseline outcomes;

• the rate of falls derived from experts’ priors on the probabilities
of falling, accurately represented their beliefs.

Results

A total of 38 experts completed the SEE exercise (see
Supplementary File 4 for sample details). Of these, three individ-
uals could not provide values for the risk of fractures due to tech-
nical difficulties with the software.

Experts’ Beliefs about the Treatment Effect 1 Year after
Starting the Intervention

Table 1 compares experts’ priors on the baseline rate of falls, odds
of fracture, and the treatment effect (RtR for falls and RR for
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fractures) with the observed trial results (further diagrams pro-
vided in Supplementary File 5).

On average, experts’ medians on the rate of falls and odds of
fractures (1.05 and 22.8, respectively) were lower than those
observed in the trial (1.57 and 55.9, respectively). The experts pre-
dicted the nature of the treatment effect correctly, as they believed
the podiatry intervention would decrease the rate of falls (mean
RtR = .84, 95 percent CI, .31–2.91) and increase the risk of frac-
tures (mean RR = 1.13, 95 percent CI, .31–3.42).

Analyzing the elicited CrIs, experts were more likely to include
the observed treatment effect in their CrIs (71 and 77 percent of
priors on RtR and RR, respectively) than the observed baseline out-
comes (53 and 9 percent of priors, respectively). Furthermore,
experts were more likely to have some overlap between their
prior and the observed CI when assessing the treatment effect
(89 percent of priors on RtR, 100 percent of priors on RR) than
the baseline outcomes (68 percent of priors on the rate of falls,
28 percent prior on RR).

Overall, the uncertainty across all experts combined was
greater than that observed in the trial, as the elicited medians
and plausible ranges both covered a wider range than the trial-
based CIs, for all four parameters. However, few experts included
the full CI in their prior (61 percent of experts for RtR and 3–39
percent of experts for all other parameters).

Experts’ Beliefs about the Change in the Treatment Effect

In general, experts were certain that the treatment effect would
change (36/38 experts) and diminish after the trial (32/38
experts), and the mean time after which the treatment effect
would diminish completely was 3.0 years. Two experts believed
the effect of the podiatry intervention would potentiate, and pla-
teau after 3.2 years (mean), while two were uncertain whether it
would potentiate or diminish. One expert was uncertain whether

the treatment effect would change, and one was certain it would
stay the same.

Figure 2 shows experts’ priors on the annual change in the
treatment effect. Priors elicited from thirteen experts were incon-
sistent with their stated treatment effects. Twelve experts believed
that the treatment effect would depreciate, yet their priors
(medians) suggested the opposite, for at least one of the two
outcomes. One expert (Expert 26 in Figure 2) was uncertain
whether the treatment effect would change over time, yet their
priors indicate that they were confident that the treatment effect
would diminish.

Extrapolation: Combining Trial Outcomes and Experts’ Priors

Figure 3 shows the rate of falls and the risk of fractures observed
in the trial, extrapolated over time using experts’ priors. By year 5,
the median predicted the rate of falls was between 1.3 and 1.5 for
87 percent (33/38) of experts, and for 97 percent (33/35) the risk
ratio was between .04 and .09.

Three priors led to predicted outcomes outside the possible
range of the parameter—one for the rate of falls (predicted RtR
< 0) and two for fractures (predicted RR > 1). The majority of
experts believed the treatment effect would depreciate. The
mean number of years for the predicted rate of falls to revert
back to pretreatment levels was 3.2 years, compared with the
mean 3.0 years in their stated responses. For those experts who
believed the treatment effect would depreciate both in their stated
responses and in their priors, the mean difference between time
taken for the treatment effect to diminish in verbal responses
and priors was −.08 years (range: −4 to 3 years). For the risk of
fracture, fourteen experts expressed priors that reverted back to
pretreatment risk. Of these fourteen experts, the mean number
of years it took for the treatment effect to diminish was 4.9
years, and the mean difference between time taken for the

Table 1. Comparison of experts’ priors and trial outcomes for four elicited parameters.

