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A note on the values of Mahler measure
in quadratic fields
Edward Dobrowolski and Yun Wang

Abstract. In this note, we prove that quadratic algebraic integers, except for trivial cases, are not
Mahler measures of algebraic integers and we also answer in negative the question of A. Schinzel
[9] whether 1 +

√
17 is a Mahler measure of an algebraic number.

1 Introduction and the statement of the theorems

Let P(x) = a0xn + a1xn−1 + ⋅ ⋅ ⋅ + an−1x + an ∈ Z[x] be a polynomial. The Mahler
measure of P is defined by

M(P) = ∣a0∣
n
∏
i=1

max{∣α i ∣, 1},

where α1 , α2 , . . . , αn are the zeros of P.
If α is an algebraic number we define its Mahler measure by M(α) = M(P), where

P is the minimal polynomial of α in Z[x]. Two problems were considered:
(1) Which algebraic numbers are Mahler measures of integer polynomials?
(2) Which algebraic numbers are Mahler measures of algebraic numbers?
Let M = {M(α) ∶ α ∈ Q̄}, where Q̄ is the set of algebraic numbers. It is well known
and easy to check (see [1]) that every β ∈M is an algebraic integer and a Perron
number. However, in [3], D. Boyd gives an example of Perron units that are not Mahler
measures of an algebraic integers. Partial results are abundant, see, for example, [2–6].
In [5], the authors show that every real algebraic integer is a difference of two Mahler
measures. The results presented in this article relate to the following two theorems of
A. Schinzel proved in [9].

Theorem 1.1. [9] A primitive real quadratic integer β is in M if and only if there exists
a rational integer a such that β > a > ∣β′∣ and a ∣ ββ′ , where β′ is the conjugate of β.
If the condition is satisfied then β = M(β/a) and a = N(a, β), where N denotes the
absolute norm.
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For quadratic integers that are not primitive, he considers the numbers pβ, where
p is a rational prime and β a primitive algebraic integer, and proves the following
theorem.

Theorem 1.2. [9] Let K be a quadratic field with discriminant Δ > 0, β, β′ be primitive
conjugate integers of K and p a prime. If:
(1)

pβ ∈M,

then either there exists an integer r such that
(2)

pβ > r > p∣β′∣ and r ∣ ββ′ , p ∤ r,

or
(3)

β ∈M and p splits in K .

Conversely, (2) implies (1), while (3) implies (1) provided either
(4)

β >max
⎧⎪⎪⎨⎪⎪⎩
−4β′ ,( 1 +

√
Δ

4
)

2⎫⎪⎪⎬⎪⎪⎭
or

(5)

p >
√

Δ.

Here, we focus only on quadratic irrationalities. Let β > 1 be an algebraic integer
of degree two. Denote by β′ its algebraic conjugate. If ∣β′∣ < 1 then, obviously β is a
Mahler measure, that is, β ∈M. This covers the case when β is a unit. However, the
case when ∣β′∣ > 1 is more interesting. We prove the following:

Theorem 1.3. Let β > 1 be an algebraic integer and suppose that ∣β′∣ > 1. Then β is not
a Mahler measure of an algebraic integer, that is, β ≠ M(α) for any algebraic integer α.

Our next theorem relates to Schinzel’s result cited here as Theorem 1.2. He noted
that there are algebraic integers of degree two that do not satisfy condition (2), and
satisfy condition (3) without conditions (4) or (5) of this theorem. As an example,
he cites the number 1 +

√
17 and asks if it is a Mahler measure of an algebraic

number. This particular question was open since 2004 and was quoted by A. Dubickas,
J. McKee and C. Smyth, P.A. Filli, L.Potmeyer, and M. Zhang [6–8] among others. In
the following remark, we show that the list of numbers with the properties listed above
and thus falling in the gap in Theorem 1.2 is in fact infinite.

Remark 1.4. There are infinitely many real algebraic integers β of degree two that
together with suitable prime p do not satisfy condition (2), but satisfy condition (3)
without conditions (4) or (5).
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Proof Let k ≥ 4 be a rational integer. Let 2k + 1 = b2m, where m is square-free and
b a positive integer. Obviously, m ≠ 1 and m ≡ 1 mod 8. Hence, 2 splits in Q(

√
m).