Rate of falls
(n = 38)

Rate ratio
(n = 38)

Odds of fracture
(n = 35)a

Risk ratio
(n = 35)a

Mean observed in the trial (95% CI) 1.57 (1.37–1.78) .88 (.73–1.05) 55.9 (42–71) 1.32 (.65–2.76)

Experts’ medians: mean (range) 1.05 (.09–2.92) .84 (.31–2.91) 22.8 (1–149) 1.13 (.31–3.42)

Median of pooled prior .82 .73 12.8 .99

Experts’ plausible range 0–7.05 0–8.67 0–199 .08–19.67

Plausible range of pooled prior 0–6.20 .01–7.62 0–199 .09–15.65

Number (proportion) of experts whose median was lower than the
observed value

29 (.76) 25 (.66) 31 (.89) 29 (.83)

Number (proportion) of experts whose median was higher than the
observed value

9 (.24) 13 (.34) 4 (.11) 6 (.17)

Number (proportion) of experts who included the observed value in their
50% CrI

3 (.08) 13 (.34) 1 (.03) 7 (.2)

Number (proportion) of experts who included the observed value in their
plausible range

20 (.53) 27 (.71) 3 (.09) 27 (.77)

Number (proportion) of experts whose LL was above and UL was below
the lower 95% CI, respectively

1 (.03), 11 (.29) 1 (.03), 3 (.08) 2 (.06), 23 (.66) 0 (0), 0 (0)

Number (proportion) of experts who included the entire 95% CI in their
plausible range

15 (.39) 23 (.61) 1 (.03) 11 (.31)

CrI, credible interval; LL, lower limit; UL, upper limit; CI, confidence interval.
aThree experts did not complete this part of the exercise due to technical difficulties.
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treatment effect to diminish in verbal responses and priors was
2.6 years (range: −1 to 8 years).

Figure 4 shows the predicted rate of falls and the risk of frac-
tures over time, derived using experts’ aggregate priors compared
with two alternative scenarios—indefinite treatment effect and
treatment effect diminishing 2 years after starting treatment.
The median rate of falls and risk of fractures derived from experts’
priors were between the two scenarios, as experts generally
believed that the treatment effect would depreciate gradually.
The point estimates in all three scenarios are comparable (likely
because the treatment effect in the trial was small); however,
uncertainty was much greater when priors were combined with
trial results than in the two alternative scenarios when uncertainty
was extrapolated from short-term data.

Sensitivity Analysis

The two one-way sensitivity analyses suggested no correlation
between experts’ beliefs about the conditional probabilities, and
between the baseline outcomes and the treatment effect.
Furthermore, results were not sensitive to the method used to
derive the rate of falls from their priors (see Supplementary File
6 for details).

Discussion

This study used SEE to inform uncertainty in the treatment effect
over time for a multifaceted podiatry intervention designed to
reduce the rate of falls and fractures in the elderly. The outcomes
(rate of falls and risk of fractures) over time were derived by com-
bining results from a published trial and the elicited priors on the
temporal change in the treatment effect.

Key Findings

The experts’ median predicted rate of falls and risk of fractures
(Figure 4) were within the range of those derived from two con-
trasting assumptions about the trajectory of the treatment effect
observed in the trial (indefinite treatment effect and immediate
reverting to pretreatment outcomes). The priors, however,
implied greater uncertainty than either of the two alternative
assumptions.

The between-expert variation in predicted outcomes (in
Figure 4) was relatively small, probably because the treatment
effect in the trial was small and the majority of experts believed
the effect would depreciate, leaving a relatively narrow range of
plausible values for the treatment effect.

The internal consistency of the elicited priors varied. Priors
elicited from fourteen (out of thirty-eight) experts were not con-
sistent with their stated responses. Furthermore, the consistency
between the time taken for the outcomes to revert back to pre-
treatment levels implied by the priors, and by experts’ stated
responses differed for the two outcomes. The elicited priors on
the rate of falls were fairly consistent but priors elicited for the
risk of fracture were not consistent. This probably occurred
because experts underestimated the effect of the podiatry inter-
vention on fractures (compared with the trial), and so the elicited
change in the treatment effect was more impactful when applied
to the effect observed in the trial.

The study elicited multiple outcomes (rate of falls and odds of
fracture, for different comparators) allowing a comparison
between experts’ assessments of the different types of parameters.
On visual inspection, the results shown in Table 1 implied that
experts’ priors on the treatment effect generally had greater over-
lap with trial results than priors on baseline outcomes.
Furthermore, priors on the rate of falls were more likely to overlap
with trial results than those on odds of fractures. It is not clear

Figure 2. Experts’ priors on the annual change in the rate ratio and relative risk.
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from the findings whether this result was because experts found
rates easier to assess than odds, or whether the observed rate
was simply more representative of the population they observed
in practice.