Let β = (1 + b
√

m)/2 and p = 2. Then (2) fails because ββ′ = (1 − b2m)/4 = −2k−2, so
p ∣ r. Further (3) holds, (4) fails because β < −4β′ , and (5) fails. ∎

It is easy to find other types examples than those listed in Remark 1.4 that also fail
the assumptions of Theorems 1.1 and 1.2. For example, many numbers of the form
β = (1 +

√
m)/2 with square-free m ≡ 1 mod 8 and p = 2 fall to this category. This

happens for m = 17, 33, 41, 57, 65, 73, and the list is most likely infinite. The number
1 +
√

17 = 2β is of the type of numbers considered in the proof of Remark 1.4. Our next
theorem shows that it is not a Mahler measure of an algebraic number. We focused
on this number as a tribute to A. Schinzel who specifically asked about it.

It is easy to check that

M(4x2 ± 2x − 4) = 1 +
√

17

and also

M(4x2d ± 2xd − 4) = 1 +
√

17

for every positive integer d as M( f (xd)) = M( f (x)). Here, we prove the following
theorem.

Theorem 1.5. Let f ∈ Z[x]. If M( f ) = 1 +
√

17 and f is irreducible over Q, then

f (x) = 4x2d ± 2xd − 4,

where d is a positive integer.

Since 4x2d ± 2xd − 4 = 2(x2d ± xd − 2), polynomials f (x) are reducible in Z[x].
Consequently, the answer to Schinzel’s question is negative, 1 +

√
17 ∉M.

The ideas used in the proof potentially can be used to investigate the numbers
described in the remark, especially when Q(

√
m) has class number 1.

2 Lemmas

We start with with the following lemma.

Lemma 2.1. Let OK be the ring of algebraic integers of a number field K . If

f (x) = a
n
∏
i=1
(x − α i) ∈ OK[x],

then aα1 . . . αs is an algebraic integer for 1 ≤ s ≤ n.

This lemma is well known and widely used in case of OK = Z. The version stated
here is a slight generalization. The following lemma may be deduced from Dixon and
Dubickas [4, Lemma 2].
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Lemma 2.2. Suppose that λ is a quadratic algebraic integer that is the Mahler measure
of an algebraic number α, that is λ = M(α). Let f (x) = a0∏n

i=1(x − α i) be the minimal
polynomial of α in Z[x] and a0 > 0, an = f (0), λ′ the algebraic conjugate of λ, and
N(λ) = λλ′ . Then

a2r
0 ∣an ∣2s = ∣N(λ)n ∣,

where s is the number of conjugates of α lying strictly outside the unit circle, and
r = n − s.

The following is Schur’s [10] lemma, employed in Schur–Cohn algorithm to
determine the distribution of roots of a complex polynomial relative to the unit circle.

Lemma 2.3. Let p be a complex polynomial of degree n ≥ 1. Define its reciprocal
adjoint polynomial p∗ by p ∗ (z) = zn p(z̄−1) and its Schur transform by T p = p(0)p −
p ∗ (0)p ∗ . Let δ = T p(0). Then:
(1) If δ ≠ 0 then p, T p, and p∗ share zeros on the unit circle.
(2) If δ > 0 then p and T p have the same number of zeros inside the unit circle.
(3) If δ < 0 then p∗ and T p have the same number of zeros inside the unit circle.

3 Proof of Theorem 1.3

For a contradiction, suppose that f ∈ Z[x] is a monic irreducible polynomial and
M( f ) = β. Let

f (x) =
n
∏
i=1
(x − α i).

Suppose that ∣α i ∣ > 1 for i = 1 . . . s, and ∣α i ∣ ≤ 1 for i = s + 1 . . . n. For convenience, we
use notation γ i = αs+i for i = 1 . . . r, where r = n − s. We define two sets

S = {α1 , . . . , αs} and R = {γ1 , . . . , γr}.

Further, let L = Q(α1 , . . . , αn) be the splitting field of f , K = Q(β), G = Gal(L/Q),
and H = Gal(L/K). We claim that

every σ ∈ H permutes S and permutes R.(3.1)

Indeed, since H fixes β, for any σ ∈ H, we have

∣σ(α i)∣∣σ(α2)∣ . . . ∣σs(αs)∣ = β = ∣α1∣∣α2∣ . . . ∣αs ∣.

Then if σ(α i) ∉ S we would have σ(α i) ∈ R so the left-hand side would be strictly
smaller than the right. Further σ is a one-to-one map, hence σ(R) ∩ S = ∅, so
σ(R) ⊆ R, and thus σ(R) = R. We have

β =
s
∏
i=1
∣α i ∣.
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We must have s < n since otherwise M( f )would be equal to the absolute value of the
constant term of f which is a rational integer. We apply now Lemma 2.2 with a0 = 1
and λ = β. We get ∣an ∣2s = ∣N(β)n ∣. Hence

∣an ∣
2s
n = ∣N(β)∣ = ∣ββ′∣ > β because ∣β′∣ > 1.

However, ∣an ∣ = ∣α1 . . . αs ∣∣αs+1 . . . αn ∣ ≤ β. Thus

β ≥ ∣an ∣ > β
n
2s

and we conclude that 2s > n, so 2s > s + r, and s > r. We shall show that the last
inequality contradicts the irreducibility of f . For this, let

f1(x) =
s
∏
i=1
(x − α i) and f2(x) =

r
∏
i=1
(x − γ i).

The coefficients of these polynomials are symmetric functions of α1 , . . . , αs and
γ1 , . . . , γr , respectively. Since every σ from H permutes S and permutes R, these
coefficients are in K , the fixed field of H. Now, let σ be any automorphism in
G/H, then we conclude that f1(x)σ( f1(x)) and f2(x)σ( f2(x)) both are in Z[x] as
σ(K) = K and σ is a non-identity automorphism of K . Further f (x) = f1(x) f2(x).
We get

f 2(x) = f (x)σ( f (x)) = ( f1(x)σ( f1(x))( f2(x)σ( f2(x))).

The degree of integer polynomial f2(x)σ( f2(x)) is 2r < n. However, f 2(x) as a
product of two irreducible polynomials of degree n cannot have a factor of degree
2r < n, a contradiction.

4 Proof of Theorem 1.5

For a contradiction, suppose that λ = 1 +
√

17 = M(α) and the minimal polynomial
of α in Z[x] is

f (x) = a0xn + a1xn−1 + ⋅ ⋅ ⋅ + an−1x + an .

We also define a polynomial

g(x) = ηxn f (x−1), where η ∈ {−1,+1} is the sign of an .

Hence

g(x) = η(an xn + an−1xn−1 + ⋅ ⋅ ⋅ + a1x + a0).

Clearly, both polynomials are irreducible, have positive leading coefficients, and
M(g) = M( f ) = 1 +

√
17. The interplay between f and g plays an important role

in the proof. We use notation from the previous section: S = {α1 , . . . , αs} and
R = {γ1 , . . . , γr}, where γ i = αs+i for 1 ≤ i ≤ r. Also L = Q(α1 , . . . , αn), K = Q(λ),
G = Gal(L/Q), and H = Gal(L/K). Again, the elements of S lie strictly outside the
unit circle, while the elements of R lie inside or on the unit circle. The property (3.1)
still holds.
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We first prove some basic properties of polynomials f and g.

Lemma 4.1. We have:
(1) r = s, so deg f = 2s = 2r is even,
(2) a0 = 4 = ∣an ∣,
(3) the polynomials f and g have no zeros on the unit circle.

Proof (1) We let

f1(x) =
s
∏
i=1
(x − α i) and f2(x) =

r
∏
i=1
(x − γ i)

as in the end of the proof of Theorem 1.3. Then (3.1) still holds, so f1 and f2 are in K[x],
and f = a0 f1 f2 . Again as in the proof of Theorem 1.3, if r ≠ s we get a contradiction
with the irreducibility of f .