Comparison with the Existing Literature

We are not aware of any published studies where rates and odds
are elicited for use in MBEE in health care (26). We are aware of
five other studies that elicited temporal uncertainty in this con-
text, by eliciting clinical outcomes (multinomial (11) and contin-
uous (12)), the relative treatment effect (9;10), and survival (13) at
multiple time points. The existing studies differed in how they
dealt with dependency between outcomes at different time points.
One study (12) explicitly elicited the dependency by asking
experts to revise their priors on “long-term” outcomes, after vary-
ing “short-term” outcomes. In the remaining four studies
(9–11;13), experts were presented with the parameter values at
one time point so their priors were relative to the observed proba-
bility distributions, but no correlation was assumed when sampling
values at each time point for use in the probabilistic decision
model. Their approach was not applicable to this study without

assuming independence between outcomes at different time points,
as trial results were not available at the time of elicitation.

Limitations

Some simplifications were necessary to deliver the results in a
timely manner and to reduce burden on experts, such as the
assumptions of conditional independence between outcomes
and the treatment effect, and the treatment effect and its temporal
change. Sensitivity analyses detailed in Supplementary File 6
tested for between-expert correlation between the outcomes
assumed to be independent. The results suggest that the assump-
tions were plausible; however, it is not possible to test for
within-expert correlation post hoc, for example, whether experts
would have adjusted their estimates of the treatment effect for dif-
ferent values of the baseline rate of falls. It is not clear whether the
assumptions made represent the most appropriate methods to
ensure that the resulting priors represent experts’ beliefs.

In addition, assumptions were made when applying the
change in the treatment effect to the effect observed in the trial.
The change in the treatment effect was assumed to be linear
over time. When experts’ beliefs about the direction of the treat-
ment effect were incorrect, we assumed that experts’ beliefs about
the nature of change in the treatment effect (i.e., whether it would
potentiate or depreciate) did not change. This assumption was
applied to many priors because the observed treatment effect
(both for falls and fractures) was not statistically significant, and

Figure 3. Median outcomes over time, derived from trial results and experts’ priors.
For experts who believed the treatment effect would potentiate, the predicted rate of
falls and the risk of fractures were assumed to plateau after 4 years. The red line indi-
cates no effect.

Figure 4. Uncertainty in outcomes over time, derived from trial results and experts’
aggregate priors. Line = median. Shading = 95% CI. TE = treatment effect.
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so random samples from their 95 percent CI indicated the inter-
vention could be both beneficial and harmful.

This study did not explore reasons for internal inconsistencies
in experts’ values. Experts were able to update their priors at any
point in the exercise but they were not provided with verbal feed-
back about what their priors implied, in terms of the treatment
effect and its change. The majority of the priors that lacked inter-
nal consistency implied that the treatment effect would potentiate
rather than diminish over time, potentially underestimating the
rate at which the rate of falls and fractures would return to pretreat-
ment levels. There is no guidance in elicitation literature on
whether such priors should be included in pooled estimates. The
exclusion of priors that lacked internal consistency and other
basis for differential weighting is a topic for further research.

Policy Implications

This study shows that SEE can be used to inform temporal uncer-
tainty for use in MBEE. Without experts’ input, uncertainty in the
treatment effect is assumed to be stable over time (8)—an
assumption that is inappropriate in many instances. The elicita-
tion of experts’ uncertainty provides an alternative to extrapola-
tion from short-term data alone (in this case, the trial). Experts
may observe patients over a longer term compared with experi-
mental evidence, or apply knowledge about comparable interven-
tions to assess plausible long-term outcomes.

The study also demonstrates an approach to eliciting temporal
uncertainty before short-term outcomes have been observed while
allowing for correlation between conditional outcomes at different
time points. The methods are applicable for elicitation conducted
at early stages of intervention development, for example, earlier in
the development pathway for medicines.

Conclusion

This study suggests that using an SEE exercise can be used to
characterize uncertainty in extrapolation of the treatment effect.
However, accounting for correlation between outcomes at differ-
ent time points is complex, and likely to require simplifications.
Further evidence, focusing on applied examples, is needed to
inform the optimum method for eliciting temporal uncertainty
using elicited priors.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0266462322000022.
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