(2) Lemma 2.2 with λ = 1 +
√

17 gives a2r
0 ∣an ∣2s = ∣N(λ)n ∣ = 16n , so

ar
0∣an ∣s = 4n .

Further

∣an ∣ = ∣a0α1 . . . αn ∣ ≤ ∣a0α1 . . . αs ∣ = 1 +
√

17.

The first equality shows that ∣an ∣ is a power of 2, the second implies that ∣an ∣ ≤ 4.
We shall show that also a0 ≤ 4. To see this, we apply Lemma 2.2 to g and get ∣g(0)∣ =
∣a0∣ ≤ 4 in the same way as we obtained ∣ f (0)∣ = ∣an ∣ ≤ 4. Both inequalities ∣an ∣ ≤ 4
and ∣a0∣ ≤ 4 together with ar

0∣an ∣s = 4n now give ∣an ∣ = a0 = 4.
(3) Clearly f (−1) ≠ 0 and f (1) ≠ 0 because f is irreducible. Suppose that ζ ∈ C/R

is a zero of f , and ζ lies on the unit circle. Then also ζ−1 = ζ̄ lies on the unit circle and
is a zero of f because the coefficients of f are real numbers. This shows that irreducible
polynomials f and g share a zero, hence f = g . Thus S−1 = {α−1

1 , α−1
2 , . . . , α−1

s } consists
of zeros of g and f . Since S−1 ∩ S = ∅, we conclude R = S−1 and all its elements lie
strictly outside the unit circle. Therefore f cannot have a zero on the unit circle. ∎

Lemma 4.2. Let f ∈ Z[x] be the polynomial defined at the beginning of the section.
That is, M( f ) = 1 +

√
17 and f is irreducible over Q then

(1) σ(S) = R and σ(R) = S for any σ ∈ G/H,
(2) an = −4.

Proof (1) By the previous lemma R has no elements on the unit circle, so ∣γ i ∣ < 1
for all elements of R. We have

λ = εa0α1 . . . αs with suitable ε ∈ {−1,+1}(4.1)

and

an = (−1)2d a0α1 . . . αsγ1 . . . γs .
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Since a0 = ∣an ∣ = 4 and λλ′ = −16 we get

∣α1 . . . αs ∣ = λ/4 and ∣γ1 . . . γs ∣ = ∣4/λ∣ = ∣λ′/4∣.
Then for any σ ∈ G/H we get ∣σ(α1 . . . αs)∣ = ∣λ′/4∣. Hence

∣σ(α1)∣∣σ(α2)∣ . . . ∣σ(αs)∣ = ∣λ′/4∣ = ∣γ1∣∣γ2∣ . . . ∣γs ∣.
Since the right-hand side has the smallest value among the absolute value of the
products of s distinct zeros of f , its conjugates are uniquely determined and we
conclude that σ(S) = R. Since σ is injective and σ(S) = R then σ(R) ∩ R = ∅, so also
σ(R) = S .

(2) From (1), we conclude that σ(α1 . . . αs) = γ1 . . . γs . Also by (4.1) α1 . . . αs =
ελ/4. Hence

an = (−1)2d a0α1 . . . αsγ1 . . . γs = a0ελ/4σ(ελ/4) = a0
λλ′

16
= −a0 = −4. ∎

Now we proceed to the conclusion of the proof of Theorem 1.5. The previous
lemmas show that

f (x) = 4x2d + a1x2d−1 + ⋅ ⋅ ⋅ + a2d−x − 4, while

g(x) = 4x2d − a2d−1x2d−1 − ⋅ ⋅ ⋅ − a1x − 4.

It is convenient to introduce four polynomials

f̂ (x) = 4
d
∏
i=1
(x − α i), f̌ (x) = 4

d
∏
i=1
(x − γ i)

and

ĝ(x) = 4
d
∏
i=1
(x − δ i), ǧ(x) = 4

d
∏
i=1
(x − κi),

where δ i = γ−1
i and κi = α−1

i for i = 1 . . . d . We note that all zeros of f̂ and ĝ lie outside
the unit circle, while all zeros of f̌ and ǧ lie inside the unit circle. By (3.1) and Lemma
2.1, all polynomials are in OK[x]. Further

4 f = f̂ f̌ and 4g = ĝ ǧ .(4.2)

We claim that
1
2

f̂ and 1
2

f̌ are in OK[x](4.3)

or
1
2

ĝ and 1
2

ǧ are in OK[x].(4.4)

For this note that K = Q(
√

17) has class number 1, so OK[x] is a unique factorization
ring and the content of polynomials is well defined up to a unit factor. By (4.2), we
have

4 = c( f̂ )c( f̌ ) and 4 = c(ĝ)c(ǧ).(4.5)
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To proceed further we need to list basic arithmetic facts about OK[x]. We have:
(a) u = 4 +

√
17 is the fundamental unit in OK . The group of unit of OK is

U = {±un ∶ n ∈ Z},
(b) π1 = −3+

√
17

2 and π2 = −3−
√

17
2 are primes in OK ,

(c) π1π2 = −2,
(d) 1+

√
17

2 = uπ2
1 ,

(e) 1−
√

17
2 = −u−1π2

2 .
Further, we also have:

(1) 4α1 . . . αd = ελ, 4γ1 . . . γd = ελ′ ,
(2) 4δ1 . . . δd = −ελ, 4κ1 . . .κd = −ελ′ ,
(3) 4 f (x) = f̂ (x) f̌ (x) and 4g(x) = ĝ(x)ǧ(x),
(4) f̂ (0) = (−1)d ελ = (−1)d εu2π2

1 ,
(5) f̌ (0) = (−1)d ελ′ = −(−1)d εu−12π2

2 ,
(6) ĝ(0) = −(−1)d ελ = −(−1)d εu2π2

1 ,
(7) ǧ(0) = −(−1)d ελ′ = (−1)d εu−12π2

2 .
In particular, 4 = π2

1 π2
2 and π1π2 = −2. By Lemma 4.2, for any σ ∈ G/H we have

f̌ = σ( f̂ ) and ǧ = σ(ĝ), also σ(π1) = π2 . The item (4) on the list above shows that
π2

2 ∤ c( f̂ ). This together with (4.2) leaves us with two possibilities:
(1) 2 ∣ c( f̂ ) and 2 ∣ c( f̌ ) or
(2) π2

1 ∣ c( f̂ ) and π2
2 ∣ c( f̌ ).

We shall show that if the possibility (2) occurs then

2 ∣ c(ĝ) so also 2 ∣ c(ǧ) because ǧ = σ(ĝ).

Indeed

ĝ(x) = 4
f̌ (0)

xd f̌ (x−1) = 4εu
−(−1)d 2π2

2
xd f̌ (x−1).

Hence c(ĝ) = c(± 2u
π2

2
)c(xd f̌ (x−1)) = c(± 2u

π2
2
)c( f̌ ), we deduce that 2∣c(ĝ) because

π2
2 ∣c( f̌ ). Consequently also 2∣c(ǧ). Therefore if the second case occurs we can work

with polynomial g instead of f , so without loss of generality we assume that the first
case occurs.

We thus conclude that

f̂1(x) =
1
2

f̂ (x) = 2xd +
d−1
∑
i=1

A i xd−i + (−1)d εuπ2
1

and

f̌1(x) =
1
2

f̌ (x) = 2xd +
d−1
∑
i=1

Ã i xd−i − (−1)d ε
u

π2
2

are in OK[x], and f = f̂1(x) f̌1(x). Here, Ã i are algebraic conjugates of A i , i = 1 . . . d .
In the last part, we employ Lemma 2.3 to study the coefficients of these polynomials.
Put p(x) = xd f̂1(x−1) = (−1)d εuπ2

1 xd +∑d−1
i=1 A i x i + 2. Then p ∗ (x) = f̂1(x) and
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T p(x) =
d−1
∑
i=1
(2A i − (−1)d εuπ2

1 Ad−i)x i + 4 − ε2u2π4
1 .

Hence

δ = 4 − ε2u2π4
1 ≈ −2.56 < 0.

The polynomial p∗ has no roots inside the unit circle, therefore the same is true about
T p. The degree of T p is less than d . Suppose that deg T p = i for some i , 1 ≤ i ≤ d − 1.
Then the leading coefficient of T p is 2A i − (−1)d εuπ2

1 Ad−i . Since all roots of T p lie
outside of the unit circle, we must have

∣2A i − (−1)d εuπ2
1 Ad−i ∣ < ∣4 − ε2u2π4

1 ∣ = ∣T p(0)∣.
Now we apply the same argument to

p(x) = f̌1 = 2xd +
d−1
∑
i=1

Ã i xd−i − (−1)d ε 1
u

π2
2

whose roots lie inside the unit circle. Then

p ∗ (x) = −(−1)d ε 1
u

π2
2 xd +

d−1
∑
i=1

Ã i x i + 2.

T p(x) =
d−1
∑
i=1
(−(−1)d εu−1π2

2 Ãd−i − 2Ã i)x i + ε2u−2π4
2 − 4.

Hence

δ = ε2 1
u2 π4

2 − 4 ≈ −1.56 < 0.

We conclude as in the previous case that

∣−ε
u
(−1)d π2

2 Ãd−i − 2Ã i ∣ = ∣2Ã i +
ε
u
(−1)d π2

2 Ãd−i ∣ < ∣
1

u2 π4
2 − 4∣ .

From both inequalities, we get

∣2A i − (−1)d εuπ2
1 Ad−i ∣ ∣2Ã i +

ε
u
(−1)d π2

2 Ãd−i ∣ = ∣N(2A i − (−1)d εuπ2
1 Ad−i)∣

< ∣4 − ε2u2π4
1 ∣ ∣

1
u2 π4

2 − 4∣ = 4,

where N is the norm from K to Q. Further

2A i − (−1)d εuπ2
1 Ad−i = −π1(π2A i − (−1)d εuπ1Ad−i)

and

2Ã i +
ε
u
(−1)d π2

2 Ãd−i = −π2(π1Ã i − (−1)d ε
u

π2Ãd−i).

Hence

∣N(π2A i + (−1)d εuπ1Ad−i)∣ =
1
2
∣N(2A i − (−1)d εuπ2

1 Ad−i ∣ < 2.
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We conclude that π2A i − (−1)d εuπ1Ad−i is a unit. However, we have

∣π2A i + (−1)d εuπ1Ad−i ∣ < ∣
4 − ε2u2π4

1
π1

∣ < 4.562

and

∣π1Ã i − (−1)d ε
u

π2Ãd−i ∣ < ∣
1

u2 π4
2 − 4

π2
∣ < 0.4385.

The last inequality excludes the possibility π2A i + (−1)d εuπ1As−i = ±1. It remains
the possibility that π2A i + (−1)d εuπ1Ad−i = ±uk with k ≠ 0. However, then
π1Ã i − (−1)d ε

u π2Ãs−i = ±u−k , but

max(∣uk ∣, ∣u−k ∣) ≥ u = 4 +
√

17 > 4.562,

hence this possibility is also excluded. Finally, we have proved that T p has degree 0,
so that

π2A i + (−1)d εuπ1Ad−i = 0 for i = 1 . . . d − 1.

This implies that π1 and π2 divide each A i for i = 1 . . . d − 1, so also divide each Ã i .
Thus 2∣A i , so also 2∣Ã i . Hence A i = 2B i with B i ∈ OK for all i . and we get

π2B i + (−1)d εuπ1Bd−i = 0 for i = 1 . . . d − 1.

We can repeat the same argument again and conclude that 2∣B i for all i . After several
repetitions, we get

2k ∣A i for every positive integer k and all i .

Hence all coefficients A i are zero. We have

f̂1 = 2xd + (−1)d εuπ2
1 and f̌1 = 2xd − (−1)d εu−1π2

2 .

Finally, we get

f (x) = 1
4

f̂ f̌ = f̂1 f̌1 = 4x2d ± 2xd − 4.
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